
Component Technology

Components in Embedded Software
Technical LEGO in LEGO land

Ir. P.N. WoutersMTD

Composing a system from reusable subsystems with a well-defined behaviour
is a common design principle in most engineering disciplines. PCB’s are built
from standard electronic components, houses are built from architectural units,
and even mathematical models are composed from sets of coherent equations.
Likewise, software is often built by assembling pieces of software.
However, reusability has always been a weak point of software engineering.
In view of this, the introduction of Component Based Development and com-
ponent technologies in the last few years is promising. Especially in the field
of information systems, these technologies are successfully adopted. How do
these trends relate to current embedded software practice? What is new about
them, and what can be expected from the future?

Reusability

In orderto significantlyreducethethroughputtime
of software projects,for many yearsthe software
engineeringcommunityis trying to increasethede-
greeof reuse.Althoughobjectorientationhasbeen
a big stepin the right direction, it hasnot hadthe
effect that many peopleexpectedfrom it. In my
opiniontherearethreemajorreasons:

Lack of standardisation in system architecture
The almostunboundedvariety of systemarchi-
tecturesmakes it very difficult to built compo-
nentsthat canbe reusedwithin anothersystem.
Withoutstandardisationin componentinterfaces,
generalmechanisms,parallelism,etc.,a substan-
tial amountof effort is requiredto port a compo-
nentfrom onesystemto another.

Lack of software engineering skills to built
reusable components

In order to be reusable,componentinterfaces
shouldbesimple,generic,andabstract.In prac-
tice, componentinterfacesareoften directedto-

wardsthespecificuseof acomponent.This leads
to complex anduser-specificinterfaces,andlack
of encapsulation.

Lack of organisational commitment to invest in
developing reusable software

In a lot of organisations,time-to-market is preva-
lent in software development. When product
development is not accompaniedby a strong
drive to adhereto a componentbasedarchitec-
ture,reuseis outof thequestion.

Theseargumentshold for all kindsof softwarede-
velopmentprojects. In embeddedsoftware, the
problemsareevenlarger. Becauseof thelargenum-
berof constraintson embeddedsoftware,reusabil-
ity is hardto accomplish.Timing aspects,hardware
dependencies,andresourceconstraintsmake it al-
most impossibleto develop off-the-shelf reusable
software.When,however, theconceptof weakcou-
pling andstrongbindingis appliedaccurately, tradi-
tionalsoftwaredevelopmentmethodsmaystill lead
to a fair amountof reuse.

22 XOOTIC MAGAZINE



Component-Based Development

The latestsolutionto the problemof reusabilityis
ComponentBasedDevelopment(CBD) by means
of componenttechnologies.A componentmay be
definedas “a unit of compositionwith contractu-
ally specifiedinterfacesandexplicit context depen-
denciesonly. A software componentcan be de-
ployedindependentlyandis subjectto composition
by third parties”(Szyperski).Thereis a fundamen-
tal differencebetweenComponent-BasedDevelop-
ment (CBD) and componenttechnologies. CBD
mainlydescribesaphilosophy:systemscanbebuilt
by assemblingwell-definedcomponentsthat pro-
videacleaninterfaceto their functionality. It is just
likeLEGO:onceyouhaveasetof standardcompo-
nents,avarietyof systemscanbebuilt with it.

A componenttechnologymay be seenasa frame-
work that enablesCBD. In general, component
technologiesconsistof an architectureand a set
of applicationprogramminginterfaces(API) within
whichonecandefinesoftwarecomponentsthatcan
becombinedto form anapplication.Thereisabasic
setof servicesthat is providedby mostcomponent
technologies,including

Event handling
Componentsmaycommunicatewith othercom-
ponentsandthe systemitself by meansof mes-
sages.

Persistence
Componentsmay needto storenon-volatile in-
formation.

Development support
componentsmaybecustomizedto beusedwithin
developmenttools(introspection).

In general,CBD is expectedto increasetheamount
of reuse. Although several componenttechnolo-
giesarecompetingto becomea De factostandard,
componentsareto a certainextendcompatiblebe-
tweenthosetechnologies.Furthermore,standard-
isation makes componentsmarketable. The num-

berof componentson themarket will rapidlygrow.
Time-to-market cansignificantlybe reducedwhen
3rd party componentscan be integratedinto cus-
tomizedapplications.

On theotherhand,building reusablecomponentsis
not an easyjob. A high level of abstractionis re-
quiredandtransformingacustomcomponentinto a
reusableoneis notastraightforwardprocess.More-
over, if organisationsarenotwilling to investin pro-
ducingreusablesoftware,a component-basedsys-
tem might still end up in a set of communicating
componentsthat cannotbe reusedbecauseof their
strongdependencies.

The questionariseswhetherCBD will solve the
problemof reusabilityin embeddedsoftware. Go-
ing back to our LEGO metaphor, embeddedsoft-
ware is the technicalLEGO of softwareengineer-
ing. This impliesthata lot of componentsandcom-
ponent interfacesin embeddedsoftware are sub-
stantiallymorecomplex thanthosein information
systems. Moreover, becausethe variety of com-
ponentsis much larger, sucha componentcan be
reusedin a limited numberof systems.Therefore,
it canbe expectedthatCBD will only increasethe
amountof reuseif a meaningfulsetof components
canbedefined,andinvestmentsaredoneto adhere
to thiscomponentarchitecture.

Future directions

In the next few years,the maturity level of CBD
andits enablingtechnologieswill grow. component
basedsystemdevelopmentwill becomeeasier, as
more andmore componentswill be commercially
available. However, for embeddedsoftware it will
take quite sometime before high-quality compo-
nentswill be available. Moreover, developmentof
reusablecomponentsis not guaranteedwhenCBD
is applied. Whethercomponentscanbe reusedor
not is still determinedby the developmentprocess
andtheskills of thedevelopers.

Pasfoto Rian

Rian Wouters is working as a Senior Technical Designer at
Alert Automation Services b.v., a Software House specialized
in training, detachment, and consultancy. Before joining AAS,
he completed the OOTI programme at Eindhoven University of
Technology.

January, 1999 23


