Component Technology

Componentsin Embedded Software
Technical LEGO in LEGO land

Ir. PN. WoutersMTD

Composing a system from reusable subsystems with a well-defined behaviour
is a common design principle in most engineering disciplines. PCB’s are built
from standard electronic components, houses are built from architectural units,
and even mathematical models are composed from sets of coherent equations.
Likewise, software is often built by assembling pieces of software.

However, reusability has always been a weak point of software engineering.
In view of this, the introduction of Component Based Development and com-
ponent technologies in the last few years is promising. Especially in the field
of information systems, these technologies are successfully adopted. How do
these trends relate to current embedded software practice? What is new about
them, and what can be expected from the future?

Reusability wardsthespecificuseof acomponentThisleads
to comple anduserspecificinterfaces,andlack

In orderto significantlyreducethethroughputime ~ Of €ncapsulation.

of software projects,for mary yearsthe software
engineeringcommunityis trying to increasehede-
greeof reuse.Althoughobjectorientationhasbeen
a big stepin the right direction, it hasnot hadthe
effect that mary peopleexpectedfrom it. In my
opiniontherearethreemajorreasons:

Lack of standardisation in system architecture
The almostunboundedvariety of systemarchi-
tecturesmakes it very difficult to built compo-
nentsthat can be reusedwithin anothersystem.
Without standardisatiom componentnterfaces,
generaimechanismsparallelism,etc.,a substan-
tial amountof effort is requiredto portacompo-
nentfrom onesystemto another

Lack of software engineering skillsto built

reusable components
In order to be reusable,componentinterfaces
shouldbe simple,generic,andabstract.In prac-
tice, componeninterfacesare often directedto-

XO0OTIC MAGAZINE

Lack of organisational commitment toinvest in
devel oping reusable software
In alot of organisationstime-to-marletis preva-
lent in software development. When product
developmentis not accompaniedby a strong
drive to adhereto a componentbasedarchitec-
ture,reuses out of thequestion.

Theseargumentshold for all kinds of softwarede-

velopmentprojects. In embeddedsoftware, the

problemsareevenlarger Becausef thelargenum-

ber of constraintson embeddedoftware, reusabil-
ity is hardto accomplish.Timing aspectshardware
dependenciesandresourceconstraintamake it al-

mostimpossibleto develop off-the-shelfreusable
software.When,however, theconcepbf weakcou-

pling andstrongbindingis appliedaccuratelytradi-

tional softwaredevelopmentmethodamaystill lead
to afair amountof reuse.



Component-Based Development

The latestsolutionto the problemof reusabilityis
ComponentBasedDevelopment(CBD) by means
of componentechnologies.A componenimay be
definedas “a unit of compositionwith contractu-
ally specifiedinterfacesandexplicit context depen-
denciesonly. A software componentcan be de-
ployedindependenthandis subjectto composition
by third parties”(Szyperski).Thereis a fundamen-
tal differencebetweenComponent-BasebBevelop-
ment (CBD) and componenttechnologies. CBD
mainly describes philosophy:systemsanbebuilt
by assemblingwell-defined componentshat pro-
vide a cleaninterfaceto theirfunctionality It is just
like LEGO: onceyou have a setof standarccompo-
nents,avariety of systemsanbe built with it.

A componentechnologymay be seenasa frame-
work that enablesCBD. In general, component
technologiesconsistof an architectureand a set
of applicationprogrammingnterfaces(API) within
which onecandefinesoftwarecomponentshatcan
becombinedo form anapplication.Thereis abasic
setof serviceghatis provided by mostcomponent
technologiesincluding

Event handling
Componentsnay communicatewith othercom-
ponentsandthe systemitself by meansof mes-
sages.

Persistence
Componentsnay nheedto store non-volatile in-
formation.

Development support
componentsnaybecustomizedo beusedwithin
developmentools (introspection).

In general CBD is expectedto increasegheamount
of reuse. Although sereral componenttechnolo-
giesarecompetingto becomea De factostandard,
componentsareto a certainextend compatiblebe-
tweenthosetechnologies. Furthermore standard-
isation makes componentsnarketable. The num-

Pasfoto Rian
Technol ogy.

berof component®nthe market will rapidly grow.
Time-to-marlet can significantly be reducedwhen
3rd party componentsan be integratedinto cus-
tomizedapplications.

Ontheotherhand,building reusableeomponentss

not an easyjob. A high level of abstractioris re-

guiredandtransforminga customcomponentnto a

reusableneis notastraightforvard processMore-

over, if organisationgsrenotwilling to investin pro-

ducingreusablesoftware, a component-baseslys-

tem might still endup in a setof communicating
componentghat cannotbe reusedbecausef their

strongdependencies.

The questionariseswhether CBD will solwe the
problemof reusabilityin embeddedoftware. Go-
ing backto our LEGO metaphor embeddedsoft-
wareis the technicalLEGO of software engineer
ing. Thisimpliesthatalot of componentandcom-
ponentinterfacesin embeddedsoftware are sub-
stantially more comple thanthosein information
systems. Moreover, becausethe variety of com-
ponentsis muchlarger, sucha componentcanbe
reusedn a limited numberof systems.Therefore,
it canbe expectedthat CBD will only increasethe
amountof reuseif a meaningfulsetof components
canbedefined,andinvestmentsaredoneto adhere
to this componentrchitecture.

Futuredirections

In the next few years,the maturity level of CBD
andits enablingtechnologiesill gron. component
basedsystemdevelopmentwill becomeeasier as
more and more componentswill be commercially
available. However, for embeddedoftware it will
take quite sometime before high-quality compo-
nentswill be available. Moreover, developmentof
reusablecomponentss not guaranteedvhenCBD
is applied. Whethercomponentsan be reusedor
not is still determinedoy the developmentprocess
andthe skills of thedevelopers.

Rian Wouters isworking as a Senior Technical Designer at
Alert Automation Services b.v., a Software House specialized
in training, detachment, and consultancy. Before joining AAS,
he completed the OOTI programme at Eindhoven University of

January, 1999




