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Cryptology goes back to
Julius Caesar or even
further. Most of these old
systems look very
amateurish, although a
system like Vigenéere
remained secure for almost
three centuries. During
World War Il, smartly
designed mechanical and
electro-mechanical
cryptosystems were in use.
Shortly later, completely
electronical circuits
replaced the old systems.
Nowadays, cryptosystems
are mostly implemented on

chips.

Cryptology
from Roman Da ys to

Electr onic Times

Intr oduction

Starting in the late Seventies, completely different crypto-systems
were proposed. They are ideally suited for communication systems
that are completely controlled by computers. In these new cryptosys-
tems, no secret agreements are necessary. They make use of mathe-
matical methods, like elementary number theory and abstract
algebra. It turns out that they also make it possible to add a digital
signature to files. In many practical situations this is more important
than privacy.

Classical systems

Historians tell us that Julius Caesar was the first to make use of a
cryptosystem. He used it to keep his communication safe from his
enemies in Rome. Caesar simply replaced every letter by the letter
five places further in the alphabet (so his name becomes “Ozqnzx
Hfjxfw”). Of course, the five (called the key) in this system can be re-
placed by any other value less than 26, but that still does not create
enough possibilities to prevent breaking the system by exhaustive
methods. The reader is invited to decrypt the Latin phrase ‘wxtxrtx-
heuxwh’.

The recordholder in security, already mentioned in the abstract, was
proposed in 1586 by Vigenére and consists of a suitable number of dif-
ferent Caesar ciphers applied periodically, for example with the key
“xootic” one gets the following encryption:
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The basic difficulty for the cryptanalist with this system is the uncer-
tainty about the length of the key word/phrase. It lasted until 1863
before the system was broken by statistical means. The reader who is
interested in these old cryptosystems is referred to [3].

DES

A well-known designer’s principle in cryptography is to repeatedly
alternate between a substitution of symbols by other symbols and a
permutation of their order. This is exactly what happens in the suc-
cesful Data Encryption Standard (DES). It was introduced in 1977 and
implemented on a chip. DES (see Figure 1) operates on 64 bits at a
time. In sixteen separate rounds they are permuted and partially re-
placed by other bits. The permutation used in each round is a cyclic
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Figure 1. The Data Encryption Standard
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Figure 2. Cipherblock chain

shift over 32 positions, while the substitution in
each round is determined by a key which is derived
from the DES key K. The DES key consists of 64 bits
of which 56 can be chosen at random. Some critics
find this number too small to resist an exhaustive
key search with today’s technology.

The DES system is implemented as a component in
many information security systems, although the
key length is no longer considered secure enough.
In order to avoid that the same plaintext will be en-
crypted each time (under the same key) into the
same ciphertext, one can use methods like cipher-
block chaining (see Figure 2), in which the last cipher-
text is XOR-ed componentwise with the new
plaintext (at the receiving end the opposite has to be
done)

On many smartcard applications DES is not only
used for encryption purposes, but also for authenti-

smart card of Ann

cation purposes. When a smart card is inserted into
a card reader they want to verify that the other is
genuine. On the card of a certain person, say Ann,
an identity number | 5, is stored that is presented
to the reader. Also a secret key K, is stored. A
genuine card reader can compute the secret key
K ann by means of Ann’s identity number (the al-
ternative that each card reader has to store the secret
keys of all possible cards is for obvious reasons too
unattractive).

Ann’s card checks the card readers authenticity by
generating a random string M of 64 bits and send-
ing this to the card reader. The card reader has to
send back DES, (M) . Ann’s smart card checks
this calculation and if the outcome is correct it will
trust the card reader. In Figure 3, this authenticity
checking protocol is depicted

In the same way as above, the card reader can check
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Figure 3. A protocol for checking the authenticity of the card reader
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that the smart card which presented Ann’s identity
number |5, indeed knows Ann’s secret key
K ann and thus must be Ann’s card.

Public ke y cryptograph vy

All the systems explained above are of the so-called
conventional type, which means that sender and re-
ceiver must have agreed upon a common secret key.
In modern applications, such as large computer
controlled communication networks, there are sim-
ply too many users to establish distinct keys be-
tween every pair. Similarly they may be too far
apart or they do not know each other in advance.

In 1976, W. Diffie and M. E. Hellman [1] introduced
an entirely new concept: public key cryptography.
Here, a user, say U, makes two algorithms, one (to
be called D\, ) remains secret, the other (E|; ) has to
be made public. Of course some properties must
hold. For instance, a cryptanalist should not be able
to determine the secret algorithm DU from the
public algorithm E ;.

If Ann wants to send a secret message M to Bob, she
can look up Bob’s public encryption algorithm
Egop and send € = Egyp(M). Bob can retrieve
M from C by computing DBob(C) . Here, we need
that Dgyp(Egop(M)) = M for all possible mes-
sages M.

Much more is possible [4]. In the next section, we
show a particular public key cryptosystem used to
add a digital signature to an electronic document.

A digital signature sc heme

In many applications secrecy is not the issue, but the
integrity and authenticity of the data are. Assume
that Ann is sending a long file to Bob. She wants to
append a small tail to the file that allows Bob to
check that the received file has not been changed
and that it indeed comes from Ann.

The first step is to compress the file f to a tail, say t,
by means of a mapping h.So t = h(f). The map-
ping h is called a hash function. It should be crypto-
graphically secure. This implies in particular that it
is not possible for somebody else to find a second
file f' with h(f) = h(f"). In this way, nobody
else can replace the file f by f', while keeping the
same tail . (In this way integrity of the data will be
guaranteed.)

The hash value t does not prove to Bob that the
message came from Ann. In [2], it is shown how this
can be realized. To this end, we assume that the tail
t above is represented by an integer in between 0
and a large prime P. All further calculations will be

performed modulo some modulus. This means that
any upcoming number will replaced by the value of
its (non-negative) remainder after division by the
modulus. Before we can explain the system, we
need to explain the mathematical tools that will be
needed. It turns out that the EIGamal digital signature
scheme relies in an essential way on the following
two properties.

1. Exponentiation modulo a prime P is quite doa-

ble, even for large values of P.Indeed, it takes

2
at most 2" IN P multiplications, as the following

example shows (note how the binary represen-
tation 101101011 of the exponent 363 has been
used: a 0 stands for squaring, a 1 for squaring

followed by a multiplication by m):

363
m

CCCCCCcDmAmDHHm ) ym Hm

2. Taking logarithms modulo p, i.e. solving M
from

g™ = c(modp)

with known g and C is computationally infea-

sible for large P. In other words, there is an

exponential relation between the complexity of
exponentiation and that of taking logarithms.

In ElGamal’s signature scheme P and g are system
parameters shared by all participants, e.g. P is a 100
digits long prime and g is something like 2 or 3.
Each user U chr%oses arandom exponent M, , com-
putes C; = g ~(modp) and makes the value of
Cy public.

When Ann wants to append a tail to file f to serve
as her digital signature on f, she proceeds as fol-
lows:

1. Ann computes the hash value h(f) of the file
f,

2. Ann chooses a random number I,
1<r<p-2,coprimewith p—1,

3. Ann computes R = gr(modp) and
S=(h(f)+ m,,,R)/r(modp—-1).

4. Annappends R and S as her signature to the
file f.
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How can anybody, say Bob, check the authenticity
and integrity of the file f? This is depicted below:

1. Bob computes the hash value h( ) of the file f,
2. Bob looks up Ann’s public Cppp,,

3. Bob checks if gh(f)CAan]e = Rs(modp).

It is a matter of simple substitution to verify that the
relation above should hold. Of importance is to no-
tice that only Ann could have made the signature R
and S, because only she knows the secret My,
The reader may wonder why the random number I
is introduced when Ann wants to add a digital sig-
nature to a file f. The reason is that Ann wants to
use her secret exponent My, over and over again.
The value of My, is in the current scheme, each
time it is used, hidden by a (different) random I .

Conclusion

Cryptography has evolved from the secret world of
military applications to a discipline that finds its ap-
plications whenever parties want to communicate
over open networks in a secure way. The methods
have changed from ingeniously designed systems,
via complicated mechanical devices to algorithms
relying on advanced mathematical theories. ]
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