The Strike of OO

Onno van Roosmalen

Eindhoven University of
Technology

Object-oriented methods are
not yet widely applied to the
construction of real-time
systems. In particular
embedded systems with
stringent space and time
constraints are often being
built using conventional
programming technology. If
object orientation is used at
all for such applications, one
resorts to established design
and programming languages
(e.g. OMT and C++) that are
not particularly tuned to the
needs of real-time systems.
The real-time languages that
are formulated in the research
community do not lead to
substantial progress in the
state of the practice. Is
research not providing the
right solutions or is it simply
some steps ahead?

Who’s Afraid of
Objects f or Real-Time?

In the coming years a further rapid increase in the number of real-
time embedded applications is to be expected. The importance of this
branch of computing is generally recognized. Our government con-
siders it of vital economic importance to stimulate the use of embed-
ded software, as appears from a recent ‘Technologieverkenning
Embedded Software’ [1] (with the explicit mention of software in-
stead of systems). Closer to home; the Computer Science department
of EUT has recently proposed the establishment of the Eindhoven
Embedded Systems Institute (EESI) at Eindhoven University.

When discussing software development and increase in software
production, one cannot refrain from considering object orientation.
Object orientation is a powerful software development paradigm
that is getting more widely accepted. Currently, every new develop-
ment in object technology is pervading the IT community faster than
the previous one. Java is beating it predecessor (C++) in the rate at
which it is being accepted. UML is awaited by many with impa-
tience.

Object orientation for real-time embedded applications however is
not (yet) moving fast. Major manufacturers of embedded systems are
hesitant to commit to OO and are at best in the stage of exploring the
possibilities. A recent seminar organized by the CME (the Dutch
Centrum voor Micro-Electronica) [2], where Java was strongly advo-
cated as a language for implementing embedded applications, was
received by many with scepticism or at best a wait-and-see attitude.

Object Orientation: It is the Best f or Real-

Time, It is the W orst for Real-Time

There are some undisputed advantages to the use of OO compared
to other approaches (e.g., SA/SD). The most important ones are the
following: (1) it reduces the semantic gap between software develop-
ment stages (i.e., it does not require a shift in modelling concepts
moving from one phase to another), (2) it increases maintainability
through modular continuity and encapsulation of hardware depend-
encies, and (3) it increases reusability of software components. All
these advantages are at least as important for real-time embedded
systems as they are for ‘standard” applications. Most real-time sys-
tems can be modelled after the physical systems they control, thus
obtaining an even more seamless path from specification all the way
down to implementation and testing. A lesser sensitivity to changing
requirements is of particular importance for the development of fam-
ilies of systems. Embedded systems often do occur in families. The
possibility to isolate platform dependencies through encapsulation
can also be very useful for embedded systems since one could more
quickly exploit hardware developments. WindowsNT is a good ex-
ample of how an object-based paradigm can lead to high portability

December 1997



and flexibility. Looking at all these advantages, one
may wonder what the problem is with using OO in
embedded systems.

The price to pay for OO is a substantially higher and
less predictable usage of resources. In addition to
devouring memory, OO application are usually
slower than their conventional counterparts (this
may vary strongly with implementation language,
though). Two major causes of unpredictability are
dynamic binding and the heavy (almost exclusive)
use of dynamic object creation and destruction re-
quiring frequent allocation and deallocation of
memory. The high and unpredictable resource us-
age is very disabling when developing real-time
systems. Such systems are usually subject to tight
resource and timing constraints.

The high resource usage of OO may ultimately be
more detrimental to its application to embedded
real-time systems than its unpredictability. The rea-
son is that there are many other sources of unpre-
dictability, in fact numerous ones at all levels of a
computing architecture. (1) The hardware; e.g., in-
struction prefetching and pipelining, the use of
caches, bus contention on multiprocessor systems.
(2) The operating system; e.g., services that supply
necessary abstractions for nowadays highly com-
plex systems such as memory management (memo-
ry allocation, paging, etc.), and optimization such as
lazy evaluation techniques to reduce OS overhead.
(3) Language implementation; e.g., (apart from the
mentioned allocation and deallocation of memory
for dynamic data structures) compiler optimiza-
tions. (4) The application and its input; e.g., number
of iteration through loops, recursion depth. At all
these levels the situation seems to persistently get
worse. Although embedded systems are currently
implemented on platforms that intentionally do not
supply many of the mentioned facilities, the tenden-
cy is towards the use of standard platforms. The ex-
pectation that the rapidly increasing availability of
processor and memory capacity will make guaran-
teeing real-time performance easier may be entirely
misplaced. User’s demand for increase of function-
ality results in a push of real-time applications to
the technical limits (consider e.g. multimedia appli-
cations) and real-time constraints may actually be-
come more severe. This will be further aggravated
by the fact that embedded real-time systems will be-
come less embedded and more and more open. The
question is not if, but how we will learn to live with
unpredictability.

It is to be expected that in the course of time new so-
phisticated mechanisms to deal with memory con-
straints and timeliness requirements will be
proposed. At the same time one will have to use de-
sign and programming language concepts for real-
time systems, favorably object oriented, that will be

XOOTIC MAGAZINE

durable and can employ such new mechanisms. In
my opinion it is, therefore, important during the de-
velopment of languages to find the best concepts
from a software engineering point of view rather than
the best concepts from a language implementation per-
spective. My impression is that many new language
concepts are developed disregarding this point.
This may very well be the explanation of the failure
of such new concepts to penetrate into the software
engineering practice.

OO Langua ges for Real-Time

Two important types of primitives for object orient-
ed real-time programming languages have been
studied extensively in recent years: concurrency
and timing primitives [3].

There are, by now, many proposals for including
concurrency in object-oriented languages. One im-
portant group of such proposals are the Actor lan-
guages. However, actor models for concurrent
object systems are hardly used in practice. Instead a
language like Java is gaining wide popularity but
uses simple multithreading. It is likely that for em-
bedded systems such concurrency model is prefera-
ble for its simplicity, uniformity, and lower
overhead.

Including time in programming languages in a way
that is syntactically concise, semantically simple
and that would allow formal verification of pro-
grammed timing behavior, is also a longstanding is-
sue. We will consider it in more detail in the next
sections.

Time and Composability

Already in the early seventies, Dijkstra and Wirth
[4] stressed the importance of problem decomposi-
tion and stepwise refinement as programming strat-
egies. Normally, there are no major problems in
applying these strategies: the functional behavior of
an object can be made to depend strictly on the ex-
plicitly declared interfaces offered by other objects.
Thus, based on the interface properties, objects can
be combined to form more complex behavior. This
is called composability and it is essential to enable
software reuse. However, if one considers timing
behavior of an object, implementation details of
other, concurrently executing objects may become
important. For example, in a multitasking system
the time required to complete a certain computation
is sensitive to claims on the processor(s) made by
objects that solve completely independent concerns.
I'will refer to these other objects as the context. Hid-
den coupling, i.e., coupling that is not explicitly on
the interface between components, will be called
context dependence here. Thus, certain timing aspects
of objects, in particular execution durations of their
methods, may be context dependent. In addition,



timing behavior usually depends on the platform.

Normal, i.e. non-real-time, programming languages
provide a context and platform-independent way of
describing algorithms. That is, the design decisions
and the resulting program are not influenced by de-
tails of context and execution platform but solely
depend on the specification of the system or sub-
system that is to be constructed. This abstraction
from platform and context is a prerequisite for com-
posability and reusability. Since composability is an
important aim of OO, it makes no sense to formu-
late a real-time object-oriented design method or pro-
gramming language that does not offer such
abstraction.

One can distinguish two types of context and plat-
form dependencies: (1) those that can be explicitly
identified in the program text, and (2) those that im-
plicitly influence program design. Many existing
real-time design and programming languages are
not free of these types of context and platform de-
pendencies. I will illustrate this with two examples.

Example 1 In 1996 I attended a presentation about
a HRT-Hood toolset that was developed for ESA [5].
In the toolset, timeliness issues can be addressed
early in the design stage by having the designer es-
timate execution times. A time budget for each
deadline (i.e., time available to a deadline) is intro-
duced that must be divided by guestimation over
the various high-level instructions (procedures)
that must be carried out before the deadline. If this
is done for all objects competing for a resource, a
schedulability analysis can be carried out. There is
no harm in making such estimates to get an impres-
sion of the feasibility of obtaining an implementa-
tion on a given platform. However, such facilities
are actually intended for guiding the subsequent
design process and there is the danger of introduc-
ing platform dependencies within the design that
ultimately hamper the reusability and portability of
the designed objects. It is, for instance possible that
the subsequent design uses the restricting assump-
tion that two objects reside on the same processor.
(Note that a schedulability analysis can only be car-
ried out when all of the objects competing for a
processor are known and sufficiently detailed.)
End Example 1

Example 2 Consider a control system that must
generate a proper response when an observable in
the environment under control reaches a critical
value. The observable is probed by the control sys-
tem through polling. This type of problem is very
common in real-time control. One could think of an
observable like the methane level in a mine. If this
level becomes too high (i.e., reaches a well-defined
critical value) all electric equipment (like a water
pump) must be shut off to prevent explosions. For-

mulated more generally, a critical condition C; on
the (polled) environment value S; requires a re-
sponse R; within deadline d;, i.e.

Cl-(Si) att-> Ri in [f, t+ dl)

for all t before which the environment was not crit-
ical, i.e.

Et; < t:not C;(S;) during [t1, ).

Because various such conditions might exist, we use
a subscript i to distinguish them. A typical solution
adopted in many programming approaches (see for
example [6]) is to introduce for each critical observ-
able an object that carries out a periodic inspection
of the sensor measuring the environment value.

class M;

thread T; priority Q;;
do
with period Pi do
read(S)); if Ci(S;) then R;fi
od
od

end -- class M;

The class M; yields active objects with a thread T;
that reads a sensor value and conditionally takes ac-
tion R;. The thread T; is released periodically with
period P; and has execution priority Q;. A good
choice for the process priorities is the rate monoton-
ic assignment, i.e., the process with the shortest pe-
riod obtains the highest priority.

P;
<L
I —
-
D;
- d >
not Ci ¢ Ci

Figure 1: A strictly periodic thread that polls a sensor.

To understand the relation between the deadline d;
and the period P;, consider Figure 1. The grey areas
in the figure indicate the time that the released proc-
ess can be in execution. During this period it may
execute or wait for higher priority processes to re-
linquish the processor. The maximum size, D;, of
these time slots can be computed when both the
complete process set and the time required by the
processor to execute the process’ statements is
known. The worst case with regard to the timeliness
of a response R; occurs when the critical condition

December 1997




C; starts at t, just after the process was released and
performed a read action. The first occasion the con-
trol system is able to detect this condition is after the
next release and it requires then at most a time D; to
effectuate the response. Thus the condition on the
process’ execution is: P;+ D; < d; .

The above solution has a couple of platform and
context dependencies.

¢ Relative process priorities must be selected and
must be hard coded into the program. Thus
making processes depend on each other,
although completely independent critical condi-
tions may be monitored by them. A process can
not be reused, as is, in another context.

¢ A choice must be made for a division of d; (the
entity that is given in the problem specification)
into a period P; and a deadline D; for the

released thread. When P; is made smaller, the

system load is increased, when it is made larger
the available time D; for the process to execute is
reduced and the number of platforms that can
execute the program is reduced. Thus, the pro-
grammer is enticed to take platform properties
into consideration.

End Example 2

Although the foregoing describes just examples,
the following shortcomings of present real-time lan-
guages and methods are more general.

* Many current real-time programming methods
force the programmer to make unnecessary
design decisions that put additional timing con-
straints (i.e., constraints not directly derivable
from the problem specification) on the execution
of programs.

* Programming solutions must often explicitly be
tuned to a particular property of the platform
(scheduling regime, processor speed).

¢ To prove the correctness of a program, platform
properties must be made explicit and described
separately. It is not sufficient to consider just the
program to prove that the specification is satis-
fied.

¢ Correctness (in particular satisfaction of timing
requirements) can usually not be established for
a program component in isolation. This ham-
pers the systematic construction of program
through composition.

Platform Independence

Recently, Jozef Hooman and I [7] have described in
detail a language extension to deal with timing re-
quirements, that solves the aforementioned prob-
lems. It yields programs or program components
that can be proved correct independently of a con-
text and platform. Using the timing annotation that

XOOTIC MAGAZINE

is the basis of this approach, I will briefly sketch the
solution of the problem described in Example 2.

cl ass M

thread T;
do
[ty :=0];
forever do
read(S; ) [to:=ty+d; ; <tp; ?t1];
if Ci(Sj)thenR; [<ty]fi
od
od

end -- class M;

The timing annotations (in square brackets) express
timing constraints that are to be satisfied when exe-
cuting the statements they belong to. In the example
they should be interpreted as follows. The execu-
tion moment of each sensor reading is meas-
ured[...;?tq] and recorded in the timing
variable t;. The timing constraints following from
each of these time measurements fall in the nextit-
eration of the forever 1oop as I explained earlier us-
ing Figure 1. This is effectuated by using a second
timing variable t, which takes the val ue t;+d; using
t; as obtained in the previous iteration through
[to:=tq+dj;...]. There are two constraints.
First, each read action should be performed within
time d; after the previous one (regardless of whether
a response R; is necessary). This is enforced by
[...;<ts;...] which demands the execution of
the read action to take place before the present val-
ue of t). Second, if a response R; is required, its exe-
cution moment should also take place before the
current value of ¢,. Correctness of programs like the
one above can be established formally.

Note the differences between our approach and the
standard one described in the previous section.

* Only constraints that follow directly from the
original problem specification are introduced.
The only timing parameter in the program, d,, is
directly taken from this specification.

¢ Any execution of the program that satisfies the
indicated constraints will yield the specification.
A strictly periodic execution is possible but not
necessary.

¢ The constraints are formulated on execution
moments of statements, not on program blocks
(e.g., a complete thread body).

¢ There is no reference to the particulars of an exe-
cution mechanism. There are no priorities or
other scheduling directives.

As may be clear from this example, there is no guar-

antee that an implementation of a program exists on

a given platform. In the implementation generation

phase it must be established that the selected plat-

form is powerful enough to satisfy the timing con-
straints that are expressed in the program. This



usually comes down to compiling and scheduling
the program. The main difference between this im-
plementation generation and the compilation step
in non-real-time system development is the possi-
bility to conclude that no implementation can be
found for the selected platform.

Conclusion

I suggest the following list of properties that object-
oriented real-time design and programming con-
cepts must satisfy to be successful (in order of im-
portance). They must (1) be efficiently implement-
able, (2) have simple semantics, (3) be concise (few
and orthogonal concepts), (4) have a proper abstrac-
tion level (in particular, implementation mecha-
nisms should be hidden completely from the
programmer), (5) allow reusability of designs and
programs across platforms (even when time is in-
cluded), and (6) have a formal semantics and prove
system.

Many proposed real-time languages have little im-
pact because their primitives do not satisfy the ma-
jority of the above criteria. In particular the
abstractions are not well enough chosen and se-
mantics very complex. Although Java cannot (yet)
be called a real-time language, it already scores high
on many of the above points. I believe that its suc-
cess can be largely attributed to that.

Finally, let me give a (partial) answer to my initial
question. Who's afraid of objects for real-time? Sun
Microsystems definitely isn’t!

References

[1] Report for the Dutch Ministry of Economic Affairs, (in
Dutch), Embedded Software, Onderzoek naar de mogelijkheden en
knelpunten bij de toepassing van embedded software door het mid-
den- en kleinbedrijf, Prisma & Partners b.v., Warnsveld, March
1997.

[2] Handouts seminar Java in Embedded Systems, at Zeist, 22 mei
1997, Centrum voor Micro-Electronica, Postbus 1001,
Veenendaal.

[3] An interesting overview is given in: W. van der Sterren, De-
sign of a Real-Time Object-Oriented Language, M.Sc. thesis, De-
partment of Computer Sciences, Twente University,
February 1993.

[4] N. Wirth, Program Development by Stepwise Refinement,
Comm. of ACM, Vol. 14, No. 4, pp 221-227, 1971.

[5] European Space Agency Contract Report, contract No
11234/94/NL/FM(SC), HRT-HoodNICE: a Hard Real-Time S/
W Design Support Tool, Intecs Sistemi S.p.A., March 1996.

[6] Y.Ishikawa et al., Object-Oriented Real-Time Language Design:
Constructs for Timing Constraints, Sigplan Notices, Vol. 25,
No. 10, p289, 1990.

[7] J. Hooman and O. Van Roosmalen, A Programming Language
Extension for Distributed Real-Time Systems, Computing Sci-
ence Report 97/02, Eindhoven University of Technology,
1997.

pasfoto
Van Roosmalen

Dr. Onno van Roosmalen studied physics at the
University of Nijmegen and did his PhD-research in
theoretical nuclear physics at the “Kernfysisch Ver-
sneller Instituut” in Groningen. He obtained his PhD
in 1982. After having filled positions at California In-
stitute of Technology and Yale University he
switched to computer science and joined the Distrib-
uted Systems group of the Computer Science de-
partment at Eindhoven University of Technology in
1987.

December 1997




