
Programming Languages

Python
Victor Bos

“And now for something completely different...” Python is a scripting language
with clear syntax and semantics, support for object orientation, and an exten-
sive standard library. In contrast with many other scripting languages Python
code is readable and, therefore, reusable. This makes Pyhton a useful tool for
software development, since it can be used to implement prototypes as well as
production versions of applications.

Intr oduction

Pythonis a scriptingor extensionlanguagesimilar
to Perl [12], Tcl/Tk [8]. In his foreword to Pro-
grammingPython [6] Python’s creatorGuido van
Rossumwrote (See[11]): “I decidedto write an
interpreter for the new scripting language I had
beenthinking about lately: a descendantof ABC
that would appealto Unix/C hackers.” The ABC
language,[5], hasnever becomepopular, which is
partly causedby its peculiarsyntax,but it waswell
designed. In addition to ABC, Pythonwas influ-
encedby Modula-3,an objectorienteddescendant
of Pascalmeantfor systemprogramming,see[7].
Thisresultedin ascriptinglanguagewith clearsyn-
tax (which is not commonfor scriptinglanguages)
andpowerful languageconstructs.

Furthermore,Pythoncomeswith anextensive stan-
dardlibrary thatprovidestheprogrammeraccessto
a hugeset of routines. Therefore,a Pythonpro-
grammerusuallydoesnothave to spendmuchtime
to implementationdetailsof standardroutineslike
matchinga regular expressionon a string, or ac-
cessingoperatingsystemfunctionalitytocreatepro-
cesses,pipes,etc. Instead,a Pythonprogrammer
canjust look up therelevantPythonmodulesin the
standardlibrary andusethemto solve her/hisprob-
lem.

The language

The syntaxof Pythonis quite standard,aswill be
shown in examplesthroughoutthis article. How-
ever, therearesomecontroversial aspects.Inden-
tation of groupsof statementsis oneof them. If a
groupstartson a new line, all its statementsshould
be indentedby the samenumberof columns. For
example,awhile loop is written as:

while i<n and f(i)<f(n):
a[i] = f(i)
i = i + 1

The statementsa[i] = f(i) andi = i + 1
form a group. Since indentationis usedto indi-
categroups,no group delimiters like { and} or
begin–end are needed. Programmersunfamil-
iar with Pythonmight find this irritating, however,
it is not a drawback. Experiencedprogrammers
(in no matterwhat language)have usuallyadopted
their own style of indentationfor groupsof state-
ments.SincePythondoesnotprescribethenumber
of columnsof indentation,thesepeoplecankeepon
usingtheir own style in Python. Furthermore,the
codedoesnotgetmessedup with groupdelimiters.

Build-in data structures Pythonhasthe follow-
ing datastructuresbuild-in: integers,floats,strings,
tuples,lists, dictionaries,andfunctions. Thereare
no booleans,which is a shortcomingnot only of
Pythonbut of most scripting languages.Integers,
floats,andstringsarestandarddatastructureswhich
we will not discusshere. A tuple is an immutable

May 2001 25

sequenceof elements,that is, it is a sequenceof
which the elementscannotchangeoncethe tuple
is created.Listsaremutablesequencesof elements;
elementscanbe addedto andremoved from lists.
A very powerful build-in datastructureis the dic-
tionary. A dictionaryis a look-uptableor associa-
tive array containingkey-value pairs. Hashingis
usedto look up a key in a dictionarywhich means
dictionarieshave fast accesstimes. Finally, func-
tions are first-classobjectsin Python. Therefore,
Pythonprogramscanbeamix of functionalandim-
perative programs.A lambda-syntax, known from
many functional programminglanguages,is used
to denoteanonymous function. For example, the
functionthataddstwo elementscouldbewritten in
Pythonaslambda x, y: x + y. Sincethis is
a normalobject,it canbe assignedto variables,as
will beshown later.

Universal object model Pythonhasa universal
objectmodel, which meansthatevery pieceof data
in aPythonprogramis anobject.As usualin object
orientedprogramminglanguages,an objecthasat-
tributesthatdefinethestateof theobjectandmeth-
odsto allow otherobjectsto performoperationson
theobject.For example,thefollowing Pythoncode
definesa classPoint of objectswith an � anda �
coordinateanda methoddist to computethedis-
tancebetweentwo objects.

class Point:

def __init__(self, x=0, y=0):
self.x = x
self.y = y

def dist(self, other):
dx = self.x - other.x
dy = self.y - other.y
return (dx**2 + dy**2) ** .5

In thedefinitionof dist, thetwo argument** op-
eratoris used;x ** y raisesx to thepowery.
Theexampleshows at leasttwo syntacticpeculiari-
ties. First of all, Pythonhasspecialsyntaxfor spe-
cial methodslike the__init__ method.Thespe-
cial syntax,which in my opinion is quite ugly, is
an identifier that startsand endswith two under-
scores. The __init__ methodis special,since
it is a constructorof the Point classandwill be
called whenever a point is created,for example,
thepoint ��������	 is createdby callingPoint(1,2).
Note that the coordinateargumentsof __init__
have default values,x=0 and y=0, so the point

��
���
�	 couldbecreatedby callingPoint(). Other
specialmethodsareusedto overloadoperatorsand
build-in functions. For example, the __add__
methodcanbeusedto overloadthe+ operator. By
extendingthePoint classwith thefollowing defi-
nition of __add__, we canwrite p1 + p2 in or-
derto addthepointsp1 andp2.

def __add__(self, other):
return Point(self.x + other.x,

self.y + other.y)

The other strangepart of the examplesabove is
the self-parameterof __init__, dist, and
__add__. Thisparameteris aself-referenceto the
object on which the methodis invoked. Whereas
in most object-orientedlanguagesthereis usually
no need to make the referenceto an object it-
self explicit, in Python it is. Furthermore,the
self-referenceis always the first parameterof the
method. By convention it is calledself, but the
programmeris freeto chooseanotheridentifier.

So, in a constructor(__init__) self refersto
the object that is createdand in a normal method
(dist or __add__) self refersto theobjecton
which the methodis invoked. In someprogram-
ming languages,this is usedinsteadof self,
e.g.,C++ [9] andJava [1].
Unlike many object-orientedprogramming lan-
guages,thesetof attributesandthesetof methods
of anobjectarenot constantduringits lifetime. For
example,the following codecreatesa Point ob-
ject, changesits � -coordinate,andaddsa color at-
tribute.

p = Point()
p.x = p.x + 4
p.color = "yellow"

Programming styles Pythonsupportsthreepro-
grammingstyles: procedural,object-oriented,and
functionalprogramming.Furthermore,thesestyles
canbemixedarbitrarily. Of course,anunrestricted
mix of thesethree styles will not improve read-
ability andmaintainabilityof theprogramandit is
thereforewiseto stick to onestyleasmuchaspos-
sible. However, programmingstylesaremeantto
easeprogrammingandnot to restrict the freedom
of the programmer. Therefore,if in a given situa-
tion oneparticularstyle is not adequate,it should
bepossibleto switch to anotherstyle. Pythonsup-
portsprogrammingusingmultiplestyles,whereasa

26 XOOTIC MAGAZINE

purefunctional languageor a pureobjectoriented
languagedoesnot.
The following Pythonlisting is an exampleshow-
ing thethreeprogrammingstyles.First we take the
Point classagainand extend it with the special
method__str__. This methodwill be called if
a Point objectshouldbe representedby a string,
e.g., in order to print it. After the classdefini-
tion, two functionsaredefined:closerToOrig
andfindMax. The functionsare not part of the
Point class,becausetheir indentationis not the
sameas the indentationof the classbody. The
functioncloserToOrig takestwo pointsandde-
terminesif the first is closer to the origin, i.e.,
Point(0,0), than the second. The findMax
function is a generic function that takes a non-
empty list of elementsand a comparefunction
lessthan. Thecomparefunctiondeterminesif its
first argumentis lessthanits secondargument.Note
thatcloserToOrig is suchacomparefunction.

class Point:

def __init__(self, x=0, y=0):
self.x = x
self.y = y

def dist(self, other):
dx = self.x - other.x
dy = self.y - other.y
return (dx**2 + dy**2) ** .5

def __str__(self):
return ("(" + str(self.x) +

", " + str(self.y) +
")")

def closerToOrig(p0,p1):
return (p0.dist(Point(0,0)) <

p1.dist(Point(0,0)))

def findMax(list, lessthan):
if len(list)>0:

m = list[0]
for i in list[1:]:

if lessthan(m, i):
m = i

return m
else:

print "No max in empty list"

Given a list of elementsand a suitablecompare
function on the elements,findMax finds a max-
imal elementin the list with respectto the com-
parefunction. For instance,given a list of points,
findMax canbeusedto determinea point that is
at leastas far from the origin as all other points.

For example,considerthe following Pythoncode.
On the first line, a list l of threepointsis created.
On the secondline, this list is printed. The map
function takesa function anda list andappliesthe
function on eachelementin the list. The function
str returnsa stringrepresentationof its argument.
If appliedto a Point, it calls the specialmethod
__str__ definedabove. The third line creates
a list of numbersrepresentingthe distanceof the
points in list l to the origin. Finally, the fifth line
calls thefindMax functionwith argumentsl and
closerToOrig in orderto find a point in l that
is at leastasfor from the origin asall otherpoints
in l.

l = [Point(3,4), Point(), Point(2,1)]
print map(str, l)
d = map(lambda x: x.dist(Point()), l)
print map(str, d)
m = findMax(l, closerToOrig)
print m

Theoutputof thisPythoncodeis:

[’(3, 4)’, ’(0, 0)’, ’(2, 1)’]
[’5.0’, ’0.0’, ’2.2360679775’]
(3, 4)

Standard library

Python comeswith an extensive standardlibrary
organizedin modulesandpackages. Furthermore,
the standardlibrary is mostly platform indepen-
dent. People familiar with Java will recognize
much of the functionality, like network program-
ming,threads,andastandardwindowing toolkit. In
addition, it includesmodulesthat definePerl-like
regularexpressionsandpowerful stringoperations.
In this section,I will discusssomefunctionalityof
Python’s standardlibrary. For moredetailedinfor-
mation,see[6, 2].

Inter net Internetprogrammingis oneof the most
importantapplicationdomainsof Python. One
of the reasonsfor Python’s popularity is that
the standardlibrary provides functionality by
which both server and client side Internetap-
plications can be written. For example, the
modules urlparse and mimetools pro-
vide functionality to manipulateurl stringsand
mime encodedmessages,respectively. In ad-
dition to thesemodules,thereare modulesto
processHTML, XML, andSGML documents,

May 2001 27

modulesthat provide HTTP servers,andmod-
ules to write CGI scripts. The fact that many
CGI scripts are written in Python and that
thereexist full sizeweb-applications,like Zope
(http://www.zope.org/), shows that Python is
popular among internet application program-
mers.

Operating systemservices Python has build in
functionality to read and write files. In ad-
dition, the standardlibrary offers functionality
to handlefiles and directories,sub-processes,
streams,andpipes.Thesub-processesneednot
be Pythonprograms,but can be any program
that runson your system. In this way, Python
canbe usedto control differentapplicationsor
as a communicationmeansbetweendifferent
applications.

Profiling Pythoncomeswith a deterministicpro-
filer. TheonlinePythonreferencedescribesde-
terministicprofiling asfollows:
Deterministicprofiling is meant to reflect the
fact that all functioncall, function return, and
exceptioneventsaremonitored,andprecisetim-
ings are madefor the intervals betweenthese
events(during which timetheuser’s codeis ex-
ecuting). In contrast, statistical profiling ran-
domlysamplestheeffectiveinstructionpointer,
and deduceswhere time is being spent. The
latter techniquetraditionally involveslessover-
head(as the codedoesnot needto be instru-
mented),but providesonly relative indications
of where timeis beingspent.
A profiler is an important tool for an extensi-
blescriptinglanguage,sinceit enablessoftware
developersto analyzeanapplicationthoroughly
andmake the right decisionsaboutwhich rou-
tines are time critical and should be imple-
mentedin asystemprogramminglanguage,and
which routinesare less time critical and can
thereforebe written in the scripting language.
Below, I will explain the possiblerole of the
Pythonprofiler in a softwaredevelopmentpro-
cess.

Serialization Serializationis thetransformationof
a (run-time) datastructureinto a sequenceof
bytessuchthatit is possibleto recover theorigi-
naldatastructurefrom thesequenceof bytes.In
Python’s standardlibrary, severalmodulesexist
to serializearbitraryobjects.Furthermore,seri-

alizationis platform independent.Therefore,it
is quiteeasyto storethecurrentstateof anap-
plicationasasequenceof bytesin afile, transfer
it to anothercomputer(whichalsorunsPython),
andto continuewith theapplicationin thesame
stateon that computer. Usually, serialization
is appliednot to completeapplications,but to
somecrucialdatastructuresof theapplications
thatshouldbeavailablethenext time theappli-
cationis executed.

Thr eads Pythonsupportsmulti-threadedapplica-
tions. Thethreadingmodulesresembleto some
extent the threadingmechanismof Java. Multi
threadingis veryusefulfor writing serverappli-
cations. For example,an HTTP server is usu-
ally written usingmultiple threads.In its main
loop it waits for a client to make a connection.
As soonasa client makesa request,theserver
createsa new threadthatprocessesthe request.
During the processingof the new thread, the
mainloop is readyto acceptanew request.

Windowing toolkit A widely seenapplicationof
Pythonis for writing graphicaluserinterfaces.
Since the standardlibrary has a windowing
toolkit, namedby tkinter andderived from
Tcl/Tk’s UI widgets,writing a userinterfacein
Pythonhastheadvantageof beingplatform in-
dependent.

Python glue

One of the goals of Python is to act as a
glue language that connects different applica-
tions and libraries. To be more precise,Python
was developed to be used in an open environ-
ment in which Python programscould be inte-
grated with non-Python programs. Therefore,
Python was developedto be embed-ableas well
as extensible and interfaces of how to embed
and extend Python are well documented, see
http://www.python.org/doc/current/ext/ext.html,
Chapters14 and15 of [6], or AppendixB of [2].
As a gluelanguage,Pythongreatlyfacilitatesreuse
of existing code,for example,see[3].

EmbeddingPython meansintegrating the Python
interpreterin anotherapplicationsuchthat Python
programscan be run from within the other appli-
cation. This effective addsall of Python’s script-
ing power to the hosting application. Extending

28 XOOTIC MAGAZINE

Pythonmeansintegrating applicationsor libraries
in the Pythoninterpretersuchthat its is available
from within Pythonprograms.It is possibleto em-
bedandextendPythonat thesametime. As usual,
suchaunionbasedonequalitycanbevery fruitful.

If Pythonis usedto glue applicationsandlibraries
together, careshouldbe taken that it doesnot re-
placetechniquesespeciallydesignedto actasanin-
terfacebetweensoftwarecomponents.In fact,using
Pythonasa gluelanguageandusingastandardized
interfacetechniqueshouldbeorthogonaldesignde-
cisions.For example,if theapplicationis supposed
to be availableat someobjectmarket, see[10], its
interfaceshouldbedefinedusingastandardizedin-
terfacetechnique,e.g.,CORBA or XML, insteadof
Python.

So, if therearegoodargumentsto useCORBA in
a situation wherePython is not usedfor integra-
tion, then it shouldstill be usedif Pythonis used
for integration. This claim canbeturnedaroundas
well: if Pythoncanbeusedfor integration,thenus-
ing a standardizedinterfacetechniqueis probably
too much overhead. As is explainedbelow, inte-
gratingexisting codewith Pythonrequiresthe in-
terface(C/C++headerfiles) of thecodeto beavail-
ablewhich canbeproblematicin a commercialen-
vironment.However, in thatcase,integrationwith-
outPythonis at leastasbig aproblem.

A prerequisiteof extendingPythonwith a given li-
braryis thattheinterfaceof thelibrary is definedin
C-headerfilesor thatthesourcecodeis availablein
C or C++. This is alimitation, sincethereareuseful
librariesout therefor which no C-headerfiles ex-
ists. However, for almostany subjectthereexist C
andC++librariesaswell or if thesourceis available
in, say, Fortran,thenwriting aC-headerfile for it is
not too difficult. Furthermore,if Pythonshouldbe
integratedwith Java applications,oneshouldcon-
siderusingJython: a Pythonimplementationwrit-
tenin Java,seehttp://www.jython.org. It is saidthat
Jython-Java integration is better than the conven-
tional Python-C/C++integration, sinceno recom-
pilation of Java codeis neededdueto Java’s reflec-
tion API. However, sinceI have no experiencewith
Jython,I will only focusonthePython-C/C++com-
bination.

ExtendingPython with an existing library effec-
tively meansthatawrapperfor thelibrary hasto be
createdand togetherwith the wrapper, the library

hasto beturnedin anobjectfile thatcanbeloaded
dynamicallye.g.,sharedlibrariesor DLLs, or that
is linkedstaticallywith thePythoninterpreter. The
wrappershouldtake careof thetranslationbetween
datastructuresof Pythonandthedatastructuresof
the library. The conversion betweenC/C++ and
Python data structuresis documentedextensively
and,therefore,aftersomereading,notdifficult.

Toolshave beendevelopedthatcreatewrappersau-
tomatically. SWIG is oneof suchtools andstands
for SimplifiedWrapper and Interface Generator,
seehttp://www.swig.org/. SWIG is not just a tool
to createwrappersandinterfacesfor Python,it can
also generateinterfacesfor other languages,e.g.,
PerlandTcl/Tk. SWIG comeswith extensive doc-
umentationand the SWIG user guide (available
on http://www.swig.org/doc.html)hasdevotedone
chapterto thecombinationof SWIGandPython.

Example of a Python Extension Sinceextensi-
bility of Pythonis oneof its mostpowerful features,
I spendthe remainderof this sectionto describe
my experiencewith extendingPythonwith an‘off-
the-shelve’ BDD library. A BDD (binary decision
diagram) is a datastructureto storebooleanfunc-
tions [4] spaceefficiently. For this article, it is not
necessaryto explain BDDs, but it suffices to give
someexamplesof what can be donewith BDDs.
First of all, BDDs manipulateboolean function
symbolically. For example,given a BDD for two
booleanfunctions �
� and ��� , thereareBDD opera-
tionsto computeaBDD for thefunctionand��� � ��� � 	
definedby

and���
��������	����
	����
�����
	����������
	��

Thereare also operationsto computeother com-
monbooleanoperations,like � , � , etc. In addition
to thesesymbolicoperationson booleanfunctions,
a BDD library provides routinesto determineif a
booleanfunction(representedby aBDD) canreturn
true for someconcretevaluesof its arguments.That
is, thereareroutinesthatdetermineif abooleanfor-
mulacanbesatisfied.Giventhatalmostany prob-
lem definedformally canbetranslatedinto a prob-
lemdefinedin booleanformulas,BDD librariescan
be usedan many areas. Historically, BDDs have
beenappliedmostly to tasksin digital systemde-
sign,verification,andtesting.

The BDD library I choseis calledBuDDy and its

May 2001 29

sourcecode is freely available. It can be down-
loaded from http://www.itu.dk/research/buddy/.
There is no good reasonwhy I chosethis BDD
package;it just happenedto be the first packageI
found that wasfreely availableandinstalledwith-
out problemson my machine.BuDDy is written in
C and hassomeadditionaldefinitionsto useit in
C++.

ExtendingPythonwith BuDDy wasnot a compli-
catedtask, thanksto SWIG. The main difficulties
were in dealingwith pointer argumentsand func-
tion pointers,sinceSWIG doesnot processthem
automatically. So,in thesecasesI hadto write some
extra codein a so-calledSWIG interfacefile. After
that,SWIG generatesthewrapperswhich couldbe
compiledandlinkedwith theoriginal BuDDy code
into aPythonmodule.NotethattheBuDDy codeis
left unchanged
So,thefunctionalityof BuDDy is now availableto
Pythonprograms.However, it is atasomewhatlow
level; python programsdirectly call C functionsto
generateandmanipulateBDDs. Furthermore,since
garbagecollectionof objectscreatedby BuDDy is
left to theprogrammer, thePythoncodequickly be-
comesaunreadablemessof functioncallsandtem-
poraryvariables.Notethatthisis moreaproblemof
BuDDy thanof Python;theC-examplesthat come
with BuDDy exhibit thesamemessof functioncalls
andtemporaryvariables.To make it betteraccessi-
ble,BuDDy hasaC++ classthattakescareof auto-
maticgarbagecollectionandoverloadssomeoper-
atorssuchthat functioncalls canbe written asop-
eratorapplications. I did the samein Pythonand
wrote a classthat definesBDDs asnormalPython
objects.Also, I overloadedsomePythonoperators
in thesameway theC++ classdid. As a result,the
Pythoncodeis at leastasreadableastheC++ code.
For example,thefollowing listing showssomelines
of C++ codeof animplementationof the � -queens
problemin C++ usingBuDDy (here,X is a two di-
mensionalarrayof bddsanda, b, c, andd arebdd
variables):

bdd a=bddtrue,
b=bddtrue,
c=bddtrue,
d=bddtrue;

int k,l;

/* No one in the same column */
for (l=0 ; l<N ; l++)

if (l != j)
a = a & (X[i][j]

>> !X[i][l]);

Thecorrespondinglinesof Pythoncodefor the � -
queensproblemreads:

a = bddtrue
b = bddtrue
c = bddtrue
d = bddtrue

No one in the same column
for l in range(0,N):

if (l != j):
a = a & (X[i][j]

>> -X[i][l])

Softwaredevelopmentwith Python

Sometimes,scriptinglanguagesaresaidto begood
for prototyping, but not for real application de-
velopment. A prototypebearsthe associationsof
‘quick anddirty’ and‘to bethrown away.’ However,
Pythonis morethanjustaprototypelanguage.Due
to its clear syntaxand its universalobject model,
reuseof Pythonprogramsis a very attractive op-
tion. Therefore,asubstantialpartof Pythoncodeof
aprototypeof anapplicationcouldverywell endup
in thecodeof thefinal application.

So,whatis Python’s role in asoftwaredevelopment
process?First of all, it canbeusedfor prototyping;
likeany scriptinglanguage,it enablesprogrammers
to writequickly amockupof anapplicationin order
to analyzethefeasibilityof theproject.

A simplifiedandPythoncentered,view onsoftware
developmentcouldbedescribedasfollows. Firstly,
determineuserrequirementsof theapplicationand
build a prototypein Python. Next, a development
cycleis startedthatconsistof assessmentof thepro-
totype,estimationof costsof improving theproto-
type,andfinally a decisionwhetherto improve the
prototypeor to abortthecycle anddeclarethecur-
rentprototypethefinal application.

During eachcycle,assessmentof theprototypecan
leadto new or morepreciserequirements.Analy-
sisof theprototypeshows,amongothers,computa-
tion intensive code,whichcouldbeimplementedin
a systemprogramminglanguage.ThePythonpro-
filer is very useful to detectcomputationintensive
code. If, after someruns of the developmentcy-
cle, all computationintensive codeis implemented
in a systemprogramminglanguage,thereis proba-
bly not muchmorespeedto gain. At that time, it

30 XOOTIC MAGAZINE

is awasteof time to translatetheremainingPython
codeinto asystemprogramminglanguage.

Conclusions

In thisarticleI havediscussedthePythonlanguage.
Python is a scripting languagewith clear syntax
andan extensive standardlibrary. It supports,but
doesnotenforce,procedural,functional,andobject
orientedprogrammingstyles. Unlike many other
scripting languages,Pyhtoncodeis readableand,
therefore,reusable.Reusabilityis even moresup-
portedby Python’s platformindependence.Python
canplayanimportantrole in softwaredevelopment,
sinceit is a powerful tool for prototypingas well
as for implementingthe final application. If the
applicationcontainscomputationalintensive code,
which will be too slow if programmedin a script-
ing languagelike Python,theextensioninterfaceof
Pythonmakesit veryeasyto implementthiscodein
a systemprogramminglanguagelike C/C++. Fur-
thermore,togetherwith its embeddinginterface,the
extensioninterfaceof Pythonenablesefficient inte-
grationwith existing applicationsandlibraries.

References

[1] KenArnold andJamesGosling.TheJavaPro-
grammingLanguage. Addison-Wesley, 2nd
edition,1997.

[2] David M. Beazley. PythonEssentialRefer-
ence. New Riders,2000.

[3] David M. Beazley and Peter S. Lomdahl.
Feedinga large-scalephysicsapplicationto
python. In Proceedingsof the 6th Interna-
tional PythonConference, SanJose,Califor-
nia,October1997.

[4] Randal E. Bryant. Symbolic booleanma-
nipulation with orderedbinary-decisiondia-
grams. ACM ComputingSurveys, 24(3):293–
318,1992.

[5] Leo Geurts, Lambert Meertens, and
Steven Pemberton. The ABC Program-
mer’s Handbook. Prentice-Hall, 1990.
To be republishedby the CWI. See also
http://www.cwi.nl/ steven/abc/.

[6] Mark Lutz. ProgrammingPython. O’Reilly &
Associates,first edition,October1996.

[7] Greg Nelson, editor. SystemProgramming
with Modula-3. Seriesin Innovative Technol-
ogy. PrenticeHall, 1991.

[8] JohnK. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[9] Bjarne Stroustrup. The C++ Programming
Language. Addison Wesley, specialedition,
2000.

[10] Clemens Szyperski. Component Soft-
ware, BeyondObject-OrientedProgramming.
Addison-Wesley, 1998.

[11] Guido van Rossum. Foreword
for Programming Python, May
1996. See [6]. Also available on
http://www.python.org/doc/essays/foreword.html.

[12] Larry Wall, Tom Christiansen,andRandalL.
Schwarz. ProgrammingPerl. O’Reilly & As-
sociates,2ndedition,1996.

Biography SinceJanuary1998, Victor Bos is a
PhD studentat the Eindhoven University of Tech-
nology. He is involved in formal methodsre-
searchat thecomputersciencedepartment.His cur-
rent interestlies in applying formal methodtech-
niquesto industrial engineeringand thereforehe
workscloselytogetherwith theSystemsEngineer-
ing Group at the departmentof MechanicalEngi-
neering. He was an OOTI from 1996–1998. In
December1995,he received his mastersdegreein
computerscienceat theUniversityof Groningen.

May 2001 31

