The Strike of OO

Object-Oriented
Databases and Their
Applications

Johan van den Akker Object-orientation means the combination of data and behaviour in
objects, that have a close correspondence to real-world objects. It

Dutch National Centre for Mathe- was first found in SIMULA [3] to structure computer programs for

matics and Computer Science simulations. It was taken further by languages such as Smalltalk [8],

(CWI), Amsterdam C++ [14], and Eiffel [13] . Important for the introduction of object-
orientation in databases were O, [7] and GemStone [12].

The first occurrence of object-oriented notions in databases is in the
Entity-Relationship model [5]. Until the mid-eighties, object-orienta-
tion was only found in data modelling. Implementation of an infor-
mation system was mainly done using relational databases. The
broadening scope of information systems brought to light a number
of shortcomings of relational systems for advanced applications, like
design databases, manufacturing databases, and office automation
systems. In such applications, an object-oriented database offers bet-
ter facilities to model complex structures. A significant advantage of
object-oriented databases is the encapsulation of operations with the
data. This way, operations shared between programs are specified
and stored in a single place. For example, most applications using a
manufacturing database need to obtain the composing parts of an as-
sembly. In this case, it has obvious advantages to specify a single op-
eration for this together with the data specification of an assembly.
Furthermore, object-orientation offers better facilities to view data at
different abstraction levels. For example, we might want to view an
aircraft design at the level of the complete aircraft, split up into
Object-oriented databases wings, fuselage, engines etc., or completely ‘exploded’ into parts.
are considered to be the next-
generation database systems Research in object-oriented databases has not yet yielded a single,
after relational databases. well-defined data model, as was achieved very early for the relation-
: : . al model [6]. Hence, standardisation has been actively pursued by
Object-ori en_t ation (_)ffe_rs both the industrial and the academic parts of the OODBMS commu-
advantages in application nity. This effort resulted in the ODMG ' model [4]. ODMG defines an
areas too complex for interface to and a data model for an OODBMS to promote portability
relational databases. In this of applications between DBMSs.
article, we introduce object-
oriented databases. The main
systems and application

areas are also outlined.

This absence of a single well-defined data model led to the formula-
tion of an OODBMS’ key properties in the often cited object-oriented
database manifesto [1]. These are the following.

Furthermore, we discuss 1. Complex Objects. A complex object is an object built from sim-
shortcomings of current pler ones. An example of a complex object is a car object that
systems and potential future exists of other objects, viz., part objects. Complex objects can
developments of object-

orientation. 1. Object Data Management Group, see www. odng. org .

December 1997

also be recursive. For example, in a design data-
base, a subassembly object can consist of other
subassembly objects. This construction of com-
plex objects from other objects is called aggrega-
tion.

2. Object Identity. Object data models are based

on identity as opposed to the relational model,
which is value-based. In the relational model,
two tuples are the same, if their attribute values
are equal. In an object-oriented data model, two
objects are the same if and only if their identities
are the same.

3. Encapsulation. This has two aspects. The first

aspect originates in abstract data types. It is con-
cerned with the separation of interface and
implementation. Additionally, this allows us to
hide private data of an object. The second aspect
is the combined specification of data and behav-
iour in an object. This is the important aspect
from a database point of view.

4. Types and Classes. Two key notions in an

OODBMS are types and classes. In an object-ori-
ented system, a type is a specification of an
object’s features. The type of an object is often
given as a tuple of attribute and method types.
A class is a collection of objects, that is used to
create and store objects.

Usually, the notions of class and type are closely
associated. The relation between types and
classes can be in two directions. Commonly,
objects in a class conform to the associated type,
because they are instances of that class. Another
approach is that objects belong to a class,
because they conform to the associated type.
This is the case in data models allowing arbi-
trary addition and deletion of attributes, meth-
ods and other elements of objects, such as Self
[15] and Goblin [10].

5. Class or Type Hierarchies. Classes and types

are part of hierarchies, formed by inheritance. A
subclass inherits the features from a superclass,
which means that it has the same data and
behaviour, possibly extended with its own data
and behaviour. Hence, the subclass is a speciali-
sation of the superclass. Likewise, a superclass is
a generalisation of its subclasses. Everywhere an
object of the superclass is required, an object of
the subclass can be used.

6. Overriding, Overloading, and Late Binding.
With the separation of interface and implemen-
tations, subclasses of a superclass might have
the interface of an operation in common, but
have a different implementation. A classical
example is a di spl ay operation for a gr aphi c
object, which is implemented differently by its
subclasses circl e, triangl e, and pol ygon
objects. Since the name di spl ay denotes differ-
ent operations, it is said to be overloaded. If the

XOOTIC MAGAZINE

gr aphi ¢ object implements its own, generic,
di spl ay operation, then the subclasses are said
to override this operation with their own defini-
tion.

Overloading and overriding operations means
choosing an implementation to execute for each
invocation of the operation. For example, if we
invoke the di spl ay operation on a gr aphi c
object, then we would like the system to execute
the most-specific implementation, e.g., the t ri -
angl e implementation of di spl ay for tran-
gl e object. This is achieved by late binding,
which means that the implementation is chosen
at the actual exection time.

7. Computational Completeness. An OODBMS
must allow every computable function to be
computed in its data manipulation language.

8. Extensibility. The user of the OODBMS must be
able to define his own types. Furthermore, there
is no distinction between the use of system-
defined types and user-defined types.

9. An OODBMS is a DBMS. An OODBMS must
support persistence, secondary storage manage-
ment, concurrency, recovery, and an ad-hoc
query facility.

The final requirement is stated as five separate re-
quirements in the Manifesto, itself. The other re-

quirements are on the data model, that also apply to

object-oriented programming languages. Actually,
this close relation to programming languages is one
of the main advantages of an OODBMS over a rela-

tional DBMS for complex applications. Most pro-

gramming languages use a data model, that is

different from the relational model. In particular,
the programming language does not have a set-con-
struct, while results from relational queries are al-
ways sets. Hence, we have the so-called impedance

mismatch between the programming language and
the relational DBMS. Since an OODBMS uses the

same data model as an OO programming language,
the impedance mismatch is solved here.

Object-Oriented Databases

in Practice

A number of commercial OODBMSs are currently
on the market. Examples are O, 2, Gemstone, and
ObjectStore. The construction of O, is discussed ex-
tensively in a book [2]. O, originally extended C and
Lisp to function as database programming lan-
guage. Nowadays, it conforms to ODMG and inter-
faces to the three most important OO languages,
C++, Smalltalk, and Java. Gemstone 3 is based on
Smalltalk. Gemstone has found application in man-
ufacturing and network management. Further-

2. Seewww. 02t ech. fr .
3. Seewww. genst one. com.

more, the Smalltalk foundation promotes its use as
an experimentation platform. An example is the use
in the TRiGS [9] as a foundation for an active data-
base system. Objectstore has been strongly con-
nected to C++, but is also extended with interfaces
for other languages, viz., Java and ActiveX.

Typical applications for OODBMSs are character-
ised by high complexity of data. Hence, we find
them in areas such as design, manufacturing, tele-
communications, and financial services. For exam-
ple, Texas Instruments uses Gemstone for a
semiconductor fabrication management system. An
example in telecommunications is the choice of Ob-
jectStore by Deutsche Telekom as the database for
their ISDN system management. In the financial
sector, Swiss Life uses Informix in their life insur-
ance management system. The websites of various
database vendors all offer more application studies
of their systems.

Shortcomings

This article has discussed object-oriented databases
and their applications. However, OODBMSs have
been relatively slow to take off in practice. This is
due to a number of shortcomings in current OOD-
BMS. Here, we discuss a number of these.

1. Query Languages. OODBMSs have mainly
focussed on applications needing navigational
access, such as design systems. Hence, set-ori-
ented queries as found in relational databases
have received less attention. Powerful features
like nested queries, aggregation, and group-by
are often not present. This issue needs to be
tackled by the development of query languages
for OODBMSs, preferably through an extension
of SQL.

2. Interoperability. In most application environ-
ments, a new information system based on an
OODBMS will need to interact with legacy sys-
tems. A particular concern is the cooperation
with relational databases. A transitional data
model is offered by object-relational database
systems, such as Informix °. These combine
object oriented features, such as an identity-
based model and encapsulation of behaviour,
with a relational model based on tables.

3. Interface with Programming Languages. Ini-
tially, most OODBMSs were closely integrated
with one programming language. Although the
close integration has its advantages in view of
the impedance mismatch, it also means that the
applications for the database must be written in
that language. This shortcoming is countered by
database vendors through integration off

4., Seewww. odi . com.
5. Seewww. i nf or m x. com.

DBMSs with multiple programming languages
and by standardisation efforts such as ODMG.

4. Lack of Standards. As discussed above, stand-
ardisation is only a recent development in
object-oriented databases. There is not a com-
mon database interface, like SQL for relational
databases. As a consequence, applications
developed for one OODBMS do not work with
another OODBMS. This shortcoming is being
tackled by the ODMG standard, which most
main database vendors intend to support.

Extensions of Object-Orientation
The current state-of-the-art in OODBMSs provides
basic object-oriented features. In the future, OOD-
BMSs will include new features currently devel-
oped in the database research community. The
main focus is to create self-contained objects that
define a complete piece of domain knowledge.
These are also known as business objects. In data
modelling terms, this leads to a focus on encapsula-
tion of object properties. In fact, the encapsulation
of methods is only a first step. For example, active
databases [16] incorporate a production rule system
in a database. Next-generation object-oriented data-
bases will encapsulate production rules in objects as
an additional feature of the object. Other candidates
for encapsulation are constraints and lifecycle de-
scriptions. Thus, an object becomes a self-contained
description of part of an application domain.

In the long term, objects will evolve through active
objects to intelligent agents. A database will no
longer be a large piece of software. Instead, each
piece of data is managed by its own agent. Special-
ised tasks in a database, like executing a query, will
be the responsibility of a specialised agent. This par-
adigm is very appropriate for ubiquitous computing.
If every artefact contains processing power, the nat-
ural place to store data on the artefact is the artefact
itself. In such a computing environment, a large
centralised database is not essential anymore for
most applications.

Further Reading

For a general discussion of the object model in data-
bases the reader is referred to the collection edited
by Won Kim [11]. The Story of O, [2] gives a good
overview of all issues in building an object-oriented
database management system.

References

[1] Malcolm Atkinson, Frangois Bancilhon, David DeWitt,
Klaus Dittrich, David Maier, and Stanley Zdonik, “The ob-
ject-oriented database system manifesto’. In Won Kim, Jean-
Marie Nicolas, and Shojiro Nishio, editors, Deductive and Ob-
ject-Oriented Databases: Proc. of the 1st Intl. Conf. (DOOD’89),
pages 223-240, Kyoto, Japan, 1989. North-Holland.

[2] Francois Bancilhon, Claude Delobel, and Paris Kanellakis,

December 1997

Building an Object-Oriented Database System: The Story of O2.
Morgan Kaufmann, San Mateo, CA, USA, 1992.

[3] G.M. Birtwistle, O.-]. Dahl, and B. Myhrhaug, {SIMULA} be-
gin. Studentlitteratur, Lund, Sweden, 1974.

R.G.G. Catell, The Object Database Standard: ODMG-93. Mor-
gan Kaufmann, San Mateo, CA, USA, 1994.

[5] Peter Chen, ‘The entity-relationship model: Towards a uni-
fied view of data’. ACM Transactions on Database Systems,
1(1):9-36, 1976.

E.F. Codd, ‘A relational model for large shared data banks’.
Communications of the ACM, 13(6):377-387, 1970.

[7] O. Deux et.al., ‘The story of O,". IEEE Transactions on Knowl-
edge and Data Engineering, 2(1):91-108, 1990.

Adele Goldberg and David Robson, Smalltalk-80: the lan-
guage and its implementation. Addison-Wesley, Reading, MA,
USA, 1983.

G. Kappel et.al., ‘TriGS - making a passive object-oriented
database system active’. Journal of Object-Oriented Program-
ming, July / August 1994,

[10]Martin L. Kersten, ‘Goblin: a dbpl designed for advanced
database applications’. In Dimitris Karagiannis, editor, Data-
base and Expert Systems Applications, Proc. of the Intl. Conf.,
pages 354-349, Berlin, Germany, 1991. Springer.

[11]Won Kim, Modern Database Systems: The Object Model, Inter-
operability, and Beyond. ACM Press/Addison-Wesley, New
York, USA, 1995.

[12] David Maier and Jacob Stein, ‘Development and implemen-
tation of an object-oriented dbms’. In Bruce Shriver and Pe-
ter Wegner, editors, Research Directions in Object-Oriented
Programming. MIT Press, 1987.

[4

[6

[8

[9

[13]Bertrand Meyer, Object-oriented Software Construction. Pren-
tice Hall International, 1988.

[14] Bjarne Stroustrup, The C++ Programming Language. Addison-
Wesley, Reading, MA, USA, second edition, 1991.

[15]David Ungar and Randall B. Smith, ‘Self: The power of sim-
plicity’. In Norman K. Meyrowitz, editor, Conference on Ob-
ject-Oriented ~ Programming Systems, — Languages, — and
Applications (OOPSLA’87), volume 22 of SIGPLAN Notices,
pages 227-242, Orlando, FL, USA, December 1987.

[16]Jennifer Widom and Stefano Ceri, Active Database Systems:
Triggers and Rules for Advanced Database Processing. Morgan
Kaufmann, San Francisco, CA, USA, 1995.

pasfoto
Van den Akker

Drs. Johan van den Akker is a Ph.D. candidate at
CWI, the Dutch National Centre for Mathematics
and Computer Science, in Amsterdam. His main re-
search interest is active object-oriented databases.

XOOTIC MAGAZINE

