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RobvanOmmering

A software architecture is always designed to serve one or more goals. Our
goal is to produce a large variety of consumer electronics products in short de-
velopment times—a necessity to stay alive as a company in these markets! We
achieve this by building software components that can be combined in flexible
ways to create products. This requires a component technology tuned to the
domain, an overall product family design, attention for implementation details,
and concern for issues that are traditionally not the domain of a software archi-
tect. The architecture as described in this paper is currently being applied in
up-market television products.

Thearchitectureof a systemis oftendefinedasthe
set of subsystemsand their mutual relations. We
think thatthisdefinitionis far too limited:
� It is too ‘specific’: it concentratesonfactsalone

(subsystems,interfaces)and not on, e.g., con-
cepts.

� It is too ‘complete’: a full definitionof all sub-
systemsand all interfaces is beyond what a
single architector small architectureteamcan
achieve,especiallyfor a productfamily.

� It is too ‘high level’: it concentrateson subsys-
temsalone,while in practicethechoiceof what
someconsiderto be low-level implementation
details(algorithms,datastructures,communica-
tion mechanisms)canbecritical for thesuccess.

� It is too ‘ technical’: it does not addressis-
suessuchasdevelopmentenvironment,config-
uration management,process,organization,et
cetera.

We definearchitecturebluntly aseverythinga sin-
gle personor smallgroupof personsneed(s)to do
to let a large teamdevelopa productor family of
productssuccessfully(see[1] for a largesetof def-
initions of architecture).Our definition is certainly

too wide: it also includesfetchingpizza on those
long eveningsjust beforea deadline! Still, it is a
pragmaticdefinition,andwe will illustrateit in this
paper—withoutclaimingany completeness—byre-
capitulatingsomeof the stepswe took to definea
softwarearchitecturefor a family of consumerelec-
tronicsproducts.
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Figure1: Diversityof products.

We do so in five sections.After a summaryof our
requirements, we introducesomeof our concepts
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(our ‘componenttechnology’). We then describe
product family design issues: the differencesbe-
tweenglobal and regional architecture. We delve
into the depthsof partsof our design,anddiscuss
some‘non-technical’ issues. We end with some
concludingremarks.

Requirements

Themainrequirementfor our softwarearchitecture
is to enablethedevelopmentof a diverse family of
products,with for eachproductashortdevelopment
timeandahigh quality.

Diversity, Lead Time and Quality

Ourproductfamily includestelevisionswith varia-
tion in price, (world) region, signal standards,
image, sound and data features, output de-
vice (tube, flat, projection), and with a con-
tinuous evolution of the underlying hardware
technology(seeFigure 1). Soon,other prod-
ucts will be included as well, such as video
recorders(VCR), digital versatile disc play-
ersandrecorders(DVD), compactdiscplayers
(CD) andcombinationsof theseproducts(e.g.,
TV-VCR).Notehow diversethefamily is; some
productshave hardlyanything in common(e.g.,
aTV andCD player).

Thesize of the software embedded in con-
sumerproductsgrows exponentially, following
Moore’s law closely. Currentup-market televi-
sionsalreadyhave two Megabytesof ROM and
two Megabytesof RAM. Softwaredevelopment
time grows accordingly;it now takesover one
hundredpeoplemore than two yearsto write
thesoftwarefor anew generationof televisions.
This is no longer acceptable,sincethe market
changesso fast that new productsmustbe out
in months,ratherthanyears.

Quality is not generallyunderstoodto be a crit-
ical issuefor consumerproducts,at least not
comparedto medical systemsor rockets sent
to Mars. Still, not one customer will be
pleasedwith a television producinga Fatal Er-
ror: PleaseRebootyourSystem, while thesame
customerpaysextrafor bugfixes(usuallycalled

new versions) of theoperatingsystemof hisPC.
Add to this that servicein the field is cumber-
somefor consumerproducts,andthaterrorsare
likely to be found due to the high quantity of
productsbeingsold.

Componentsand Ar chitecture

Diversity increases,lead-timereduction,andqual-
ity improvementarein principleconflictingrequire-
ments. We feel that they canonly be satisfiedto-
getherby combiningtwo approaches:

� Theuseandreuseof componentsfrom which a
wide rangeof productscanbeconstructed(bot-
tom up).

� The definition of a family architecture that de-
fines the context for the componentsto be de-
veloped(topdown).

Theseapproachesmustbe balancedcarefully. Too
muchattentionon theoverall architecturemaypro-
vide a rigid skeleton with too little flexibility to
build adiversityof products.Toomuchattentionon
componentsmay provide a set of building blocks
that do not fit easily togetherto form a product.
We’ll givesomeexamples.

TheMicrosoftFoundationClasses(MFC, [2]) offer
aframework thatdefinesaskeletonapplicationsup-
portingtheeditingof singleor multiple documents
with single or multiple views and with file and
printing support. A specificapplicationis created
mainly through inheritance. The disadvantageof
MFC is thatit is verydifficult—if not impossible—
to changethe overall structureof the application.
Try building an Internet browser (with Back and
Forwardbuttons),with MFC!

Microsoft’s Visual Basic(VB, [3]) offersa compo-
nentapproachwith which a large variety of inter-
active applicationscan be made. Given powerful
reusable(and relatively context independent)Ac-
tiveX control components,simpleapplicationscan
be quickly built. For more complicatedapplica-
tions,anarchitecturestill hasto bedefined.

In electronicdesign, the components(transistors,
corecells,chips,printedcircuit boards)aresurpris-
ingly context independenthencereusable.Thereis
aphysicalreasonfor this: all dependenciesmustbe
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routedthroughwiresandconnectors.With little ar-
chitecturaleffort, familiesof chipscanbedesigned
with which a large variety of productscanbe cre-
ated.

Choosingan Approach

Microsoft’s ComponentObjectModel (COM, [4])
is—of all existing componentmodels—thebest
candidatefor our purposes.It offers languagein-
dependence,location independence,andmost im-
portantly, variouswaysof handlingevolution.

Evolution is very important to us. We want to
be ableto createnew versionsof componentsthat
still work in old applications,while new applica-
tions can take full advantageof the new function-
ality. Moreover, new applicationsshouldnot break
down if—for somereason—they arecombinedwith
old components.Locationindependence, i.e.,trans-
parency for calling functionsin libraries,otherex-
ecutables,or at other processors,is becomingin-
creasinglyimportant for us, as our newest prod-
uctshavemorethanoneembeddedmicrocontroller.
Language independence(binarycompatibility)will
becomeimportant in the near future, when third
partysoftwareis to beincludedin ourproducts.

Unfortunately, COM is still a little too expensive
for us. Binary compatibility resultsin extra code
sizeandperformanceloss,requiringmorepowerful
controllersand more memory, and in a consumer
businessthis extra ‘bill of material’ cannotbe af-
forded. Fortunately, we live in a closedworld. All
developersarepartof onecompany, andwecanex-
ertsomecontrolover them.Thisallowsusto create
acomponentmodelthat‘hasthespirit of COM’, yet
usesamuchmoreefficient implementationtechnol-
ogy. This modelis calledKoalaandis discussedin
the next sections(for a more detaileddescription,
see[6]). Evolution to COM in duetime wasanex-
plicit designgoalfor thismodel.

The ComponentTechnology

We shallnow provide a brief overview of our com-
ponentmodel.

Interfaces

Traditionally, a component’s interfaceis described
in the componentspecificationdocument.But we
wantdifferentcomponentsin our family to provide
the sameinterface. Therewill be multiple tuners
requiring different software drivers, and we want
themto have thesameinterface.As anotherexam-
ple, we have differentmicro controllersanddiffer-
ent real time kernelson which we want the same
API. So,wedefinesuchinterfacesindependentlyof
components,asfirst classcitizens!

Somecomponentsprovide morefunctionality than
others. Also, a new version of a componentmay
providemorefunctionalitythantheold version.We
thereforedo not defineaninterface‘in onego’, but
ratherusethe COM notion of interfaces,as small
setsof semanticallyrelatedfunctions. This allows
usto modelvariationin functionalitybetweencom-
ponentsin termsof absenceor presenceof suchin-
terfaces,ratherthanasimplementationnotesfor the
components.

A secondadvantageof usingmany small interfaces
insteadof onelarge API is that evolution of inter-
facedefinitionscanbemanagedbetter. No interface
definition is perfect,so changesarevery likely to
occurin practice.ChanginganAPI, while thereare
alreadyimplementationsaroundthateitherprovide
or require it, is very confusing(as Java program-
merswill have experiencedwhile using the AWT
windowing classes).Our interfacedefinitionsare
thereforeimmutable(asin COM). We’d ratherde-
fine new interfaces(with a new name)thanchange
existingones.

A third advantageof usingsmall interfacesis that
we canalsobe very explicit on what a component
requiresof its environment.Making requiresinter-
facesexplicit allows third partybinding(aswill be
explainedbelow), andit alsomakesthearchitecture
very visible. Advantageof the latter is that archi-
tectscanspotundesiredcouplingsbetweencompo-
nentsataninstance,andthushaveanearlywarning
for spaghetticodearising.
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Components

WequoteSzyperski[5]: A software componentis a
unit of compositionwith contractuallyspecifiedin-
terfacesand explicit context dependenciesonly. A
softwarecomponentcanbedeployedindependently
andis subjectto compositionby third parties.

A Koalacomponent(seeFigure2) offers function-
ality througha setof providesinterfaces(drawn as
squareswith embeddedtrianglespointing into the
component). A Koala componentdependson its
environmentthroughanexplicitly definedsetof re-
quiresinterfaces(drawn assquareswith ‘out-going’
triangles). Theseinterfacesmustbe boundto pro-
vides interfacesof other componentsby the third
party thatperformsthecomposition.

Figure2: A Koalacomponent.

Figure2alsoshowsthatourcomponentmodelis re-
cursive. The third party that instantiatesandbinds
componentscanagainbea Koalacomponent!It is
importantto notethat thedefinitionsof thesmaller
componentsarereusable,but their instancesareen-
capsulatedin the outer component. In COM, the
latteris calledaggregationor delegation, whereag-
gregation meansdirectly passinginterface point-
ersfrom inner componentsasif they belongto the
outer components,and delegation involves some
glue codeat the outer level to call the inner com-
ponents.

Glue codeis indeedimportant,as we believe that
the compositionof componentsusually involves

morethanjust clicking themtogether. In fact, the
whole raisond’être of VisualBasicis its ability to
glue components—VBcannoteven bind directly!
In Koalawe have bothoptions,eithergluedirectly,
or inserta gluemodule(thetwo ‘documentshapes’
in Figure2).

RequiresInterfaces in COM �����

COM hasthreewaysto let acomponent‘dependon
theenvironment’:
� implicitly, e.g.,by calling theWin32API
� by usingCoCreateInstance
� by offeringconnectionpoints

Thefirst optionis usedregularly in COM, makingit
necessaryto have thefull Win32 platformavailable
in eachproduct.For aPC,this is by definitiontrue.
For consumerproducts,weneedmuchmorecontrol
on what individual componentsrequirein orderto
minimize,e.g.,thecodesize.

CoCreateInstance(and relatedfunctions) instanti-
ates(sub)componentsin COM. It is regularly used
to accessservicesneededby acomponent,but since
the componentactually instantiatesthe service,it
eithergetsits own privateinstanceof theservice,or
it getsaproxyinstancefor asingletonclass(sharing
theservicewith all otherclients).Bothcasesarenot
sufficient to dealwith, e.g.,aTV with two tuners,if
two clientsmustbeboundto onetunerandanother
client to theothertuner.

The third option is in our view the only ‘explicit
context dependency subjectto compositionby third
parties’ in COM. Unfortunately, it is only usedin
COM for notifications. We plead to make much
moreuseof explicit requiresinterfaces,and to let
the binding of suchinterfacesbe doneby encom-
passingcomponents.

DescribingComponentsand Interfaces

Wedefineinterfacesin aninterfacedescriptionlan-
guage(IDL). We describebasiccomponentsin a
componentdescriptionlanguage(CDL), wherewe
list all providesandrequiresinterfacesof thecom-
ponent.We describecompoundcomponentsin the
sameCDL, by addingthelist of subcomponentsand
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the list of connections(hardware engineerswould
call thesethepart list andthenetlist, respectively).
A small tool (also called Koala) generatesheader
files from thesedescriptionsthatperformtheactual
connections.

We have a graphicalrepresentationfor component
descriptions(seeFigure2), showing all interfaces,
subcomponentsand connectionsof a component.
Theseturn out to be valuabledesigndiagrams,as
they show theactual designof a componentat the
level of individual interfaces,insteadof functionsor
components(seeFigure3 for a real-lifeexample).

Late Binding

An importantissuein productfamily designis to
make the right decisionsat the right momentsin
time. A componentdesignershouldnot build prod-
uct specificknowledge into his component,since
thatpreventstheuseof hiscomponentin otherprod-
ucts. Instead,suchdecisionsshouldbe postponed
to producttime. Decisionsthat influencethe com-
ponentalonecanof coursebe madeat component
time.

A techniquefor postponingdecisionsis late bind-
ing. A requiresinterfaceis anexampleof this. The
componentdesignerdoesnot know which compo-
nentwill offer a serviceto him, sohe just declares
a requiresinterface for the serviceat component
time. This interfaceis boundto a particularservice
at producttime by a third party (the productengi-
neer).

A secondtechniquefor postponingdecisionscon-
cernsdiversity interfaces, containingparametersto
be filled in by the third party that instantiatesthe
component. There is a natural tension between
reusabilityandusabilityof acomponent.Thelarger
the componentis, the more usableit is, but also
the more likely it is that productspecificproper-
ties have crept into the component,making it less
reusable.Theultimatelyreusablecomponentis the
emptycomponent,which is thereforenot very us-
able! The solution for this dilemmais to param-
eterizecomponents.In Visual Basic, components
(ActiveX controls) have a large list of properties
with adefault valuemechanismthatallows usersof
the componentto fine-tunethe component.In our

model,theseparametersaregroupedinto diversity
interfaces,which canbeboundto valuesat product
time.

There are actually more decision momentsthan
componentand product time. Componentsare
boundinto subsystems, so thereis also subsystem
time, in which certain componentpropertiesare
fixed,while otherpropertiesaredefinedin termof
subsystemproperties. There is also factory time,
wherepropertiesof individualproductsaredefined,
e.g.,to calibratethedeflectionof a TV. And finally
thereis usertime, wheretheuserconfigureshistele-
vision.

Late binding is often interpretedas run-timebind-
ing, and indeedthis is one way of implementing
it. Our componentmodel allows to (re-)compile
the software at producttime, so that the compiler
canoptimizethecodeusingdecisionsmadeonly at
producttime(wecall this latecompiletimebinding;
thetechniqueis actuallyaninstanceof partial eval-
uation). The resultingcodeis muchmoreefficient
thanhadwe only usedrun-timebinding.

For decisionsthat cannotyet be madeat product
time,a little bit of codeis generatedthat‘reads’the
decisionfrom non-volatile memory. ThisNVM can
beprogrammedin thefactoryor by theuser(using
menus).

Handling Diversity

How do we handlediversity with the component
model?Basicallyin threeways:

� throughselectionandbindingof alternatives
� throughparameterizedcomponents
� throughswitches

The first two choicesarefundamental.If we want
to implementdriversfor two tuners,theneitherwe
createtwocomponents(of whichoneis selectedand
boundinto eachproduct),or we createa singlepa-
rameterizedcomponent, wherea diversity parame-
ter is usedto specifytheunderlyinghardware.Rule
of thumbis to createtwo componentsif the imple-
mentationsare80%different,to createoneparam-
eterizedcomponentif theimplementationsare80%
equal,andto split-up thecomponentinto common
andspecificpartsotherwise.
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Figure3: Real-lifeexamplesof Koalacomponents‘at work’

We can use an interface switch to join these
paradigms.A switch is a small predefinedparam-
eterizedcomponentthat canroutefunctioncalls—
considerit a form of pseudodynamicbinding. We
canfor instancecreatea singleparameterizedcom-
ponentfrom two different onesby connectingthe
interfacethroughswitches(just like in hardware).
Figure3 shows anotherway how sucha switchcan
beincorporatedinto acompoundcomponent.

The Product Family Design

We have explained the basic componentmodel.
This allows peopleto build components,andother
peopleto usethosecomponentsto build compound
components,until ultimatelyproductsareobtained.
If we organizeall componentsin a part-of graph,
showing the‘is aninstanceof’ relation,weobtaina
picturelike Figure4.

As architects,we have to managethedevelopment
of all of thesecomponents.Basiccomponentscan-
not be designedwithout taking productsinto ac-
count,but they shouldalsonot be designedtaking
only a singleproductinto account!We’ll illustrate
someof thestepswe undertookto structurethede-

velopment.

Subsystems

Themostimportantaid is thenotionof subsystem.
Our precisedefinitionof subsystemis a little com-
plicated,dueto the fact that we dealwith product
families rather than with single products. Before
we startexplaining this, pleasenotethatmostpro-
gramminglanguagesdo not provide muchsupport
for ‘designin the large’ (they aregoodat handling
scopeatthefile level). Architectsareusuallyforced
to add ‘design in the large’ conceptsin the devel-
opmentmethodthat they prescribe.Here’s our ap-
proach.

For a singleproduct,a subsystemis a large com-
ponentthat implementsa particular subdomainof
functionality. The entire productconsistsof rela-
tively few subsystems(10–20).In otherwords,sub-
systemsform thefirst stepof decomposition.It will
not surpriseyou thatwe strive for maximumcohe-
sion andminimal couplingwhen definingsubsys-
tems. This allows to createteamsthat develop in-
dividual subsystemswith a minimumof communi-
cationbetweenteams,thusenablingdistributedde-
velopment.
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The ‘subsystemcomponent’itself is implemented
using other (smaller) components. The subsys-
tem componentencapsulatesinstancesof these
smallercomponents.To simplify development,we
alsowant encapsulationof the definitionsof these
smallercomponents,so that subsystemteamscan
changethemwithout having to notify otherteams.
What a subsystemteamdevelops is in fact not a
single(large) componentbut a setof components,
whereonly the large componentdefinition is pub-
lic and the smallercomponentdefinitionsarepri-
vate. Suchasetis usuallycalledapackage. Wecan
alsoincludeourinterfacedefinitionsin thepackage:
public interfacedefinitionsaredefinitionsof inter-
facesthatoccurat theboundaryof thepublic com-
ponent;private interfacedefinitionsare only used
for interfacesbetweenprivatecomponents.

Figure4: Part-ofgraphof components

But thesubsystemis notusedin a singleproduct—
it is intendedto be usedin multiple productsof
the family! It should be a unit of composition
ratherthanaunit of decomposition.Differentprod-
uctswill havedifferentrequirementsfor thesubsys-
tem, which can only partially be solved by creat-
ing a parameterizedcomponent.Theotheralterna-
tive for implementingdiversity is to creatediffer-
entcompoundcomponents(differentselectionsand
bindingsfrom the sameset of basiccomponents),
wherepreferablyeachcompoundcomponentserves
a groupof products(it shouldnot be productspe-
cific). So,asubsystempackagecanhave morethan
onepublic component!

Thereis one extra way of handlingdiversity, and
that is to offer small glue components(plug-ons)
that product designerscan use to glue a more
genericsubsysteminto theirproduct.An exampleis
a UIMS, wherethecompoundcomponentrequires

an interface to draw a string and a bitmap, and
wherevarioussmall componentsimplementthese
on differenthardwaredevices. Theseglue compo-
nentsmustalsobepublic,asthey areusedby others.

What to rememberfrom this? Well, from a prod-
uct point of view, a subsystemis still a large com-
ponent,possiblywith someextra gluecomponents.
Froma familypoint of view, a subsystemis a pack-
agewith publicandprivatecomponentandinterface
definitions. The first notion structuresthe product
design,thesecondnotionthedevelopmentprocess!

Layers

Many peopleseelayersastheultimatesolutionfor
the decompositionproblem. In a single protocol
stack,a layereddesignis indeedvery useful,but in
generaltherequiredrelationbetweensubsystemsis
more complicatedthan a one-dimensionallayered
architecturewould indicate. Still, it is worthwhile
to recognizeat leastthreecategoriesof software:

� softwareabstractingfrom computinghardware
� softwareabstractingfrom domainhardware
� applicationsoftware

Software in the first category can be built in iso-
lation, the secondcategory needsthe first, andthe
third category needsthe first andsecond.We can
view thisasa two-dimensionallayeredarchitecture,
asdepictedin Figure5.

We found it a gooddesignrule to mirror thehard-
warestructurein thesoftwarefor thefirst two cate-
gories,while at the sametime creatinga software
API (set of interfaces)that is hardware indepen-
dent. Reuseof hardwareblocks in differenthard-
wareplatformsthenresultsin reuseof correspond-
ing softwareblocksin differentsoftwareplatforms.
For new hardware blocks, new software compo-
nentsmustbedeveloped(usingcopy andedit), but
softwaredevelopmenttimeneverexceedshardware
developmenttime.

Note that the threecategoriesof softwarehave dif-
ferentevolution characteristics.On the long term,
computinghardware abstractionsoftware (operat-
ing systems)canbeboughtfrom independentven-
dors.Domainhardwareabstractionsoftwarecanbe
boughtfrom the supplierof the domainhardware,
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and even applicationsoftware will contain many
third partyelements(suchaswebbrowsers).
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Figure5: Categories(layers)of software

Global Ar chitectures

Theglobalarchitecturecontainsall concepts,facts
and rules that are relevant to all developers. As
we area largemulti-sitedevelopmentorganization,
with many cultural differences,andeachsite hav-
ing its own history, it is difficult to predefinea
rigid global architecture. Instead,we only define
the highly necessaryitemsat the global level, and
rely on regional architecturesto fill in detailsthat
areonly relevantto partof thesystem.

Exampleelementsof theglobalarchitectureare:
� The codearchitecture, in termsof namingand

coding conventionsand a predefineddirectory
structure.

� The identificationof all subsystems. Theactual
definition of eachsubsystemis left to the sub-
systemarchitects.

� Theidentificationofkey concepts. Examplesare
ruleson theuseof the real time kernel(asdis-
cussedin thenext section)andthenon-volatile
memory.

� The identification(andsometimesdefinition)of
key interfaces.

RegionalAr chitectures

The rest of the architectureis definedat regional
levels. Note that differentpartsof the architecture
may requiredifferentstylesandsolutions. This is

especiallytruefor softwarein thethreelayersasde-
finedabove:
� The computingplatform requiresan operating

systemapproach,with device driversandstan-
dardlibraries.

� TheA/V platformrequiresanapproachthatal-
lows commonly occurring variations in hard-
ware(replacingof achip,changeof signalrout-
ing) to resultin local changesin thesoftware.

� Theservicesandapplicationsrequire(amongst
others)modernuserinterfacetechnology.

Delving into the Depths

Sometimes,architectsneedto be concernedwith
what someconsiderto be low level details,if this
is crucial for thesuccessof thesoftware. We shall
discussoneexample: the implementationof many
smallactivities in thesoftware.

ExecutionAr chitecture

Thesoftwarein consumerelectronicsproductstyp-
ically consistsof a largenumberof smallactivities
thatarerelatively independentof eachother. A real
time kernel (RTK) can be usedto programall of
theseactivities,but therearetwo problems:

� Using an RTK taskfor eachindividual activity
providestoo muchoverhead,bothin time (con-
text switches)andin space(eachtaskneedsits
own stack).

� Activities are thenby definition asynchronous,
and we therefore need to synchronize them
explicitly, using, e.g., critical sections and
semaphores.

Experience shows that unbridled use of asyn-
chronousRTK tasksresultsin systemswith many
nastybugs(deadlocks,starvation,forgottento syn-
chronize...). Let us re-examinethe characteristics
of our activities. Many of our activities canbepro-
grammedin anRTK taskasfollows:

while(true){
WaitForEvent();
HandleEvent();

}
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In other words, they are statelessevent handlers.
With statelesswe meanthat thereis only onepoint
in thetaskwheretheactivity waitsfor anevent. Of
course,the responseto an event may dependupon
somestatemaintainedin statevariables.

A groupof suchactivitiescanbehandledbyasingle
RTK task. Sucha taskwaits for a groupof events,
andcalls the correspondinghandler. The handlers
arenow mutually synchronized,which meansthat
we do not needcritical sectionsfor communication
betweenthehandlers!

In our implementation,an activity is implemented
asa pump: a queueof messageswith onefunction
that processesthe message.Pumpsarecreatedon
pumpengines. A pumpengineis anRTK taskthat
managesa set of pumpsand calls the appropriate
pumpfunction whenever thereis a messagein the
queuefor oneof thepumps.

Each activity has a characteristictime interval at
whichtheeventoccurs,andthehandlerfor theevent
hasa characteristicduration(which of coursemust
besmallerthanthe time interval!). Of course,two
eventswith handlersthathavesignificantlydifferent
timing requirementscannotbehandledby oneRTK
task: the ‘slower’ handlerwill block the ‘f aster’
handlerfor too longa time.

Sowe still needa few RTK tasksrunningat differ-
ent ‘heart beats’to serve all of the event handlers.
We assignthe activities to thesetasksbasedupon
two groupingprinciples:

� Cohesionin time: asexplainedabove,twoactiv-
ities canonly begroupedif they sharethesame
timing requirements

� Cohesionin space: it is advantageousto group
activities with a lot of mutual communication
astheimplicit synchronizationmakestheuseof
semaphoresandcritical sectionssuperfluous.

But when do we decide which activity runs on
which task? Rememberthat a componentbuilder
doesnothaveproductspecificinformation.Oneso-
lution is to defineall RTK tasksin theoverallarchi-
tecture.Wechoosefor a differentsolution.

This allows a componentdesignerto decidethat
certainactivities run on thesameRTK task(pump
engine), henceneed no internal synchronization.
Theproductdesignerdecideshow activities in dif-

ferentcomponentsaremappedto pumpengines.By
default, we do not includesynchronizationmecha-
nismsinto our components.If two componentsop-
erateon differentpumpenginesin a product,then
theproductdesignermustalsoensuresynchroniza-
tion betweenthecomponents.

Mor eAr chitectural Issues

We shall now highlight someof the lesstechnical
architecturaldecisionsthat we took to setupour
productfamily development.Somearchitectslimit
themselvesto technicalissuesonly—wefeel thatto
beasevereshortcoming.

Process

First of all, let’s discussthe developmentprocess.
Whendevelopingasingleproduct,theselectedpro-
cessis often a derivative of the waterfall model:
architecture,global design,detaileddesign,imple-
mentation,testing.For developingproductfamilies,
three typesof processesarerelevant (seeFigure6,
theideaswerederivedfrom [7]):

� definingandevolving thefamilyarchitecture,
� developingandevolving subsystems,
� developingandevolving products.

Theseprocessesrun concurrentlyandrelatively in-
dependentof eachother, but of coursewith explicit
synchronizationpoints.Eachprocessis executedin
a project. At any point in time, thereis only one
architectureproject,but therearemany subsystem
andproductdevelopmentprojects.Eachprojecthas
a clear start and end point in time. The architec-
ture, subsystemsand productshave a longer life
spanthan a project; they are the assetsof the or-
ganization.Theresponsibilityfor maintainingthem
canbehandledby asequenceof projects.

As subsystemsare intendedto be usedin multi-
pleproducts,they mustbedevelopedindependently
of products. For that reason,we never allow sub-
systemsand productsto be developedin a single
project. For reductionof overhead,we do allow
multiple subsystemsto be developed in a single
project.
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Figure6: Threetypesof developmentprocesses

Organization

We alreadyexplainedthatarchitecture,subsystems
andproductsaredevelopedindependentlyof each
other (but of coursewith somesynchronization).
Thesedevelopmentactivities aremappedto differ-
entdepartmentsin theorganization,which areusu-
ally locatedat different sites. Often, suchdepart-
mentshave specificcapabilities,in alignmentwith
thesubsystemsor productsthatthey develop.

Wefeelstronglyabouttheruleof developingasub-
systemin oneprojectat onesite. Ideally, theorga-
nizationis broughtin alignmentwith the technical
architecture.In practice,thereareoftenmismatches
betweentechnicalarchitectureandorganization.In
suchcases,we tendto let thetechnicalarchitecture
be influencedby theorganization! In otherwords,
we’d ratherhave a lessoptimal technicalarchitec-
ture thatmatchestheorganization,thananoptimal
architecturethatdoesn’t matchtheorganization!

Documentation

Traditionally, softwareis documentedwith a client
requirementspecification,a software requirement
specification,a global design, a detailed design,
and then implementationand test information. In
a reuseorganization,thingsneedto be a little dif-
ferent.

The most obvious differenceis that we concen-
trate on writing componentdata sheets(i.e., user
manuals) rather than requirementspecifications.
Such data sheetsare written in advance,and ex-
plain the componentto the user of that compo-
nent,ratherthanservingascontractfor thebuilder.
Theideasareborrowedfrom thehardwaredomain,
whereICs aredescribedin datasheets.Note that

thesedatasheetsdo not containany internaldesign
information—thishasto bedocumentedseparately!

The seconddifferenceis that we documentinter-
facesseparatelyof components.This is very use-
ful for genericinterfaces: they needonly be doc-
umentedonce,andcomponentdatasheetscanjust
referto theinterfacedatasheets. It is alsousefulfor
morespecificinterfacesthatareprovidedby asmall
set of components.It is lessuseful for interfaces
thatarereally specificto oneparticularcomponent,
but to make thingsconceptuallysimple,we follow
thesameparadigmthere.

Configuration Management

Any seriousproduct developmentactivity usesa
configurationmanagement(CM) systemto main-
tain the sourcesof the product. CM systemsare
typically usedfor:
� versionmanagement
� variantmanagement
� build management
� distributeddevelopment

In thecontext of building productfamiliesin amulti
siteorganization,wehaveaspecificopiniononeach
of thesetopics. They are all concernedwith the
move from a singlelarge productorganizationto a
largesetof smaller, relatively independent,subsys-
temandproductdevelopment‘companies.’

For version management, a CM systemis invalu-
able. Each subsystemand product organization
shouldhave a CM systemin which they keeptrack
of this historyof their sourcefiles.

We do not want managementof productvariation
to behandledby theCM system.Our original rea-
sonfor this is that we want to handlesomeof the
productvariationatcompiletime,someat runtime,
without making this distinction in advance. CM
systemsnecessarilyoperateat compile/link time
only. A secondandmore importantreasonis that
we want to make productvariation explicit in the
architecture,insteadof hiding it in aCM system.

Many CM systemsprovide build supportto create
executablesfrom the sourcefiles. This build sup-
port is integratedwith the CM system’s capability
of handlingproductvariation. Sincewe solve the
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latter in our architecture,we neednot usethe CM
system’s build support,but caninsteadchoose‘the
bestof class.’ As a side effect, we can build our
productsoutsideof theCM system,e.g.,athomeor
in theplane.

Finally, CM systemsareoften useto managedis-
tributeddevelopment, but wefind it abettersolution
to have thedifferentsitesdevelop anddeliver soft-
wareasif they wereseparatecompanies.Our sites
deliverreleasesof theirsoftwareasZIP filesthatare
distributedthroughthecompany intranet.

Concluding Remarks

Westartedthisarticlewith someremarksonthedef-
inition of architectureas a set of subsystemsand
theirmutualrelation.Wefoundthisdefinitionto be
too specific, andhave spentsometime explaining
theconceptsin our architecture.We foundthedef-
inition to be too completeand too high level, and
have shown at which level of detail we operateas
architects.Wefoundthedefinitionto betoo techni-
cal, andhavediscussedanumberof issuesnormally
not tackledby softwarearchitects.

The Koalacomponentmodelwhich is part of this
architectureis inspiredby Microsoft’s COM. It was
anexplicit designgoal to enableevolution to COM
in thefuture.However, Koalaintroducessomecon-
ceptsnot readilyfoundin COM (suchasanexplicit
notionof requiresinterfaces).We arecurrentlyin-

vestigatinghow to modelthesein COM.

The softwarearchitectureasdescribedin this arti-
cle is now beingappliedby over 100peoplein five
differentsites.
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