
XOOTIC MAGAZINE February 2007 23

Aspect Orientation Enables Differentiation with
Software

Piërre van de Laar (pierre.van.de.laar@esi.nl)

TU/e Campus, Laplace-building 0.10
Den Dolech 2

P.O.Box 513, 5600 MB Eindhoven
The Netherlands

Companies develop large numbers of embedded systems that contain a significant
amount of software. The amount of software in these embedded systems is
exponentially growing according to Moore's law. With the increase of software also
the complexity increases. Separation of concerns, i.e., the ability to deal with the
difficulties, the obligations, the desires, and the constraints one by one [Dijkstra,
1976], is needed to cope with this growing complexity and to ensure that companies
can continue to differentiate with software.

Currently, embedded software is modularized based on functionality. Unfortunately,
this kind of modularization cannot separate all concerns as can be observed in the
current software:

• Many (non-functional) concerns are not localised in one software module but
are scattered throughout the software.

• Multiple concerns are tangled in one software module.

Since concerns are not separated, complexity increases; independence decreases;
and decision points must be preponed. Throughout the whole software development
process, the impact of a limited separation of concerns is noticeable:

• Traceability and localisation of requirements is reduced.
• Independent (multi-site) development and the associated integration and

validation is prevented.
• During implementation, code is duplicated which not only is the root cause of

errors due to inconsistencies, but also prevents specialisation and wastes
scarce and limited [Kaashoek, 2005] developer resources.

• Maintenance becomes more difficult.
• Evolution and reuse within a product family is hampered.

To solve these problems, we ask ourselves the question: how can we improve the
effectiveness of our modularization?

Aspect orientation is a technology that improves the effectiveness of modularization.
Aspect orientation modularizes the system based on concerns. In 1978 [Sandewall,
1978] the principles of aspect orientation were described for the first time. Yet, it
became hot due to Xerox [Kiczales et al., 1997], who applied aspect orientation
amongst others for image improvements. Currently, on top of every popular
programming language an aspect oriented programming language exists. For
example,

• AspectC++,
• AspectC,

 February 2007 XOOTIC MAGAZINE

24

• AspectSharp, and
• AspectJ.

The interest for aspect orientation is not limited to these Open Source projects, also
Microsoft is investigating it for their Developer Studio2. We have investigated aspect
orientation in the scope of hybrid (analog and digital) television.

In the remainder of this extended abstract, we will first give a black and white picture
of aspect orientation. For a more in depth description, we recommend [Kiczales et
al., 1997, Elrad et al., 2001, Laddad, 2003, Filman et al., 2005] to the interested
reader. We will then describe how we added aspects to the component-based
software of television, and share our experiences with applying aspect orientation in
this context. We will end with a summary.

What is aspect orientation?
Aspect orientation introduces join points around the execution of instructions to
handle concerns related to these instructions. Join points are also the only points
where aspects can interact with other pieces of software. To give an example, join
points around instructions that change items in a database for a user, enable that:

• Before the instructions are executed, the access to the database is logged;
• The instructions are only executed when the user has the rights to modify the

items in the database; and
• After execution of the instructions, all observers of the database are notified

to ensure accurate visualizations.

An aspect contains pointcuts and advices. A pointcut specifies, by selecting join
points, where an aspect crosscuts other aspects. Join points can be selected based
on, amongst others, the type and name of functions and its parameters. An advice
specifies in a function-like construct what behaviour to exhibit around the selected
join points. For the implementation of an advice, an aspect may require functionality
of other aspects, use meta-data about the selected join point, and introduce
variables.

Making a product from aspects is called weaving: joining the aspects at the selected
join points. Weaving can occur at different points in time. To give a few examples:
Before compile time by code weaving, at load-time by the class loader, or at run-time
by the virtual machine.

Adding aspect orientation to component-based software
Component-based software has besides source and binary/byte code also an
architectural description. We decided to weave based on these architectural
descriptions to leverage the following advantages:

1. The architectural description contains information, some of which is lost in the
source code. For example, since the C programming language has no
interface concept, the information of which functions constitute an interface is
lost. Similarly, the direction of parameters of functions is lost in C.

2. The source code of a component is often not available, while the architectural
description is always available. But even when source code is available,

2 For more info, see http://research.microsoft.com/workshops/aop/.

XOOTIC MAGAZINE February 2007 25

weaving at source code level typically invalidates the warranty and support of
components.

3. The architectural description language is implementation-language agnostic,
which makes the weaving implementation-independent.

4. The sensitivity of the system for modifications at architecture level is by
design less than at the source code level. Computations that cross
component boundaries must be able to handle the allowed variations in the
implementation of interfaces and are thus less sensitive for modification
compared to computations within a component that typically exploit
implementation details to optimize throughput and response time.

5. The architectural description has a higher abstraction level and is more stable
than the implementation; this positively influences the independent evolution
of aspects and components.

Which components can be affected by an aspect? Even though the composition of a
component is implementation dependent, we decided that an aspect could affect all
components in a product. This choice enables more powerful aspects, which are
needed, amongst others, for logging all components, and asserting that all
components are only used after initialisation.

What are the join points in an architectural description? We consider the functions in
the interface of a component as join points, since:

• A component only communicates via these functions.
• Developers explicitly describe both the functions in an interface and the

interfaces of a component.
• Only these functions are implementation-independent.

Experiences with aspect orientation
We first gained experience with and confidence in aspect orientation in the validation
and verification phase. This path ensured that we reduced the risks associated with
our ultimate goal: The introduction of aspect orientation into our products.

How to handle access before initialisation is a concern that affects all components.
Although one can easily describe how to handle access before initialisation in
general, it is currently handled per component. Even worse, this handling differs
between components in the same software stack. With aspect orientation, we were
able to write three different strategies to handle access before initialisation. The first
strategy asserts that a component is not accessed before initialisation; the second
strategy ignores accesses when the component is not yet initialised; and the third
strategy calls the initialisation code when the component is accessed but not
initialised before. With these strategies:

1. We could ensure that all components handle access before initialisation
identically.

2. We could separate the initialisation implementation from the functional
implementation. This not only reduces the lines of code by 2%, but also
makes reuse more likely. Reuse becomes more likely since the reuse
environment has only to match either the initialisation requirement (to reuse
one of the three initialisation aspects) or the functional requirement (to reuse
one of the components), but not both.

3. We could postpone the decision for an initialisation strategy from
implementation to integration.

 February 2007 XOOTIC MAGAZINE

26

Resource usage is an important concern for resource limited systems. The
functionality to check that a component does not use more resources than specified
can be localised in one component. Yet, for each component under test one still has
to do a lot of plumbing:

• Instantiate a test component, and
• Change the connections to the component under test to pass through this test

component.

With aspect orientation, we were able to localise not only the functionality but also
the plumbing in one aspect. This made the test process both easier and less error-
prone.

Many pieces of software cannot be accessed multithreaded, but accidentally are
accessed on multiple threads. Integration and testing would benefit from automatic
detection of illegal multithreaded accesses. We have written an aspect that lists
multithreaded accesses throughout the complete software stack. This list can help
architects to pinpoint illegal multithreaded accesses. Of course, by adding attributes
to the current code base and exploiting this information in a comparable aspect, also
this last step can be automated [Hoogendijk et al., 2005].

During integration and testing, understanding the dynamic behaviour is crucial.
Tracing provides insight in this behaviour. We have written and applied an aspect to
trace the interface function calls in an already finished television set. While manually
adding trace statements requires programming effort linear with the number of
interface function calls, this aspect required only a small programming effort that is
independent of the number of interface function calls. Currently, we are using this
aspect at NXP, the former Philips Semiconductors, to determine how the platform is
accessed by the applications running on top of it.

Summary
Aspect orientation improves our effectiveness to modularize software. As a
consequence, separation of concerns is better supported. This reduces the
complexity of the software, minimizes dependencies, prevents duplication, ensures
consistency, makes reuse more likely, and enables to postpone design decisions.
Our experience indicates that aspect orientation scales to industrial applications.
Furthermore, with aspect orientation, companies will be able to continue the
differentiation with software.

References
[Dijkstra, 1976] Edsger W. Dijkstra, 1976, A Discipline of Programming, ISBN
0613924118.

[Sandewall, 1978] Erik Sandewall, 1978, Programming in an Interactive Environment:
the “LISP” Experience, Computing Surveys, Vol. 10, No. 1, pp. 35-71.

[Kiczales et al., 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, John Irwin, Aspect-Oriented
Programming, Proceedings of the European Conference on Object-Oriented
Programming, pp. 220-242. Available at
http://www.parc.com/csl/groups/sda/publications/papers/Kiczales-ECOOP97/for-
web.pdf

XOOTIC MAGAZINE February 2007 27

[Elrad et al., 2001] Elrad, T., Filman, R.E., Bader, A., October 2001. Special section
on Aspect-Oriented Programming.Communications of the ACM, Vol. 44 No. 10, pp.
29-97.

[Laddad, 2003] Laddad, R., 2003. AspectJ in Action: Practical Aspect-Oriented
Programming, Manning, ISBN 1-930-11093-6.

[Filman et al., 2005] Filman, R.E., Elrad, T., Clarke, S., Aksit, M., 2005. Aspect-
Oriented Software Development, Addison-Wesley, ISBN 0-321-21976-7.

[Hoogendijk et al., 2005] Paul Hoogendijk, Chritiene Aarts, Piërre van de Laar, Felix
Ogg, Rob van Ommering, Jur Pauw, Extending the Nexperia Home Component
Model: Annotating and Checking Thread-safety Properties, Philips Software
Conference 2005.

