
XOOT]C MAGAZINE September 1994

Parallel computing within the OOTI programme

drs"ing. Rona_ld Reinds

Parallel computing is one of the central points in the OOTI programme. Students
take obligatory classes on this topic and many do projects in this area, for
example related to the EUT transputer network. This article gives an overview
of the field of parallel computing and gives some examples of work done within
the scope of OOTI.

In p:rzrllel computing, the airn is, in many cases,

[o increase the performance (compared to tradi-
tional single processor computers) by deploying
more than one processor. In order to fully exploit
this potential perfonnance, often explicit piu:rllel
programs lue needed. In explicit parallel program-
ming, the programmer splits up the progriun into
pifts that operate concurrently. Importiurt topics
in parallel prograrnming are

r how to balance the load of the parts to be ex-
ecuted evenly over the available processors,
and

r how to arange communication and synchro-
nization between the parts of a parallel pro-
grurm.

It may be apparent that parallel programs intro-
duce extra complications and offer extra possibili-
ties for design decisions (in comparison with con-
ventional programming). That is the main reason
why a course in parallel programming is part of
the OOTI programme. This article covers the main
topics addressed in this course in a global manner.

Parallel machines

For getting the most out of a parallel program, one
needs a parallel computer" Most parallel machines
are based on the classical Von Neumann concept,
i.e., every processor performs the following cycle
continuously.

1. Instruction fetch (get instruction from mem-
ory to processor + decode the instruction),

2. Inslruction execution.

By Flynn's taxonomy, these Von Neumann-based
machines can be classified accordins to two crite-
ria"

r Whether a machine can execute a single in-
struction only or multiple instructions at a
given instant, and

o Whether it can operate on a single datum
only or on multipie data.

Thrs yrelds [our classcs.

l. Single Instruction. Single Data (SISD). To
this class belong the traditional computers,
like PCs and workstations.

2. Single Instruction, Mulriple Data (SIMD).
Computers in this class consist of a large
number of small processors. Each processor
executes the same program, but on differ-
ent data items. An examples of a computer
belonging to this class is: the Connection
Machine (the older ones like CM2).

3, Multiple Insrrucrion, Single Data (MISD).
Empty class.

4. Multiple Insffucrion, Multiple Data (MIMD).
In this class, the most parallel machines are
found. Examples are: transputer networks
and Ncubes.

In 1990, our university acquired a transputer net-
work as a platform for parallel computing. This
network is a MIMD machine as mentioned above.
One reason for the interest in MIMD machines is
the possibility to build a powerful machine by in-
terconnecting a krge number of cheap and sirn-
ple processors. The price/performance ratio is, in
many cases, better than traditional single proces-
sor machines having the same speed. For parallel
systems, there are two notions that are important
for quantifying the performance, viz. latency and
throughput. Latency is the time that elapses from
the instant a problem has been given to the system
until the moment the answer comes out. Through-
put is the rate with which the system is capable of
communicating with its environment reading data

Parallel computing within the OOTI programme

to configuration network

to configuration network

Figure 1: The hardwired configuration of the transputer network

and producing answers. It is apparent that the la-
tency is bounded by the throughput.

The network owned by the university consists of
fifty transputers distributed over four boards in a
single cabinet. A transputer is a chip containing
a processor, some memory, and four bidirectional
links for connection to other transputers. Some
links are hardwired, other ones can be set by soft-
w:ue. The network does not operate stand-alone, it
is controlled by a transputer that resides in a host
machine, typically a PC or a workstation. The
transputer that is connected to the host is called
the root (of the network). The network is depicted
in Figure 1. In this figure, the hzudwired links
are the ones in between transputer 50 (the root)
and transputer 1, and the links between transputer
f and transputer i+ 1 (0 < i < 50). The soft-
links are the ones connected to the configuration
network; this network is programmable.

Software

There are three ways to introduce parallelism in
software.

1. Recognition of parallelism by a compiler,

2. By choosing a language that allows a parallel
implementation,

3. By designing a new language that allows a
parallel implemental ion.

Recognition of parallelism by a compiler is often
very hard, since it is very difficult to detect paral-

lelism when it is not specified. Furthermore, when

the program is not regular, it is hard to get a good
load balance over the available processors. But
the main problem is that a good parallel program
for many problems differs from a sequential solu-
tion and that it can not be derived in an automatic
fa-shion from a sequential program or algorithm.
So, in many cases, it is better that the program-
mer explicitly splits up the program in parts that
operate concurrently; these pafls are often called
processes. However, in explicit parallel program-
ming new problems pop up.

r How to deal with communication and syn-
chronization between the parts of a parallel
program.

r How to prevent deadlock.

These problems are related in some way. For ex-
plicit parallel programrning, there is often a need
for communication and synchronization between
the processes. Communication and synchroniza-
tion can only take place when all (in many cases

only two) processes involved are ready for it. ho-
cesses can only become suspended on a communi-
cation or a synchronization action. When the part-
ner process in communication or synchronization
is not ready, the process that is willing to com-
municate or to synchronize gets suspended. This
is because the communication is synchronous, i,e.,
zr message is transmitted only when it will be ac-
cepted by the other party. In a deadlock situation,
all processes got stuck, because they are all waiting
on a communication or synchronization action to
be performed by another process. In the following
paragraphs, we will address these problems.

to configuration network

XOOT]C MAGAZ]NE September 1994

How to make programs for a network

Processes can communicate using ch(lnnels. A
channel is a one-directional process-to-process
connection. One process can only read from it,
its partner process can only rvrite on it. A paml-
lel progr:rm consists of a number of processes and
channels connecting processes. A parallel network
contains processors and (physical) links intercon-
necting the processors. So both, a parallel program
and a parallel network can be viewed as graphs.
It seems natural to map processes in the program
onto processors in the network and channels onto
the links. When a program is realized as a VLSI
circuit. this may be the way to do it. However,
if the program is to be executed by a network, it
may not be possible to do the mapping mentioned
above, because the number of processes of the pro-
graln may exceed the number of processors in the
network or the channels interconnecting the pro-
cesses can not be mapped one-to-one to physical
links. A way to overcome the first problem is to
run more than one process on a single processor
using time-slicing, i.e., the processor will be allo-
cated to a process for a period of time (called time
slice), then the process is pre-empted zutd a new
process is scheduled when the tirne slice expires;
the process will be re-scheduled to continue exe-
cution at a later time. The second problern car be
solved by mapping one channel onto a number of
l\nks (routing) in combination with the mapping of
several channels onto a single link (multiplexing).
In general, it is a good philosophy to distinguish
the design of a program and the mapping onto a
parallel network. The mapping can be performed
more or less mechanically. One step that can be
done independent of the program is the construc-
tion of a routing mechanism. Such a mechanism is
added to the network and implements a connection
between every pair of processes (provided that the
network is strongly connected). This mechanism
can be implemented both in hardware and sofr
ware. The network plus the routing mechanism
can be considered as a fully connected network.
In the course, some efficient algorithms that per-
form multiplexing and routing are discussed.

Our programs consists of a collection of commu-
nicating processes. For reasoning about parallel
programs, there are two important properties, viz.
safety urd progress. The safety propertyprescribes
that nothing goes wrong. The progress property
states that eventually something must happen. This
forbids a trivial implementation, viz. one that does

nothing. In the case of a sequential program, we
are only interested in progress towards the end of
the program. In a process, there are often a iot
of piaces where it may become suspended. For
each of these places or states, there is a potential
risk that the process remains suspended forever. A
state in which a process remains suspended unless
its environment interacts with it is called a stable
state. So, when designing a parallel program, we
have to prove the absence of deadlock, i.e., the ab-
sence of unwanted stable states. Proving absence
of deadlock can be done by (formal or less formal)
reasoning, although it is often quite laborious.

How to program the transputer net-
w0rk

For programming the transputer network, we use
Transputer Pascal. This is a sort of extension to
standard Pascal. However, the language does not
support files. A program written in standard Pascal
consists of a declaration part and a main program.
This main program cm be viewed as a process
and, therefore, a Pascal program is in fact a single
process program. In order to support parailelism,
some features have been added. Since it is very
easy and cheap to have several processes running
on a single transputer, the Transputer Pascal com-
piler supports parallelism at statement level md at
procedure level as well. When a compound state-
ment is enclosed by cobegin and coend (iust like
begin and end in standard Pascal) the statements
in this compound slatement are executed concur-
rently. If a procedure call is preceded with the
keyword fork, this call is executed in parallel with
its caller. Transputer Pascal also has some other
extensions, but we do not discuss them here. The
Transputer Pascal compiler compiles a single Pas-
cal program into code for a single transputer. Ev-
ery transputer in the network must have its own
program. It is already mentioned that the trans-
puter connected to the host is the root. It is nat-
ural to use this ransputer for communication be-
tween the host and the network. The root runs of-
ten another program than the network transputers.
There should be a facility for routing the programs
through the network towards its destination. The
program that takes care of this routing is called
tmon. As input for this program, the programmer
has to specify for any transputer which program
it has to run (plus some other information). The
tmon prograrn performs, among other things, the
following tasks.

Parallel computing within the OOTI programme

o urll the compiler for the programs.

. contact the host machine of the tr:rnsputer
network,

o load the programs, and

. remain as monitor.

The tmon prograrn provides also facilities to main-
tain an X-window (e.g., for drawing pictures).

Examples

We conclude with two exarnples that illustrate two
ways of introducing pzuallelism in a progrrun, viz.
protessor farming tnd dutu distribulloz" Last year.
the ex;unples discussed below made uli the pr:rctr-
cai part of the course. ln both exarnples, the trims-
puters in the network will run two processes, viz.
clne for communication to the exterior:rnd routing,
iurd one that performs the calculation of the results
(see Figure 2).

I0 sr.iccess0l

Figure 2: Processes running on a single net-
worK processor

Drawing fractals

A algorithm that is easy to parallelize is the cal-
culation of fractals. A window on a compurer
screen ciu:l considered to be a discrete complex
plane within certain boundaries. So, each pixel
on the screen has a complex number, szly c, iNSo-
ciated with it. For getting Mandelbrot irnages, we
repeatedly apply /(n + 1) = /(n)2 = c (st:rting with
/(1) = 0), where /(i)) is a complex number for ev-
ery natural number i and c is a non-zero complex
value. until the modulus is equ:rl to 2 or exceeds
2. The number of iterations (below a certain max-
imum) before the series starts to diverge, deter-
mines the colour of a pixei. It is apparent that the

7

ca"lculation of the number of iterarions before the
series stiuts to fall to infinity for a complex number
is independent of my other number in the complex
piane. A naturai wzry to par:rllelize the ealcuiatron
is to iet every processor calculate the resuits for a
part of the plane ie.g.. one line); this is cailed a
job. The router process determines dependent on
the load of the computing process whether an in-
coming job ciur be done on its own procg551'11 o.
should be forwarded to another processor. ln this
way" we get a dynamic lo.rd balance. The tr;urs-
puter connected to the host runs two processes. viz.
one filr sending jobs to bo executed by fhe trans-
puter network ;nd one for receiving iurd collectrng
result-s of the calculations. This is an exiunpie oi
ylnieessor .farming. In processor farmrng, the do-
midn of the total compuration is spiit into parts iurd
the computation of these pafis are independent.

Gauss-.Iordan elimination

A field that is very popul:r in parallel computing
is matrix computation, because it is often easy to
make puallel algorithm for this type of fl)mpLr-
tation. An example is Gauss-Jordan elirninatron.
This is a well-known technique to solve a set of
linear equations represented as A,r = b. Here, ma-
trix A is a non-singular, jV x ,v- matrix clf coefti-
cients. b is vector of length -\. zurd r is the vector
of'unknowns to be solved. Gauss-Jordan elirnina-
tion is based on the fact that the solution of the ser

of equations is not alfected by any of the following
operations.

l. Swzrp two rows of A zrnd the two correspond-
ing values in li.

2. Replace :r row of A by a linear equation
of itself and another row and perforrn the
same operation on the corrosponding values
of vector b.

By repeatedly .ppiying these elementary opera-
tions, matrix A can be transfonned such that solv-
ing the set of equations becomes trivial. This can
be done in two ways: trzursfonn ,,{ into a triangu-
iar matrix or transform it into the unity matrix. In
the first case, we only have to solve a triangular
system, which is easy. In the latter case. the value
of b is the solution vector.

We give a brief outline of the parallel :rlgorithm.
First, the rows of matrix ,4. and the corresponding
values of b are distributed evenly over the available
processors" In each step of the algorithrn, one of

XL}OTI(] \4A G A.ZINE September 1994

the columns of .A is replaced by one of the unit vec-
tors by applying eleinentary operations. The algo-
rithm tr;rnsforms the columns in increa-sing order.
For ihe s:rke of convenience. let z be the current
column. For transforrnation of column z, a pivot
row must be chosen and must be distribufed over
all availzrble processors. A pivot row should have
a non-zero element at position i On each proces-
sor, the computation process will adjust the rows
that are :usigned to this processor. This should be
done in a way that the elements in column r will
form a unit vector. Rows other than the pivot row
should be repiaced by a linezr combination r.lf it-
self and the pivot row" The processor that hold
the pivot row should normalize it, i.e., scale the
elements in the pivot row such that the element
at position i gets equa.l to 1. In this exzunple, the
data (rnatrix A imd vector b) zue distributed over
the. av:ulable processors. However, fbr adjusting
the r0ws other thrn the pivot row, each processor
must to have the pivot row. This way of intro-
ducing pznallelism is called dctmain det:ompositktn
(or data parallelism). In data decomposition. we
divide the data among the av:rilable processors in
order to divide the computation steps evenly, bur
the computiltion of parts is no longer independent^

Additional reading

J.J. Lukkien. Parallel Progriun zmd Computer Net-
works (draft lecture notes).
J.J. Lukkien et al., The Eindhoven Transputer Sys-
tem. an overview.
J.J. Lukkien, On rnultiplexing, routing and Remote
hocess Calls.
J.J. Lukkien. Parallel Gauss-Jordan Elimination. *

Drs.ing. Ronald Reinds is a student of the posi-
masters programme Software Technology. He
is a member of xoorrc.

Short News

Block instructors and Programme Group
Two new block instructors have been appointed.
Frof.dr.ir. Koos Rooda (faculty of Mechanical En-
gineering) has succeeded prof.dr.ir. Ton van de
Wolf is block instructor for Dist:rete Munufut:-
turing. Prof.dr. Jos Baeten has urken the place
of prof.dr. Kees viur Hee iu block instructor of
FormuL Spet:ifit:ation Methoris. Both new block
instructors also have taken the place of their pre-
decessors in the Programme Group (Opleidings-
groep t.
In that same Progr:rmme Group more chzurges have.

taken place. hof.dr.dipl.ing. Dieter Hammer has

succeeded prof.dr. Martin Rem a-s chidrman. Rem
will stay a-s ordinary member. Dr. Anne Kaldewul
is added to the Progralnme Group and dr. Onno van
Roosrnalen is ternporarily added as replacement of
F{iunmer. who is on a sabbathical treave. t]

Discrete Manufacturing revised
With the :rriv:rl of a new block instructor for Dls-
t:retg Manuf'ucturing" the contents of this block ha^s

been revised. The new contents is as fbllows.

o 411020: Nurnerical control (Hijink)

r 4C340: Production technique (Mikkers.
Rooda. Schellekens)

t 4Cl l0: Machine control, processes, iurd in-
teractions (Rooda, Van Rooij)

r 1K06i: Re-design of technical production
systerns (Sanders)

o lKl10: Capita selecta Automation of tech-
nical production systems (Sol)

c 21594: Small project Discrete Manufactur-
ing (Struik or Rooda) c

More curriculum changes
The contents of the course block Laborqtort Au-
iomation has been revised as well. During the aca-
dernrc year 1994195 it will be called Process Au-
tomution. From 1995/96 on it be called Embedded
Syvems. Prof.dr.dipl.ing. Dieter Hzrmmer wili be
responsible for the contents of that block.
Starting in the academic year 1995196 OOTI will
offer a new block to its students. called Medicul
Applications. Dr.ir. Kees van Overveld will zu

block instructor be responsible for the contents.
xoorrc MAGAZTNE hopes to report on this new
course block when more is known about the con-

xtents.

