
Parallel program debugging, a case study at CERN

Parallel program debugging, a case study at CERN

ir" Rend Schiefer

Mona Lisa is a new parallel programming paradigm, developed in the Gp-MtMD
proiect at CERN. One of the supporting tools for Mona Lisa is VtPEB. tt graph-
ically visualizes the behavior of the parallel program using instant replay. The
visualization is based on trace information, produced by the parattet program
during (a previous) execution.
VIPER, combined with any commercially available sequential debugger, offers
a debugging environment for Mona Lisa parallel programs. This debugging
environment provides debugging at two levels: scenario reptay with on-tine vi-
sualization at the program level, and debugging of multiple threads using the
sequential debugger at the sequential component level.
The development of VIPER has been defined as an OOT| project.

T7

The GP-MIMD project

CbnNt is an intemational laboratory near Geneva
that performs particle physics research. This freld
of research is highly computational intensive. The
complexity of the experiments performed at CERN
is continuously increasing. A good example of
this is the LHC experiment. for which the off-line
computing needs are estimated to be three orders
of magnitude larger than current LEP experiments.
This is pushing the demands on VO capacity and
CPU power beyond the limits of present technol-
ogy. A consequence of this is that CERN is inves-
tigating parallel computing as a possible solution
to the increasing computing requirements.

Over the years, CERN has invested a lot in the de-
velopment of dedicated software, which is mostly
written in FORTRANTT. Not only is the total
amount of this software rather large (millions of
lines of code), but also the size of the individual
programs is in some cases considerably large (hun-
dreds of thousands of lines).

Because of this, CERN is investigating the pos-
sibility of parallelising their existing sequential
programs, rather than rewriting them completely.
Among other developments and collaborations
with industrial partners, this research is done by
taking part in ESPRIT2 projects. GP-MIMD3 is

lCERN: Centre Europ6en pour la Rechercho Nucleaire
2ESPRIT : European Stratogic Programme for Research and

I)evelopment in Infomtation Technology
3GP-MIlv[l : General Purpose Multiple lnstructions Multi-

ple Data machines

one of these ESPRIT projects" The main goal of
the GP-MIMD project is to build a parallel ma-
chine and to run paralielised applications 0n this
machine. The mchitecture will be discussed briefly
below.

The parallel machine is based on T9000 Tlansputer
technology. This means it has a multi-processor ar-
chitecture with disributed memory. The platform
in the GP-MIMD project will have 64 nodes. The
processors communicate over links, equipped with
64K virtual channels. A direct communication
path between non-adjacent processors is achieved
by using C104 fast switching chips.

The CHORUSMiX operating system runs directly
on the Transputer hardware. CHORUS is a modu-
lar distributed real-time operating system. For the
application, it provides two basic functions.

r The services for the allocation of processes
to different processors.

r The IPC (inter process communication) ser-
vices which implement a flexible, reliable
message passing system between processes.

The CHORUSA4iX r3.2 operating system inter-
face is a subset of UNIX.

The main physics application running on the Gp-
MIMD machine is the physics event reconsffuction
program of the CP-LEAR experiment. For the par-
allelization of this (originally sequential) code a
new parallel programming paradigm has been de-
veloped, called Mona Lisa. Mona Lisa offers a



18 XOOTIC MAGAZINE September t993

simple, abstract, and optimizable way to design
coarse grained parallel programs. The user inter-
face is a set of six primitives which can be added to
any existing sequential language. Hence, a Mona
Lisa program is, for example, a FORTRAN listing
with Mona Lisa statements embedded in it.

To make successful use of the Mona Lisa
paradigm, a Mona Lisa development environment
has been implemented. This environment supports
the various steps which have to be performed to
translate FORTRAN Mona Lisa source code into
an execuhble program for the Transputer hard-
ware.

However, the development of a parallel program

adds another level of complexity in comparison
with sequential coding. The behavior of a parallel
program in terms of interactions between sequen-

tial parts is not straightforward. In particular, the
sequential parts may interact in such a way that
the outcome of the parallelized program is differ-
ent from the outcome of the original sequentiai
program.

VIPERI is the tool in the Mona Lisa development
environmsnt that closes the loop in the software
development cycle; it is used in the process of an-

alyzing, improving and debugging the paraliel pro-
gram. The VIPER tool provides the user with the
data, needed to investigate the interaction between
sequential pafis of the program. The data is di-
rectly related to the Mona Lisa paradigm, thereby
retaining the high abstraction level of the paral-
lelization. VIPER graphically visualizes the be-
havior of the parallel program using instant replay.
This means that the visualization is based on trace
information, produced by the parallel program dur-
ing execution.

The remainder of this article explains the context
of the VIPER tool: the programming paradigm it
supports, and the functionality it provides.

The Mona Lisa paradigm

This section briefly describes the Mona Lisa
paradigm concept and some implemenhtion de-
tails. A more thorough discussion can be found
ln Ir].

The sequential components which together consti-

tute the Mona Lisa parallel program, are called
modules. The variable space in a moduie is split
into two sub-spaces: the global variable space and
the local variable space. A local variable has a
normai scope, that is, as defined in the originai
programming language. A global variable is vls-
ible outside its normal scope: other modules can
access this variable as well, in a restricted wily"

A global variable (or, in the case of arrays, seg-
ments of a global variablel can be in two states,
called exposed utd hidden Read and write oper-
ations on variables in other modules can only be
performed when they are exposed. The same goes

for the case of a segment of a global variable ar-
ray. So, if a globai variable within a rnodule is
hidden, its value cannot be read or changed by
another module. Global variables can be moved
between the two states explicitly by calling Mona
Lisa primitives. This is the key in Mona Lisa to
establish data synchronisation 

"

The Mona Lisa paradigm has the following char-
acteristics.

l" The parallelism is dau-synchromzed, as op-
posed to controi flow-synchronized" Instead
of letting the user defrne the parallelism be-
tween modules explicitly using parallel lan-
guage constructs (such as ALT in Occam),
the paratlelism is expected to be established
in some way by the run-time environment.
This is called implicit parallelism. The mod-
ules synchronize on the availability of data.

2. The communication between the modules is
asynchronous and directed. Asynchronous
communication allows flexible program de-
sign. Directed communication is necessary

to get reasonabie perfonnance.

3. Startup, termination, and unloading of the
parallel program is controlled by a cen-
tral mechanism called the program manqger.
This avoids the trouble with dangling mod-
ules or errors due to iur incorrect startup se-

quence. A dangling module is a module
that is still running although the progarn it-
self has terminated. The program manager
also detects deadlock and module abortion,
in which case the parailel program is termi-
nated with :m appropriate error message.

To apply the Mona Lisa paradigm to a sequential
program, two things have to be done.4VIPER : Vlsualization of Parallel Execution at R.un-time



Parallel program debugging, a case study at CERN

1. The program has to be partitioned into rnod-
ules. Every module is effectively a sequen-
tial program by itself.

2. T\e data-flows between the modules have to
be defined. This means defining the global
variables, and putting Mona Lisa primitives
in the code.

The Mona Lisa interface

Mona Lisa provides a set of six primitives, which
enable the following

l. Reading the value of a global variable (seg-
ment) in another module.

2. Changing the value of a global variable (seg-
ment) in another module.

3. Moving a global variable (segrnent) between
the exposed and hidden states.

Thble 1 lists the formar of the Mona Lisa prim-
itives (parameters are highlighred in italics), to-
gether with their operational semantics, The var
parameter represents the global variable which is
being manipulated. The mod puameter stands for
the name of the module to which the global vari-
able var belongs. The buffer parameter represents
the variable to which the value of the global vari-
able vqr is copied. Similarly, the supply parameter
represents the variable whose value is copied to
the global vell.iable var.

The rdglb primitive is useful for making global
data available to a collection of modules. The ir-
glblinrglb primitive, in combination with the ex-
poseglb primitive, is useful for communications
between two modules in a data-synchronised fash-
ion. The wrglb pimitive is provided to make an
artificial RPC-mechanism possible: a client mod-
ule calls a remote procedure by writing the id of
the procedure in a global variable of the server
module. The hideglb primitive is provided to en-
able undoing tn exposeglb, although this is more
for theoretical reasons then for practical use.

Mona Lisa implementation

A Mona Lisa program of /f modules is imple-
mented as a set of 2N + 2 thrcads. Although
the programmer regards Mona Lisa modules as
single-threaded, they are in fact implemented as
two threads, tie module thread and the supervi-
sor thread. The module thread runs the application

Table 1: Mona Lisa primitives

code. The supervisor thread deals with the correct
execution of Mona Lisa primitive calls" The two
remaining threads of the parallel program consti-
tute the Mona Lisa prograln manager. The roles
of the supervisor and the program manager will be
discussed shortly.

Supervisor

During program execution, different modules may
try to access the same global variable. To ensure
data-integrity of global variables, Mona Lisa primi-
tives have to be implemented as atomic operations.
For this purpose, every data manipulation (read,
write, or move) is handled by a separate thead
per module, called the supervisor. Both the super-
visor thread and the module thread have access ro
the global variable space of the module. The data-
integrity between the module thread and the super-
visor thread is conffolled via a binary semaphore.
Actual data exchange between modules however is
always done between supervisor threads.

Program manager

The program manager is an additional component
of the parallel program, consisting of two threads.
It basically performs four functions"

1. Startup of module threads at the beginning
of the parallel program.

t9

Primitive Description
exposeglb(var)

hideglb(var)

mod.rdglb(var,bffier)

mod.inglb(var,buffer)

m o d.irr glb (v ar, b uff e r )

mo d.wt glb(v ar,s up p ly\

Change state of vdr to ex-
poserl.

Change state of uar to hrd-
den.

Read value of var from
module mod.
Read value of vur and

change its state to hidden.
nrod is non-replicated mod-
ule.

Read value of var and
change its state to hidden
madsareplicateclmod-
ule. The instance which
supplies the value is chosen
non-deterministically.

Change value of var and
change its state to hidden.



20 XOOTIC MAGAZINE September 1993

2. Termination of module threads at fte trrmi-
nation of the pamllel program or in a dead-
lock situation.

3. Monitoring of thc state of the pruallel pro-
gfirm: abnormal termination beeause of
module abortion. normal termination or
deadlock.

4. Generation of a trace file containing all the
trace messages. The Eaee mcssagcs will be

explained further on.

One of the two threads is used solely for the trace
file generation. It runs in the background of the
other thread.

Tfaces

The implementation of the tasks of the prograrn
manager is based on traces. Whenever there is
an important event in a module, such as the re-
ception of data, a message is sent to the program
manager which contains data like the sender of the
data, the receiver. the primitive call to which mes-

sage relates, etc. With these messages (tmces), the
program manager can trace the execution of the
parallel program.

Functionality of VIPER

The visualization provided by VIPER serves three
purposes.

1. Behavior analysis.

2. Performance improvement.

3. Debug facilitation.

Visualization involves large amounts of data.

Therefore, abstraction, aggregation, and presenta-

tion of data is required at various levels.

o The parallel prograrn level.

o The processor level.

o The process or module level.

r The task level.

The task level provides an intermediate level with
respect to the other three. A task is simply a (user

defined) set ofprocesses. Thsks will reflect in most
cases the way the softwme is developed: the en-

tire progmm is first decomposed into logical units
(tasks), and then each task is implemented as a set

of processes.

Besides analysis, the Eace information can also be
used for optimization. The optimization concerns,
for instance" the mapping of modules onto proces-
sors 

^

The usual way to debug a parallel program, is to
look at the sequential pafis (processes) individu-
ally. But in order to decide where to staft the
debugging activity, it is necessary to visualize the
interaction between processes first" In particular,
the programmer needs to know what kind of daui
is exchanged between the different processes. The
VIPER tool supports the inspection of messages

between processes. The next step then is to use a
sequential debugger to debug a particuiar process.

The complete debugging environment as envisaged
for the N{ona Lisa paradigm provides the following
functionality.

r Off-line visualization with VIPER, that is,
by reading a trace flle"

r On-line visualization with VIPER, that is,
by processing traces directly as they are re-
ceived from the program manager.

r Instant replay of a scenario, constructed from
a (modified) trace flle: VIPER makes sure
that when the progran runs. the modules in-
teract according to the scenario. The current
run can again be visualized on-line.

r Stepping through a single module using a
suifable sequential debugger on the same
platfbrm as VIPER.

c Stepping through the primitive calls that are
outside control of the modules being de-
bugged by using VIPER.

The debugging environment is running on the SUN
platform: VIPER, the sequential debugger, as well
as a copy of every module and supervisor that has

to be debugged. When debugging a Mona Lisa
module, the user will actually look at the copy on
the SUN platform. The advantage of this approach
is that the parallel platform is not affected by the
debugging activities. In the case of the GP-MIMD
project, it also eliminates the need to write a FOR-
TRAN debugger on the CHORUS platform.

A more precise description of the architecture can
be found in [2].



Parallel program debugging, a case study at CERN

The development of VIPER has been defined as arn

OOTl-project. This was made possible by Dr" Fe-
ter van der Stok, member of the Faculty of Com-
puting Science at the EUT and former CERN staff
member. The project has now completed its design
phase. VIPER has an object-oriented design, with
C++ as implementation language. The graphics
will be implemented with the c++ package inter-
Views.

References

[1] A. Schneider,
" P ro g ramming p ar allel mac hine s"
CERN document" 1993

[2] Rend Schiefer,
"Architecture of a debugging environment" ,

CERN document. 1993

lr. Rend Schiefer is student of the post-masters
programme Software Technology. He is tem-
porarily working in the GP-M|MD project at the
ECP-division of CEHN. He is a member af
XOOTIC,

Agenda f993

Froject day IVO
Graduating students from all post-masters courses
of Eindhoven University give short lectures on
their projects.
I)ate: Wednesday Seprember 22th, 1993,10.00 - 15.30 h.

Place: Eindhoven lJmversity of Technology, Auditorium.

IVO graduation ceremony
26 students (eight of which are frorn OOTI) hope
to receive their graduation certificate. Because of
the large number of candidates. the ceremony has
been split into two parts. Following on the cere-
mony, a drink will be held.
I)ate: Wednesday September 22rh,1993,14.45 and i6.00 h.

Place: Eindhoven Ilmversity of Technology" Auditorium.

Open day IVO
trnformation day for those interested to follow one
of the post-masten programmes of Eindhoven Uni-
versity of Technology. In the morning, general
information will be given, while in the afternoon
the visitors will get speciflc information about the
course of their interest.
Date: Thursday October 7th" 199,?

Place: Eindhoven Ilniversity of Technology.

O0TI Symposium
Aftemoon symposium on the occasion of the fifth
anniversary of OOTL Title: "Specifying; a for-
mality'I". For further information, see elsewhere
in this magazine.
Dare: Thursday November 1tth, 1993, 12.30 h.

Place: Eindhoven IJmversity of Technology, Auditorium"

VIE Excursion
Excursion to the Options Market in Amsterdam.
followed by an evening with lectures, also in Arn-
sterdam.
Dare: Friday November 26th, 1993.

Flace: Amsterdam.

IVO graduation ceremony
Students from various post-masters programmes in
technological design of Eindhoven University will
receive their graduation certifi cates.
Dare: Wednesday December 8th. 1993, 16.00 h.

Place: Eindhoven lJniversity of Technology, Auditorium.

21


