
From Structured to Object-Oriented Programming

From Structured to Object-Oriented Programming

ir. J.J" van Amstel

"Dramatic changes are on the horizon which have the potentiatto fundamentalty
reshape the systems profession. These ehanges are likely to significanly affect
th-e jobs of nearly all programmers and analysts. Object Oriented Frogramming
(OOP) is forecast to produce a 1A-25 times improvement in the productivity 6f
systems and software developers, and some industry observers ctairn that it
holds the promise of substantially sotving the quatity, cost, and on-time detivery
problems for which the systems profession has been so severety criticized'. [l]

14
l-l

Buzzwords

The world of software consfuction bristles with
truzzwords and promising ideas. The quotation
above gives a nice example. Maybe the use of
buzzwords is characteristic for each new field that
has not yet reached its maturity. In his article
Mr. Howard continues: "It is easy to be scepti-
cal - there is a long litany of productivity tech-
niques that have not fulfilled their promise. Struc-
tured analysis once was touted as tfte solution to
the soffware development problem, but structured
techniques have yielded only about a L\Vo - l5%a
productivity improvement. Fourth generation lan-
guages, once expected to transfer much of the re-
sponsibility for application development to users,
have loaded mainframes unmercifully, but have not
significantly reduced the application development
backlog. Artificial intelligence has produced rapid
prototlping tools, but has made no inroads into the
process ofdesigning and developing large business
transaction systems. Given the disappointing his-
tory of those and other 'solutions' to the systerns
development problem, it is easy to be sceptical
about Object Oriented Programming. It is tempt-
ing to reject the claims as hype."

Methods

A method is an explicit (often non-deterministic)
prescription for an activity, or set of activities, as
required by a selected approach for software devel-
opment. We must bear in mind that a method is not
a recipe that can be followed blindly. A method,
when applied to the righr problem and used by the
right people, will, with a high degree of proba-
bility and with a predictable amount of resources,
lead to a soiution of the problem. A technique is
the deterministic part of a method. The nofion of

method is of a hierarchical nature" This implies
that any method will rely on other methods (and
techniques) for the sub-problems identified by the
rnethod. If we take the top level view of rneth-
ods of software development, we arrive at what
is sometimes called a methodology (particularly in
the American literature). The latter can be viewed
as an approach to successfully run a software de-
velopment project, from the conception to the end.
Methodologies generally include a host of methods
and techniques that are brought together in a more
or less coherent framework. Various aspects of a
method can be identified"

o The way of thinking peculiar to the methotl;
the philosophy of the method.
The way of thinking must explain the ideas
and theoretical principles on which the prac-
tical techniques are based. It must give prac-
tical, usable definitions of the terms used in
the mettrod, and it must explain how to rec-
ognize the abstract phenomena it describes.

o The way of working of the method"
The way of working describes the way the
philosophy is translated into a set of prac-
tical techniques which assist in the analy-
sis, design, and implementation of software
systems. The working procedure should say
which techniques are relevant to which ac-
tivities of the software development process
(the pragmatics).

o The way of represenilng.
The way of representation describes the no-
tations of the documentation to be produced,
and at which stage of the development pro-
cess each document should be produced. It
should also say how the documentation is to
be organized. Each document must be fully



L4 XOOT'IC-- MAGAZINE September 1993

described. The formal defrnition of any ian-
guages it uses should be given.

Structured Programming

In the seventies the word 'structured' was much
in vogue. It stiilted with structured programming,
then came structured iuralysis and structued de-

sign. The word 'sfructured' became a synonym
for 'good'; it was a kind of hallmark. Often used

descriptions of structured programming were on
the level of representation.

r do not use gotos, or

o use those programming constructs that have

a single entry and a single exit.

These descriptions are more statemen{s about the
resulting program than statements about the way of
programming. (There were even people who wrote
'structured programs' by first writing the programs

with gotos and then removing these gotos after-
wards.) Over the years we have learned the essen-

tial aspects of structued programming, of which
the mentioned properties of programs (no gotcs)
are a result.

o Way of thinking.
A program is a fonnal text defining transfor-
mations from states into states. These states

can be described by predicates. Thus a pro-
gramming construct can thus be seen as a
predicate trans former.

c Way of working.
We use the predicates and their transfonna-
tions to find the (conect) program. Program
construction and correctness considerations
go hand in hand.

. Wqy of representation.
To write (conect) programs, we use those
programming conshucts, which realize the

ffansformations that have been recognized in
the way of working.

An important concept in the context of structured
program min g is fun c t i o na I (or p r o c e du r a l) ab s t r a c -

ilon. In the development of a program 'highJevel'
programming constructs (procedure calls) are used

to realize certain effects, iaid down in the pre- and
post-conditions of the constructs. The pre- and

post-conditions are then used as the specification
of a separate module: the function or procedure

declaration, the implementation of the 'high-level'

construct. in this way, we work on different lev-
els of abstraction. Information hiding and the use

of parameters have to guamntee that the function
(procedure) can be constructed independently of
fhe way it is used in a particular environment and

that its integration into a larger program unit may
be accomplished without knowledge of its inner
mechanisms (laid down in the body of the pro-
cedure). The module should communicate with
the outside world only through a well-defined rn-
terface. Of course, we had already before the
rise of structured programming the subroutine con-
sruct. But the subroutine is just an encapsula-
tion: a unit that contains one or more prograrnming
items, without the explicit intention nf information
hiding. The purpose of the use of subroutines was

not abstraction, but code sharing.

Data Abstraction

In structured programming the emphasrs is on the
abstraction of qctions. The next step is the ab-

straction with respect to data. what we need is
not only the possibility to abstract from the sim-
ple actions, but we must also be able to abstract
from the simple data in our progrtuns. This can

be done by bringing together in one module data

and the operations on the data: a type" The in-
terface is given by the name of the type and the
operations. The operations are specified try pre-
and postconditions (see above). The speciflcations
are the description of an abstract data rype, In the
program the values of the type can only be used
via the defined operations. The intemal represen-
tation of the values and the implementations of the
operations are encapsulated in an implementation
module for which information hiding is applied.

Thke for example a program in which sets of in-
tegers should play a role. In the program we use

these sets and the operations on them. The oper-
ations are defined by their pre- and postconditions
in terms of sets: (the speciflcation of) the abstract
dala type. In the implementation we use a known
data type, for example :r boolean array, and the

operations arc realized in terms of this data type.

The next step in the data abstraction idea is the
parameterization of the speciflcation. In this way
an abstract d.1rta sffucture is created. We can use

this data structure just as we can use an array in
a language like Pascal it is a generator for differ-
ent types by parameterizing it with existing types.
So, instead of the definition of the type 'set of in-



From Structured to Object-Oriented Programming

tegers', now the structure set is deflned, which
can be used in a type definition to define the type
set (integer) or set (character). etc.

Object-oriented programming

Now we have object oriented programming and
proponents suggest that it is the ullmate way of an-
aly zing, desi gnin g, implem entin g, and maintaining
complex systems. OOP is said to support modular-
ify and the reuse of software, and systems can eas-
ily be extended by using inheritance. But what is
OOP? The simple deflnition, one sometimes sees,
is: the use of objects, classes, and the inheritance
construction in the development of software. But
a class is like an abstract data type, and a variable
of an abstract data type is like an object. So. what
is new? New is the inheritance construction" But
are there no other aspects of OOP that make OOP
an attractive way of developing software systems?
To answer this question we must find the way of
thinking and the way of working for OOP.

The cenhal theme in the way of thinking is ttrat
(not necessarily concrete) entities in the 'real'
world are modeled as objecs [2]. Abstraction is
used to find the objects" Each object has a real
entity as its counterpart in the 'reaX' world. The
application domain plays an important role in this
modeiing process. For a PC the important prop-
erties in the world of electronic engineering are
quite different from the important properties in the
context of text processing. The entity in the real
world is the same, but the perception is different
for the two application domains.

This way of thinking has consequences that are not
always taken into account in the various object-
oriented approaches in the literature. A striking
exampie is the inheritance construction. One de-
fines, for example, an object like 'vehicle' and uses

this object - via inheritance - for the definition of
objects like'motorcycle' and'automobile','vehi-
cle' being the more general object. But in the real
world there is no entity that corresponds to the de-
fined object 'vehicle'. So, at the level of analysis,
finding the relevant objects, inheritance is of no
use. Inheritance can be used at the representation
level for sharing code. But in many object-oriented
approaches inheritance is introduced as the fea-
ture of object-oriented software development" And
this construction is then promoted to the level of
the way of thinking in statements like: "Object-
oriented software development is the use of inher-

itance in the ..." But when we define OOp as the
use of inheritance, we make the same mistrke as

when we define structured programming by forbid-
ding the goto"

In the way of working we can make use of the
way of working of stluctured programming (no-
tions like encapsulation, information hiding, zurd

data abstraction play an important role [3]), eom-
plemented with some new ingredients (like process
abstraction).

At the start of this section, the question was asked:
What is new in OOP? Now we know the answer:
New is the way of thinking. If you forget this new
way, you will walk on a way that is already known
for a long time, or you will get lost"

References

[1] G.S. Howard,
"Object Oriented Programming Explained",
Journal of Systems Management, July 1988

[2] INTOOM Lecture Notes, Method Overview.
Fhilips Research Laboratories, Information
and Software Technology, RWB-519-RE-
92024

t3l J.J. van Amstel,
" V'an g e s tru cture e rd naar obj e c t- g e o r i i: nt e e rd
programmeren" ,

Academic Service, Schoonhoven, 1990

n

Ir. J.J. van Amstel works at the department ln-
formation and Software Technology ot philips
Research Laboratories in Eindhoven. He is
rnember af the External Advisorv Board of
oofl.

15


