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The problems that arise from the integration of subsystems into complex, multi-
disciplinary embedded systems, are a potential obstruction for the expected,
exponential growth in embedded systems applications. Faults that occur be-
cause of the dynamic behavior of the integrated system are difficult to trace
back to individual subsystems or components. The Model-Based Diagnosis
(MBD) methodology offers a solution for the fault diagnosis of the integrated
system by inferring the health of a system from a compositional system model
and real-world measurements. In this article we present the initial results of our
MBD research as applied on the lithography systems of ASML. We explain our
methodology based on a modelling language LYDIA which is specifically being
developed for the purpose of MBD. Furthermore we discuss the results of our
first diagnosis test case.

Introduction by using expert systems, has disadvantages. The
mapping from symptoms to diagnosis is explicitly
coded in the software, which means that even a
As the exponential increase in hardwanginor design change of the system may require a
performance-per-cost ratio is expected to continygajor redesign of the diagnosis software. It also
the number of embedded systems is to increase g@ans that while trying to decrease system com-

cordingly. The associated complexity crisis is glexity, we actually increase it by adding a lot of
potential show stopper for the continued pervasidiagnosis software.

of embedded systems in our society. This is par-

ticularly true for complex, multi-disciplinary sys-a promising way of overcoming these problems is
tems that are integrated from multiple subsyster‘@@.apmy amodel-basedpproach to diagnosis. In
While these subsystems might function well sepgye Model-Based Diagnosis (MBD) approach [5],
rately, integrating them can cause unexpected fa““ﬁowledge about the system is expressed in terms
Because of the dynamic interaction b_etween these, compositional model. A generic fault diag-
subsystems, these faults take a ot of time and efffsis engine, using Al search algorithms, consults
to diagnose, let alone fix. this model during run-time, while tracking the sys-
tem. Because information about the system design
One of the solutions is to automate the fault diagn@;separated from the fault finding method, a design
sis of these integrated embedded systems. The clgange only requires a similar change in the model.

sical way of automated diagnosis e.g., by meamgis curbs the increase in complexity.
of application-specific code or, more generically,

1This work has been carried out as part of the TANGRAM project uriderresponsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry ohBmic Affairs under grant TSIT2026.
2This article was originally presented at the ASCI Conference 2004.
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Model-Based Diagnosis

Within the TANGRAM project [5], a multi-
university research project aimed at model-basB¢rgnosis is the process of finding differences be-
testing and diagnosis of multi-disciplinary embedween models and reality. Model-Based Diagnosis
ded systems, the MBD approach is applied to lithGBD), first suggested by Reiter [12] and contin-
graphy systems as produced by ASML. While tHéed by de Kleer, Mackworth and Reiter [4], is the
ever increasing performance of these chip manuf@ocess of finding faults in a system on the basis
turing systems actually provides us with the afor€f observations from reality and reasoning about a
mentioned exponential increase of the hardwaiodel of the system. Formally, model-based diag-
performance-per-cost ratio, these systems thegsis can be seen as finding faulty components that
selves are by no means free from the complex@yplain the difference between behavior predicted
crisis. Hence, MBD is seen as an important sol@y & model and behavior observed in reality.
tion to decrease the cost of design, integration and
operation of these systems. For example, consider an example of MBD using a
digital circuit, consisting of three inverters: A, B,

Despite recent advances in MBD [6, 10, 11, 13nd C (Figure 1). Letr = 1. Theny andz should
complex, multi-disciplinary systems as found iRe 1 as well. If observations indicate that= 0
ASML are currently beyond the state-of-the-ar@éndz = 1 then the diagnosis could be that com-
Furthermore, given an adequate MBD techniquePg@nent B is faulty. Another option is that A and C
subsequent problem is model specification, whiée faulty, as this also explains the symptoms. The
is a labor-intensive and error-prone process. WitHfiivial solution, A, B, and C all faulty, also explains
the TANGRAM project MBD research focuses of€ observations but is of no added value, as any

extension of MBD technology with respect to timesuperset o{ B} or {AC} explains the observations.
state and probability. A subset of{B} or {AC} does not. That is why

{B},{AC} can be called theninimalfault set. This

Our MBD approach is based on the modellinﬁiagnOSis can be formalized, using a logical model,

language kDiA (Language for sYstems DIAgno-2S follows.

sis) [7]. LyplA is model-based systems specifica-

tion language aimed at systems fault diagnosis and B
simulation using the same model. In this article

we present the initial results of our MBD research A y
as pursued in the TANGRAM project. We demon-

strate how IvDIA can be used for diagnosis in gen- W

eral. In addition, we describe how this methodology

has been applied in terms of a case study within the z

TANGRAM context. c

The article is organized as follows. In the first sefigure 1. Three-inverters example
tion we introduce the principles of MBD with an

example. Ir_1 the second section we prese_nt the I'Let h indicate thehealthof a component. Ih = 1
DIA mpdellmg language and accompanying toolt?1en the component is “healthy” and obeys cer-
including two examples on how to use these ©09%n behavioral rules. The three inverter example

for diagnosis. In the third section we present tlheas three components (A,B,C), so it has three such
case study and discuss the resulting model andrﬁ§ T

) : . . es:
diagnosis. In the final section we draw our conclu-
sions from this initial research.
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As the observations arev = 1,y = 0,z = 1, it Boolean equation (proposition), and all statemer
follows (applying the rule — ¢ < p + q): apply concurrently. Each variable, e.g.is a func-
tion of (continuous) time, i.ex(t). The time ar-

(ha+7%)-(hp+2) - (he¢+7) =1 (3) 9umentis omitted. All operators are functions th

operate on each time argument (i.e., element-w
This can be rewritten to DNF-form: data flow). Thus,

— - - = op(x) <=> for all t: op(x(t)) = true
hahphc + hahpT + hahcx + x opy <=>for all t: x(t) op y(t) = true

EBEC'T +hpzT =1
. i .. Roughly speaking, ¥DIA can be placed in the
This fgrmula reduces to the following prime ImpII"‘functional” category of the functional (equational
cants: vs. imperative (state-transition) dichotomy. It re
sembles synchronous languages [2], such as L
Tuow + gt = 1 tre [9] and Signal [8], with the major difference be
Thusfisfic: = 1 (A and C are faulty when: = 1) tions are asynchronous, i.e., signals (and events)
or hg = 1 (B is faulty whenz = 0).

nts

us-

ing the absence of synchronous time. Timed ac-

are

not sampled at regular time intervals. State tran-
sitions may also be timeless (cf. timed and immg-
diate transitions in timed Petri nets [1]), with only

Another possibility to calculate the faulty compog,q transitions that are enabled at the same time be-

nents is by using conflict sets. Applying the resoll-rhg synchronous. In this respectyia resembles
tion rule(p+¢q)-(r+g) — (p+r) and De Morgan’s

Laws, from equation (3) it follows:

a synchronous language with infinite clock resolu-

tion, which is implemented through a discrete-event
propagation scheme. Although based on a func-
- - - tional approach, many of therbiA models are ex-
(ha+hp) - (hp + ho) = pressed in a state-transition style as syntactic sugar.
(ha+hg)-(hg+hc) =0 The reason for this is that the description of some
(ha+hp) + (hp + he) =0 systems (e.g., state-machines) in a functional lan-

hahp + hphc =0 state-transition-oriented dialect offers a much mo

sohahp = 0, andhghc = 0 which meangAB} natural model.

and {BC} are conflict sets. Finding the minimal

fault set, or minimal conflicts, can be done usingombinational Operators

algorithms for the Hitting Set problem. This, of

course, also results in the sgt&8C} and{B}. In Apart from the usual operators, such=ast, -, /,
summary, in MBD of combinational systems the, and, or, not, >, <, >=, <=, si n, cos, tan,
model is solved forh using propositional logic. Insqrt, pow, | og, exp, max, m n, abs, etc., the
the next section we describe our tool for MBD.  derived operators include=, i f, i f - el se, de-

fined as:

Model-Based Diagnosis withLYDIA al=b <> 1 (a=b

LYDIA if (c) x <=> (! ¢) + x

In the following, we briefly present some of the ma- if (c) x else y <=> (¢ * x) + ((! ¢) *vy)
jor features of lyDIA. Due to space constraints we

only present those constructs that are used in the

sequel. For a comprehensive introduction to- Lwhere! , +, , are equivalent tmot , or , and, re-
DIA we refer to [7]. Each kDIA statement is a spectively.
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Time Operator systeminverter (x: bool, y: bool)

. . . . {
Time delay is described by ttadf t er function: t p = 1e-08
y = ( not x after t_p)
y = (x after delta default xO0) }

that defines a signal (variablgxhat lags behind the Example 2:
signalx according to

x(t—190), t>0; s .
= ’ ’ ystem cl ock (c: bool)
y(t) { 20, 0<t<s. ;
period = 1.0
The default clause is optional. c =( ( not ¢c) after period/ 2)
}

Apart from the above constructsyblA also fea-
tures state transition operators, the treatment E¥ample 3:

which, however, is beyond the scope of this article.
systemball (h: float,

v: float,
LYDIA tools g: float,

d_t: float,
Currently we have developed a number of tools that c: float)
operate on ¥DIA models. There is a¥bDIA com- .

. . h = (integrate(h,v,dt)
piler calledl ydi a that translates ¥DIA models after dt default 5.0)
into C source code for the purpose of simulation,or v = ((if (b) (-c * v)
into symptom-diagnosis lookup tables for the pur- el se

_ _ integrate(v,-g,dt))
pose of diagnosis. The latter tables are generated after dt default 0.0)

using propositional SAT solving and are consulted |, _ ((v < 0.0) and (h < 0.0))
by a diagnostic engine, callextot t y, that moni- exit = (tinme > 10.0)
tors the system’s input and output, and returns a list
of possible diagnoses, in order of probability. Cur- _ _
q function integrate (y: float,
rently the C compilation mode only works for mod- f: float
els that operate in the discrete time domain. A sec- dt: float) : float =
ond simulatol si mhas been developed which in- {
terprets and simulates continuous-timela mod- } integrate(y,f,dt) = (y +f » dt)

els.

Examples Diagnosis of inverter model

This section describes some basieola exam_.Considerthe inverter of the previous section, which

ples. The first kDIA system models an electronic, . . . . . .
. . : .?ﬁns time either inverts a Boolean signal if healthy,
inverter with a 10ns propagation delay, after which

y becomes the inverted af. The second example-, ' Stuck-at-zero, ifat fault. Thevibia model is
produces a clock signalwith a period of 1.0s. The 9VE" by:

last example simulates a bouncing ball with height _

h and velocityv. The velocity is reversed when SYStem!nverter (;‘] ggg: 1
the velocity and height are less than zero. The ve- y; bool )

locity and height are calculated using explicit first {

order Euler integration as specified by the function t_p = 1e-08
integrate y =if (h)
) ( !'x after t_p default false )
el se fal se
Example 1: }
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wherex, y denote input, output respectively, ahd model of the three-inverters example mentioned|in
denotes the so-called health variable. We can rilne first section:
this model withl si mand a data input file, which _
results in the following output: #include inverter. sys
systeminverter3 (w bool,
_ hA: bool ,
tinme: x: h:y: hB: bool ,
0. 00000000 1 1 O hC:. bool ,
1.00000000 0 1 O y: bool,
1.00000001 0 1 1 z: bool)
2.00000000 1 0 O {
3.00000000 0 0 O probability ( hA = false ) = 0.01
probability ( hB = false ) = 0.01
The first column indicates the simulation time, the ~ProPapility ( hC =false ) = 0.01
second and third column are the input variables jpnyerter (w, hA x)
which are repeated from the input file. The resultof inverter ( x, hB, y)
the simulation is shown in the last column and cor- inverter ( x, hC 2)
responds to the expected outputjs only t r ue,
10ns after the moment the inverter is healthy aIAd . . . .
. . diagnostic approach based on mere simulatipn
the input isf al se. . .
can no longer be used to diagnose this system pe-
o _ _ cause, as explained earlier, one combination of |n-
It is instructive to note that the functional charactgut and outputs can be caused by different types of
of LYDIA allows us to usé si msimulator as a lim- t4jjyres. The simulator can only solve single equa-
ited diagnostic engine. Instead of providingi M tions for only one solution variable. To solve this
with x andh we provide it with the observationsyeneral combinational problem we use the special-
x andy from which it deduce, as shown below. jzeq diagnostic engingcot t y, mentioned in Sec-
TheUsymbol indicates an unknown value. tion 2, which can handle these combinatorics. At
this point, our diagnosis algorithm does not allow

time: xiys b time del n ntly in the following we con-
0.00000000 1 0 U _de d::-]ay. Co sequ§ Iy ith € cr)m? g We co
1.00000000 0 0 U sider the inverter model without t t_er state- _
1.00000001 0 1 1 ment. To make the model more generic and compli-
2.00000000 1 0 O ant with our logical three-inverters model, we also
2.00000001 1 0 U leave out the specific stuck-at-zero fault mode. To
3.00000000 0 0 U low LYDIA t K with fail babilit

3 00000001 0 O O allow o work with failure probabilities, we

introduce the keyworgr obabi | i t y, to indicate

We observe that a diagnosis for this system is ordh health variable that has a certain probability of b

possible in two out of four cases, namely only when

the output of a healthy system, with a delay of 10ns;_ . . : .

P .. .y y y mentioned in the first sectiom=1, y=0 andz=1.

does not coincide with the output of an unhealthP/ e result of the diaanostic enaine is aiven by:
system. Thus, for this system, only when the outpultnI 9 9 g y:
is true can we distinguish between lrthat is true (0. 97049200) hA=true hB=fal se hC=true
or false. (0.00980295) hA=fal se hB=fal se hC=true

(0.00980295) hA=false hB=true hC=false

(0.00980295) hA=true hB=false hC=fal se

Diagnosis of three-inverters model (9.90197e-05) hA=fal se hB=fal se hC=fal se

|r¥g false or true. As an example, we run the di-
agnostic engine with the input/output combinatian

D
]

Of course, the real goals for usingbiA for MBD The results correspond to the fault cases that ¢an

is diagnosis of far more complex, real-life systeni¥e derived from the minimal fault s€iB},{AC}

than the one mentioned in the previous section. @e calculated in the first section. The cases w
perform diagnosis of these systems we can compdose faulty inverters all have the same probabilit
models out of simpler components. To illustrateecause all three inverters have the same individ
this, we expand our initial model of one inverter to failure probability. From the results it is also clea

December 2005

th

)\
ual

\r




that the trivial case of three failing inverters is ex-
tremely unlikely.

A current disadvantage of usisgot t y instead of

| si mis the lack of support for time and state. As S

mentioned in the introduction, extending the diag- / \

nostic engine to incorporate this, is one of the goals . v v .

of our ongoing research. ;T Modell ‘- Model2 -
sin ulation engihne diagnostic engie

Modelling case study

Figure 2: Connection between the simulation (M1) and
Methodology diagnosis (M2) model of target system.

While the ultimate goal of our research is to diags, lati del
nose lithography systems in the real world, our cup''-'ation Mode

rent goal is to gain experience in the specificatigg present, a laser sub-system is chosen as a case
of real-world models and our diagnosis algorithmgtudy for the TANGRAM project. The purpose of
For thI.S we need as few uncertainties as pos&%s system is to provide the lithography scanner
which is why currently we only apply our diagnosi§ith an exact dose of light energy to expose the
on the simulation models and not on the real systeflfar  The dose is provided in the form of laser
Consequently, we proceed according to the follow;,se Besides the laser, the model for this system
ing approach. We derive a simulation mgdel M1 Qiso includes the interface with the scanner and the
the system under study. Its purpose is to: laser control software located at the scanner side.

L document our understanglmg of_the ASML SY3% build this model of the laser system both a top-
tems including the possible failure modes (%Iown and bottom-up approach is followed. In the
each componenF; _ o top-down approach we model the entire structure of

2. serve as a starting point for the derivation ofe \yhole system. We start out by interfacing with
diagnosis model M2. empty LYDIA systems and gradually add function-

ality and fault modes. In the bottom-up approach

Our current experimental setup is shown in Figye choose a specific sub-system, of which the ba-

ure 2. In this figure our simulation model M1 is oRjc functionality is implemented in avibiA model.

the left. We can insert failures fin this model, Fyrthermore, we also investigate known or interest-

which we can then diagnose’tusing our diag- ing failure modes of this sub-system and introduce

nostic model M2. Ideally, Tshould equal Ffor all health variables to simulate this behavior. An ex-

(fault) scenarios. ample of this approach is the shutter module. The

shutter can be thought of as part of the optical in-

In the current early stage of our research these meeiface that blocks or passes on the light emitted by

els are generally not equal, because, as mentionethim laser. Beside this nominal functionality we also

the third section, while we have no problesimu- implemented the following faulty behavior. A nom-

lating models with time and state, we are only abiaal shutter would start opening when the “open”
to diagnosecombinational models. As we makeommand is given, and would only report that it is
progress, our diagnostic model M2 will evolve ifully opened when done. A fault mode of this shut-
the direction of M1. In the following we describder, which has been known to exist in an earlier de-

M1 and the subsequent derivation of M2. sign, is that it would not wait to be fully opened,
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but would immediately return the “open” status aPiagnostic model

ter the command has been given. The following L

DIA code implements both the nominal and fault bés explained earlier, due to the limitation of ou

havior.

% common. sys contains the clip and
% | atch functions
#i ncl ude common. sys

system shutter _ML (
% conmmands
cnd_open: bool, cnd_cl ose: bool,
% heal th paraneters

h_open: bool, h_close: bool,

% ight coming in and goi ng out
light_in: float, light_out: float,
% st at us

sts_open: bool, sts_close: bool)

% | atch the node based on the command
latch (cnmd_cl ose, cnd_open, nobde_open)
latch (cnmd_open, cnd_cl ose, node_cl ose)

sts_open = (h_open and (pos = 0.0))
or (!h_open and node_open)

sts_close = (h_close and (pos = SHUT))
or (!h_close and node_cl ose)

step = if (node_cl ose) (CONST_STEP)

el se
(if (node_open) (-CONST_STEP)
else (0.0))

% integrate and clip position

% between 0.0 and SHUT

pos clip ( 0.0, integrate (SHUT,
pos, step, TIME_STEP ), SHUT )

% cal cul ate beam attenuation
i ght _out ((SHUT - pos) = light_in)

to convert M1 to a model M2 specifically suited fo

diagnostic algorithm, the diagnostic model for th

current experiments is a simplified version of our
simulation model. Again, we will use the shutte

model as an example. The shutter model makes
of time, as it takes time to open or close, and us
state, as it has internal modg®ys, node_open

andnode_cl ose, which determine the shutter po
sition and whether it is opening or closing. The a
sociated time and state variables prohibit our com

use

es

national diagnosis approach and therefore we have

diagnosis.

In our conversion from M1 to M2 we take the fol
lowing approach:

1. isolate the equations with health paramete
on the condition that they are combinationg
For each health parameter we also introduce
probability of being false or true;

re-use those (auxiliary) equations from M1 th
are required to solve the isolated, health eqy
tions.

2.

Thus our diagnostic approach includes simulati

steps on our shutter model is as follows:

system shutter_M

{
% conbi nati onal heal th equations
probability (h_open = false) =0.01
probability (h_close = false) =0.01
sts_open = (h_open and (pos = 0.0))

or (!h_open and node_open)

In this model the shutter latches the open or close
command (pulse) to an internal mode (level). De-
pending on this mode the shutter position is either
decreased (opened) or increased (closed). ™ie L
DIA systemd at ch, cl i p andi nt egr at e are
defined in the includedYDIA file comon. sys.
The st s_open andsts_cl ose status signals
are based on the shutter position if the sensors are
healthy, and otherwise simply by the internal mode.
The latter corresponds to the non-nominal behavior
of the shutter.

sts_cl ose (h_cl ose and (pos = SHUT)
or (!h_close and node_cl ose)

% auxiliary equations
latch (cmd_cl ose, cnd_open,
|latch (cnd_open, cnd_cl ose,

node_open)
node_cl ose)

step = if (mode_cl ose) (CONST_STEP)
el se
(i f (node_open) (- CONST_STEP)
else (0.0))

pos clip ( 0.0,

pos, step,

integrate (SHUT,
TIVE_STEP ), SHUT )
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We use the M2 model to diagnose our M1 model 8.11 0 1 1 1 1 1 0.9801
with the setup shown in Figure 2. In this setup 9-00 0 0 0 1 0 0 0.9900
| si msimulates M1 as well as the auxiliary equa- :01°0000010.9801
. L _ 10.00 01 1 0 1 0 0.9900
tions of M2. The combinational health equations of 15 91 0 0 0 0 0 1 0.9801
M2 are compiled into a symptom-diagnosis lookup 12.00 0 1 1 0 1 0 0. 9900
table and used bycot t y for the actual diagnosis, 13 g; 8 2 (i 8 (1) é 8- gggé
as explained in the second section. 129130111110 9801
13.00 0 0 1 1 1 1 0.9801
Diagnostic test results The second columh_open_ML gives the inserted

sensor health of our simulation model. The seventh
In the next experiment we use the followeolumn gives the diagnosed healthopen_M as
ing values for the constants: SHUT=1.0, inferred from M2 and the last column the prob-
SHUTTER_STEP=0.1 andTl ME_STEP=0.01. As apility of this diagnosis. From the first part of
our models have a symmetric description for the results we can see thgtot t y correctly pre-
open and close sensor, the simulation and diagnasitss that the sensor is healthy. The second part
results for both sensors are also symmetric. Thegows that a correct diagnosis is only performed
fore we limit our discussion to the open sensor. {hen the( pos=0. 0) expression in the fifth col-
the first 6.51s we simulate a healthy open sensgin is unequal to thet s_open variable in the
The first test starts at 1.00s and we allow the shutigxth column. In other words, when the output of
to fully open, after which we close it again at 2.0%he healthy shutter, for whicht s_open is only
The second run starts at 3.00s but now we interryfiie if pos=0.0, does not coincide with that of the
the shutter at 3.01s, before it can open completalyhealthy sensor, for whickt s_open is only true
At 5.0 we do the same but after the interrupt wWe node_open is true. This corresponds with the
open it again. In the second half¥t 7.00s ) we results from the diagnosis of the single inverter ex-
perform the same tests, only now with an unhealtBynple in the first section.
sensor. The experiment yields the following results:

time: Conclusions
| h_open_ML
| | cnd_open In this article we have presented our MBD approach
I | | node_open e .
| | | | (pos=0.0): and research objectives as pursued in the TAN-
| | | | | sts_open: GRAM project. We have also demonstrated how to
| | 11 | | h_open_me: use the modelling languagerbiA in this approach.
: : : : I : I Fmbab' lity: The examples show that we can already model and
1 2345678 simulate the basic functionality of a realistic subsys-
tem. Furthermore we have shown how we can make
0.001 0000 10.9801 these models suited for combinational diagnosis. In
1.00 11100 10.9900 the coming period we will put more emphasis on the
1.11 1111 1 1 0.9801 : : - . :
2001001110 9900 diagnosis of existing fault scenarios. From this we
2.0110000 1 0.9801 expect to learn more about how to deal with the oc-
300111001 0.9900 currence of time and state behavior in our diagnosis
3.0110000 1 0.9801
models.
5,001 1100 10.9900
5.01 10000 1 0.9801
5.02 11100 1 0.9900
5131111 1 1 0.9801 Acknowledgements
6.00 101111 0.9801
6.50 100111 0.9900
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