
A model-based approach to fault diagnosis
of embedded systems1,2

Jurryt Pietersma, Arjan J.C. van Gemund and Andre Bos

The problems that arise from the integration of subsystems into complex, multi-
disciplinary embedded systems, are a potential obstruction for the expected,
exponential growth in embedded systems applications. Faults that occur be-
cause of the dynamic behavior of the integrated system are difficult to trace
back to individual subsystems or components. The Model-Based Diagnosis
(MBD) methodology offers a solution for the fault diagnosis of the integrated
system by inferring the health of a system from a compositional system model
and real-world measurements. In this article we present the initial results of our
MBD research as applied on the lithography systems of ASML. We explain our
methodology based on a modelling language LYDIA which is specifically being
developed for the purpose of MBD. Furthermore we discuss the results of our
first diagnosis test case.

Introduction

As the exponential increase in hardware
performance-per-cost ratio is expected to continue,
the number of embedded systems is to increase ac-
cordingly. The associated complexity crisis is a
potential show stopper for the continued pervasion
of embedded systems in our society. This is par-
ticularly true for complex, multi-disciplinary sys-
tems that are integrated from multiple subsystems.
While these subsystems might function well sepa-
rately, integrating them can cause unexpected faults.
Because of the dynamic interaction between these
subsystems, these faults take a lot of time and effort
to diagnose, let alone fix.

One of the solutions is to automate the fault diagno-
sis of these integrated embedded systems. The clas-
sical way of automated diagnosis e.g., by means
of application-specific code or, more generically,

by using expert systems, has disadvantages. The
mapping from symptoms to diagnosis is explicitly
coded in the software, which means that even a
minor design change of the system may require a
major redesign of the diagnosis software. It also
means that while trying to decrease system com-
plexity, we actually increase it by adding a lot of
diagnosis software.

A promising way of overcoming these problems is
to apply amodel-basedapproach to diagnosis. In
the Model-Based Diagnosis (MBD) approach [5],
knowledge about the system is expressed in terms
of a compositional model. A generic fault diag-
nosis engine, using AI search algorithms, consults
this model during run-time, while tracking the sys-
tem. Because information about the system design
is separated from the fault finding method, a design
change only requires a similar change in the model.
This curbs the increase in complexity.

1This work has been carried out as part of the TANGRAM project underthe responsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

2This article was originally presented at the ASCI Conference 2004.

December 2005 25

Within the TANGRAM project [5], a multi-
university research project aimed at model-based
testing and diagnosis of multi-disciplinary embed-
ded systems, the MBD approach is applied to litho-
graphy systems as produced by ASML. While the
ever increasing performance of these chip manufac-
turing systems actually provides us with the afore-
mentioned exponential increase of the hardware
performance-per-cost ratio, these systems them-
selves are by no means free from the complexity
crisis. Hence, MBD is seen as an important solu-
tion to decrease the cost of design, integration and
operation of these systems.

Despite recent advances in MBD [6, 10, 11, 13]
complex, multi-disciplinary systems as found in
ASML are currently beyond the state-of-the-art.
Furthermore, given an adequate MBD technique, a
subsequent problem is model specification, which
is a labor-intensive and error-prone process. Within
the TANGRAM project MBD research focuses on
extension of MBD technology with respect to time,
state and probability.

Our MBD approach is based on the modelling
language LYDIA (Language for sYstems DIAgno-
sis) [7]. LYDIA is model-based systems specifica-
tion language aimed at systems fault diagnosis and
simulation using the same model. In this article
we present the initial results of our MBD research
as pursued in the TANGRAM project. We demon-
strate how LYDIA can be used for diagnosis in gen-
eral. In addition, we describe how this methodology
has been applied in terms of a case study within the
TANGRAM context.

The article is organized as follows. In the first sec-
tion we introduce the principles of MBD with an
example. In the second section we present the LY-
DIA modelling language and accompanying tools,
including two examples on how to use these tools
for diagnosis. In the third section we present the
case study and discuss the resulting model and its
diagnosis. In the final section we draw our conclu-
sions from this initial research.

Model-Based Diagnosis

Diagnosis is the process of finding differences be-
tween models and reality. Model-Based Diagnosis
(MBD), first suggested by Reiter [12] and contin-
ued by de Kleer, Mackworth and Reiter [4], is the
process of finding faults in a system on the basis
of observations from reality and reasoning about a
model of the system. Formally, model-based diag-
nosis can be seen as finding faulty components that
explain the difference between behavior predicted
by a model and behavior observed in reality.

For example, consider an example of MBD using a
digital circuit, consisting of three inverters: A, B,
and C (Figure 1). Letw = 1. Theny andz should
be 1 as well. If observations indicate thaty = 0
and z = 1 then the diagnosis could be that com-
ponent B is faulty. Another option is that A and C
are faulty, as this also explains the symptoms. The
trivial solution, A, B, and C all faulty, also explains
the observations but is of no added value, as any
superset of{B} or {AC} explains the observations.
A subset of{B} or {AC} does not. That is why
{B},{AC} can be called theminimal fault set. This
diagnosis can be formalized, using a logical model,
as follows.

x

A

B

C

w

z

y

Figure 1: Three-inverters example

Let h indicate thehealthof a component. Ifh = 1
then the component is “healthy” and obeys cer-
tain behavioral rules. The three inverter example
has three components (A,B,C), so it has three such
rules:

hA → x = w

hB → y = x

hC → z = x

26 XOOTIC MAGAZINE

As the observations are:w = 1, y = 0, z = 1, it
follows (applying the rulep → q ⇔ p + q):

(hA + x) · (hB + x) · (hC + x) = 1 (3)

This can be rewritten to DNF-form:

hAhBhC + hAhBx + hAhCx +

hBhCx + hBx = 1

This formula reduces to the following prime impli-
cants:

hAhCx + hBx = 1

ThushAhC = 1 (A and C are faulty whenx = 1)
or hB = 1 (B is faulty whenx = 0).

Another possibility to calculate the faulty compo-
nents is by using conflict sets. Applying the resolu-
tion rule(p+q)·(r+q) → (p+r) and De Morgan’s
Laws, from equation (3) it follows:

(hA + hB) · (hB + hC) = 1

(hA + hB) · (hB + hC) = 0

(hA + hB) + (hB + hC) = 0

hAhB + hBhC = 0

sohAhB = 0, andhBhC = 0 which means{AB}
and {BC} are conflict sets. Finding the minimal
fault set, or minimal conflicts, can be done using
algorithms for the Hitting Set problem. This, of
course, also results in the sets{AC} and{B}. In
summary, in MBD of combinational systems the
model is solved forh using propositional logic. In
the next section we describe our tool for MBD.

Model-Based Diagnosis withLYDIA

LYDIA

In the following, we briefly present some of the ma-
jor features of LYDIA . Due to space constraints we
only present those constructs that are used in the
sequel. For a comprehensive introduction to LY-
DIA we refer to [7]. Each LYDIA statement is a

Boolean equation (proposition), and all statements
apply concurrently. Each variable, e.g.,x is a func-
tion of (continuous) time, i.e.,x(t). The time ar-
gument is omitted. All operators are functions that
operate on each time argument (i.e., element-wise
data flow). Thus,

op(x) <=> for all t: op(x(t)) = true
x op y <=> for all t: x(t) op y(t) = true

Roughly speaking, LYDIA can be placed in the
“functional” category of the functional (equational)
vs. imperative (state-transition) dichotomy. It re-
sembles synchronous languages [2], such as Lus-
tre [9] and Signal [8], with the major difference be-
ing the absence of synchronous time. Timed ac-
tions are asynchronous, i.e., signals (and events) are
not sampled at regular time intervals. State tran-
sitions may also be timeless (cf. timed and imme-
diate transitions in timed Petri nets [1]), with only
the transitions that are enabled at the same time be-
ing synchronous. In this respect, LYDIA resembles
a synchronous language with infinite clock resolu-
tion, which is implemented through a discrete-event
propagation scheme. Although based on a func-
tional approach, many of the LYDIA models are ex-
pressed in a state-transition style as syntactic sugar.
The reason for this is that the description of some
systems (e.g., state-machines) in a functional lan-
guage sometimes proves awkward, where a more
state-transition-oriented dialect offers a much more
natural model.

Combinational Operators

Apart from the usual operators, such as=, +, -, /,

*, and, or, not, >, <, >=, <=, sin, cos, tan,
sqrt, pow, log, exp, max, min, abs, etc., the
derived operators include!=, if, if-else, de-
fined as:

a != b <=> ! (a = b)

if (c) x <=> (! c) + x

if (c) x else y <=> (c * x) + ((! c) * y)

where!, +, *, are equivalent tonot, or, and, re-
spectively.

December 2005 27

Time Operator

Time delay is described by theafter function:

y = (x after delta default x0)

that defines a signal (variable)y that lags behind the
signalx according to

y(t) =

{

x(t − δ), t ≥ δ;
x0, 0 ≤ t < δ.

The default clause is optional.

Apart from the above constructs, LYDIA also fea-
tures state transition operators, the treatment of
which, however, is beyond the scope of this article.

LYDIA tools

Currently we have developed a number of tools that
operate on LYDIA models. There is a LYDIA com-
piler calledlydia that translates LYDIA models
into C source code for the purpose of simulation, or
into symptom-diagnosis lookup tables for the pur-
pose of diagnosis. The latter tables are generated
using propositional SAT solving and are consulted
by a diagnostic engine, calledscotty, that moni-
tors the system’s input and output, and returns a list
of possible diagnoses, in order of probability. Cur-
rently the C compilation mode only works for mod-
els that operate in the discrete time domain. A sec-
ond simulatorlsim has been developed which in-
terprets and simulates continuous-time LYDIA mod-
els.

Examples

This section describes some basic LYDIA exam-
ples. The first LYDIA system models an electronic
inverter with a 10ns propagation delay, after which
y becomes the inverted ofx. The second example
produces a clock signalc with a period of 1.0s. The
last example simulates a bouncing ball with height
h and velocityv. The velocity is reversed when
the velocity and height are less than zero. The ve-
locity and height are calculated using explicit first
order Euler integration as specified by the function
integrate.

Example 1:

system inverter (x: bool, y: bool)
{

t_p = 1e-08
y = (not x after t_p)

}

Example 2:

system clock (c: bool)
{

period = 1.0
c = ((not c) after period / 2)

}

Example 3:

system ball (h: float,
v: float,
g: float,
d_t: float,
c: float)

{
h = (integrate(h,v,dt)

after dt default 5.0)
v = ((if (b) (-c * v)

else
integrate(v,-g,dt))
after dt default 0.0)

b = ((v < 0.0) and (h < 0.0))
exit = (time > 10.0)

}

function integrate (y: float,
f: float,
dt: float) : float =

{
integrate(y,f,dt) = (y + f * dt)

}

Diagnosis of inverter model

Consider the inverter of the previous section, which
this time either inverts a Boolean signal if healthy,
or is stuck-at-zero, if at fault. The LYDIA model is
given by:

system inverter (x: bool,
h: bool,
y: bool)

{
t_p = 1e-08
y = if (h)

(!x after t_p default false)
else false

}

28 XOOTIC MAGAZINE

wherex, y denote input, output respectively, andh
denotes the so-called health variable. We can run
this model withlsim and a data input file, which
results in the following output:

time: x: h: y:
0.00000000 1 1 0
1.00000000 0 1 0
1.00000001 0 1 1
2.00000000 1 0 0
3.00000000 0 0 0

The first column indicates the simulation time, the
second and third column are the input variables
which are repeated from the input file. The result of
the simulation is shown in the last column and cor-
responds to the expected output,y is only true,
10ns after the moment the inverter is healthy and
the input isfalse.

It is instructive to note that the functional character
of LYDIA allows us to uselsim simulator as a lim-
ited diagnostic engine. Instead of providinglsim
with x andh we provide it with the observations
x andy from which it deducesh, as shown below.
TheU symbol indicates an unknown value.

time: x: y: h:
0.00000000 1 0 U
1.00000000 0 0 U
1.00000001 0 1 1
2.00000000 1 0 0
2.00000001 1 0 U
3.00000000 0 0 U
3.00000001 0 0 0

We observe that a diagnosis for this system is only
possible in two out of four cases, namely only when
the output of a healthy system, with a delay of 10ns,
does not coincide with the output of an unhealthy
system. Thus, for this system, only when the output
is true can we distinguish between anh that is true
or false.

Diagnosis of three-inverters model

Of course, the real goals for using LYDIA for MBD
is diagnosis of far more complex, real-life systems
than the one mentioned in the previous section. To
perform diagnosis of these systems we can compose
models out of simpler components. To illustrate
this, we expand our initial model of one inverter to a

model of the three-inverters example mentioned in
the first section:

#include inverter.sys
system inverter3 (w: bool,

hA: bool,
hB: bool,
hC: bool,
y: bool,
z: bool)

{
probability (hA = false) = 0.01
probability (hB = false) = 0.01
probability (hC = false) = 0.01

inverter (w, hA, x)
inverter (x, hB, y)
inverter (x, hC, z)

}

A diagnostic approach based on mere simulation
can no longer be used to diagnose this system be-
cause, as explained earlier, one combination of in-
put and outputs can be caused by different types of
failures. The simulator can only solve single equa-
tions for only one solution variable. To solve this
general combinational problem we use the special-
ized diagnostic enginescotty, mentioned in Sec-
tion 2, which can handle these combinatorics. At
this point, our diagnosis algorithm does not allow
time delay. Consequently in the following we con-
sider the inverter model without theafter state-
ment. To make the model more generic and compli-
ant with our logical three-inverters model, we also
leave out the specific stuck-at-zero fault mode. To
allow LYDIA to work with failure probabilities, we
introduce the keywordprobability, to indicate
a health variable that has a certain probability of be-
ing false or true. As an example, we run the di-
agnostic engine with the input/output combination
mentioned in the first section:w=1, y=0 andz=1.
The result of the diagnostic engine is given by:

(0.97049200) hA=true hB=false hC=true
(0.00980295) hA=false hB=false hC=true
(0.00980295) hA=false hB=true hC=false
(0.00980295) hA=true hB=false hC=false
(9.90197e-05) hA=false hB=false hC=false

The results correspond to the fault cases that can
be derived from the minimal fault set{B},{AC}
as calculated in the first section. The cases with
two faulty inverters all have the same probability
because all three inverters have the same individual
failure probability. From the results it is also clear

December 2005 29

that the trivial case of three failing inverters is ex-
tremely unlikely.

A current disadvantage of usingscotty instead of
lsim is the lack of support for time and state. As
mentioned in the introduction, extending the diag-
nostic engine to incorporate this, is one of the goals
of our ongoing research.

Modelling case study

Methodology

While the ultimate goal of our research is to diag-
nose lithography systems in the real world, our cur-
rent goal is to gain experience in the specification
of real-world models and our diagnosis algorithms.
For this we need as few uncertainties as possible,
which is why currently we only apply our diagnosis
on the simulation models and not on the real system.
Consequently, we proceed according to the follow-
ing approach. We derive a simulation model M1 of
the system under study. Its purpose is to:

1. document our understanding of the ASML sys-
tems including the possible failure modes of
each component;

2. serve as a starting point for the derivation of a
diagnosis model M2.

Our current experimental setup is shown in Fig-
ure 2. In this figure our simulation model M1 is on
the left. We can insert failures (h) in this model,
which we can then diagnose (h’) using our diag-
nostic model M2. Ideally, h’ should equal hfor all
(fault) scenarios.

In the current early stage of our research these mod-
els are generally not equal, because, as mentioned in
the third section, while we have no problemsimu-
lating models with time and state, we are only able
to diagnosecombinational models. As we make
progress, our diagnostic model M2 will evolve in
the direction of M1. In the following we describe
M1 and the subsequent derivation of M2.

Model 1 Model 2
h h’

x x

y y

System

sim ulation engine diagnostic engine

Figure 2: Connection between the simulation (M1) and
diagnosis (M2) model of target system.

Simulation model

At present, a laser sub-system is chosen as a case
study for the TANGRAM project. The purpose of
this system is to provide the lithography scanner
with an exact dose of light energy to expose the
wafer. The dose is provided in the form of laser
pulses. Besides the laser, the model for this system
also includes the interface with the scanner and the
laser control software located at the scanner side.

To build this model of the laser system both a top-
down and bottom-up approach is followed. In the
top-down approach we model the entire structure of
the whole system. We start out by interfacing with
empty LYDIA systems and gradually add function-
ality and fault modes. In the bottom-up approach
we choose a specific sub-system, of which the ba-
sic functionality is implemented in a LYDIA model.
Furthermore, we also investigate known or interest-
ing failure modes of this sub-system and introduce
health variables to simulate this behavior. An ex-
ample of this approach is the shutter module. The
shutter can be thought of as part of the optical in-
terface that blocks or passes on the light emitted by
the laser. Beside this nominal functionality we also
implemented the following faulty behavior. A nom-
inal shutter would start opening when the “open”
command is given, and would only report that it is
fully opened when done. A fault mode of this shut-
ter, which has been known to exist in an earlier de-
sign, is that it would not wait to be fully opened,

30 XOOTIC MAGAZINE

but would immediately return the “open” status af-
ter the command has been given. The following LY-
DIA code implements both the nominal and fault be-
havior.

% common.sys contains the clip and
% latch functions
#include common.sys

system shutter_M1 (
% commands
cmd_open: bool, cmd_close: bool,

% health parameters
h_open: bool, h_close: bool,

%light coming in and going out
light_in: float, light_out: float,

% status
sts_open: bool, sts_close: bool)

{
% latch the mode based on the command
latch (cmd_close, cmd_open, mode_open)
latch (cmd_open, cmd_close, mode_close)

sts_open = (h_open and (pos = 0.0))
or (!h_open and mode_open)

sts_close = (h_close and (pos = SHUT))
or (!h_close and mode_close)

step = if (mode_close) (CONST_STEP)
else
(if (mode_open) (-CONST_STEP)
else (0.0))

% integrate and clip position
% between 0.0 and SHUT
pos = clip (0.0, integrate (SHUT,

pos, step, TIME_STEP), SHUT)

% calculate beam attenuation
light_out = ((SHUT - pos) * light_in)

}

In this model the shutter latches the open or close
command (pulse) to an internal mode (level). De-
pending on this mode the shutter position is either
decreased (opened) or increased (closed). The LY-
DIA systemslatch, clip andintegrate are
defined in the included LYDIA file common.sys.
The sts_open and sts_close status signals
are based on the shutter position if the sensors are
healthy, and otherwise simply by the internal mode.
The latter corresponds to the non-nominal behavior
of the shutter.

Diagnostic model

As explained earlier, due to the limitation of our
diagnostic algorithm, the diagnostic model for the
current experiments is a simplified version of our
simulation model. Again, we will use the shutter
model as an example. The shutter model makes use
of time, as it takes time to open or close, and uses
state, as it has internal modes,pos, mode_open
andmode_close, which determine the shutter po-
sition and whether it is opening or closing. The as-
sociated time and state variables prohibit our combi-
national diagnosis approach and therefore we have
to convert M1 to a model M2 specifically suited for
diagnosis.

In our conversion from M1 to M2 we take the fol-
lowing approach:

1. isolate the equations with health parameters,
on the condition that they are combinational.
For each health parameter we also introduce its
probability of being false or true;

2. re-use those (auxiliary) equations from M1 that
are required to solve the isolated, health equa-
tions.

Thus our diagnostic approach includes simulation
next to diagnosis. The result of applying these two
steps on our shutter model is as follows:

system shutter_M2
{

% combinational health equations
probability (h_open = false) =0.01
probability (h_close = false) =0.01

sts_open = (h_open and (pos = 0.0))
or (!h_open and mode_open)

sts_close = (h_close and (pos = SHUT)
or (!h_close and mode_close)

% auxiliary equations
latch (cmd_close, cmd_open, mode_open)
latch (cmd_open, cmd_close, mode_close)

step = if (mode_close) (CONST_STEP)
else

(if (mode_open) (-CONST_STEP)
else (0.0))

pos = clip (0.0, integrate (SHUT,
pos, step, TIME_STEP), SHUT)

}

December 2005 31

We use the M2 model to diagnose our M1 model
with the setup shown in Figure 2. In this setup
lsim simulates M1 as well as the auxiliary equa-
tions of M2. The combinational health equations of
M2 are compiled into a symptom-diagnosis lookup
table and used byscotty for the actual diagnosis,
as explained in the second section.

Diagnostic test results

In the next experiment we use the follow-
ing values for the constants: SHUT=1.0,
SHUTTER_STEP=0.1 andTIME_STEP=0.01. As
our models have a symmetric description for the
open and close sensor, the simulation and diagnosis
results for both sensors are also symmetric. There-
fore we limit our discussion to the open sensor. In
the first 6.51s we simulate a healthy open sensor.
The first test starts at 1.00s and we allow the shutter
to fully open, after which we close it again at 2.0s.
The second run starts at 3.00s but now we interrupt
the shutter at 3.01s, before it can open completely.
At 5.0 we do the same but after the interrupt we
open it again. In the second half (t≥ 7.00s) we
perform the same tests, only now with an unhealthy
sensor. The experiment yields the following results:

time:
| h_open_M1:
| | cmd_open:
| | | mode_open:
| | | | (pos=0.0):
| | | | | sts_open:
| | | | | | h_open_M2:
| | | | | | | probability:
| | | | | | | |
1 2 3 4 5 6 7 8

0.00 1 0 0 0 0 1 0.9801
1.00 1 1 1 0 0 1 0.9900
1.11 1 1 1 1 1 1 0.9801
2.00 1 0 0 1 1 1 0.9900
2.01 1 0 0 0 0 1 0.9801
3.00 1 1 1 0 0 1 0.9900
3.01 1 0 0 0 0 1 0.9801
5.00 1 1 1 0 0 1 0.9900
5.01 1 0 0 0 0 1 0.9801
5.02 1 1 1 0 0 1 0.9900
5.13 1 1 1 1 1 1 0.9801
6.00 1 0 1 1 1 1 0.9801
6.50 1 0 0 1 1 1 0.9900
6.51 1 0 0 0 0 1 0.9801

8.00 0 1 1 0 1 0 0.9900

8.11 0 1 1 1 1 1 0.9801
9.00 0 0 0 1 0 0 0.9900
9.01 0 0 0 0 0 1 0.9801

10.00 0 1 1 0 1 0 0.9900
10.01 0 0 0 0 0 1 0.9801
12.00 0 1 1 0 1 0 0.9900
12.01 0 0 0 0 0 1 0.9801
12.02 0 1 1 0 1 0 0.9900
12.13 0 1 1 1 1 1 0.9801
13.00 0 0 1 1 1 1 0.9801

The second columnh_open_M1 gives the inserted
sensor health of our simulation model. The seventh
column gives the diagnosed healthh_open_M2 as
inferred from M2 and the last column the prob-
ability of this diagnosis. From the first part of
the results we can see thatscotty correctly pre-
dicts that the sensor is healthy. The second part
shows that a correct diagnosis is only performed
when the(pos=0.0) expression in the fifth col-
umn is unequal to thests_open variable in the
sixth column. In other words, when the output of
the healthy shutter, for whichsts_open is only
true if pos=0.0, does not coincide with that of the
unhealthy sensor, for whichsts_open is only true
if mode_open is true. This corresponds with the
results from the diagnosis of the single inverter ex-
ample in the first section.

Conclusions

In this article we have presented our MBD approach
and research objectives as pursued in the TAN-
GRAM project. We have also demonstrated how to
use the modelling language LYDIA in this approach.
The examples show that we can already model and
simulate the basic functionality of a realistic subsys-
tem. Furthermore we have shown how we can make
these models suited for combinational diagnosis. In
the coming period we will put more emphasis on the
diagnosis of existing fault scenarios. From this we
expect to learn more about how to deal with the oc-
currence of time and state behavior in our diagnosis
models.

Acknowledgements

We gratefully acknowledge the feedback from the
discussions with our TANGRAM project partners
from ASML, Eindhoven University of Technol-

32 XOOTIC MAGAZINE

ogy, Embedded Systems Institute, NLR, TNO-TPD,
Twente University and the University of Nijmegen.

References

[1] M. Ajmone Marsan, G. Balbo and G. Conte,
“A class of Generalized Stochastic Petri Nets
for the performance analysis of multiproces-
sor systems,”ACM Tr. on Comp. Syst., vol. 2,
May 1984, pp. 93–122.

[2] A. Benveniste, P. Caspi, S.A. Edwards,
N. Halbwachs, P. Le Guernic and R. De Si-
mone, “The synchronous languages 12 years
later,” Proceedings of the IEEE, vol. 91, Janu-
ary 2003, pp. 64–82.

[3] Tom Brugman and Frans Beenker, “Project
plan for the TANGRAM project on model-
based testing,” Tech. Rep. Doc. Nr. 2002-
10060 version 09, Embedded Systems Insti-
tute, Nov. 2002.

[4] Johan de Kleer, A. K. Mackworth and R. Re-
iter, “Characterizing diagnoses and systems,”
Artificial Intelligence, vol. 56, 1992, pp. 197–
222.

[5] Johan de Kleer and Brian C. Williams, “Diag-
nosing multiple faults,” inReadings in Non-
monotonic Reasoning(Matthew L. Ginsberg,
ed.), Los Altos, California: Morgan Kauf-
mann, 1987, pp. 372–388.

[6] A. Fijany, F. Vatan, A. Barrett and R. Mackey,
“New approaches for solving the diagnosis
problem,” 2002.

[7] A.J.C. van Gemund, “LYDIA Version 1.1 Tu-
torial,” Tech. Rep. PDS-2003-001, Delft Uni-
versity of Technology, Nov. 2003.

[8] P.L. Guernic, M.L. Borgne, T. Gautier and
C.L. Maire, “Programming real time applica-
tions with Signal,”Proceedings of the IEEE,
vol. 79, Sept. 1991, pp. 1321–1336.

[9] N. Halbwachs, P. Caspi, P. Raymond and
D. Pilaud, “The synchronous data-flow pro-
gramming language LUSTRE,”Proceedings
of the IEEE, vol. 79, September 1991,
pp. 1305–1320.

[10] James Kurien, “Model-based monitoring, di-
agnosis and control.” Ph. D. Thesis Proposal,
2000.

[11] Sriram Narasimhan and Gautam Biswas, “An
approach to model-based diagnosis of hy-
brid systems,” inHybrid Systems: Compu-
tation and Control HSCC(C. J. Tomlin and
M. R. Greenstreet, eds.), vol. 2289 ofLNCS,
Springer, Mar. 2002, pp. 465–478.

[12] R. Reiter, “A theory of diagnosis from first
principles,” in Readings in Nonmonotonic
Reasoning(Matthew. L. Ginsberg, ed.), Los
Altos, California: Kaufmann, 1987, pp. 352–
371.

[13] Brian C. Williams and Robert J. Ragno,
“Conflict-directed A* and its role in model-
based embedded systems.” To appear in Jour-
nal of Discrete Applied Math.

Contact Information

Jurryt Pietersma

Parallel and Distributed Systems Group
Faculty of Electrical Engineering
Mathematics and Computer Science
Delft University of Technology
P.O. Box 5031, NL-2600 GA Delft
The Netherlands
j.pietersma@ewi.tudelft.nl

Arjan J.C. van Gemund

Parallel and Distributed Systems Group
Faculty of Electrical Engineering
Mathematics and Computer Science
Delft University of Technology
P.O. Box 5031, NL-2600 GA Delft
The Netherlands
a.j.c.vangemund@ewi.tudelft.nl

Andre Bos

Science & Technology BV
P.O. Box 608, NL-2600 AP Delft
The Netherlands
bos@science-and-technology.nl

December 2005 33

