

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

X00TIC
November 2003-Volume 10-Number 5

magazine

Multidisciplinary
Development Robotica

Discipline borders

Software-hardware

Daily practice

The future

XOOTIC MAGAZINE

Contents

Multi-disciplinary Development

Editorial Preface 3

Software Engineers doing Hardware

Emile van Gerwen 5

Designing across discipline borders: obstacle or
option?

Kees van Overveld11

Some personal notes on multidisciplinary devel-
opment

Ton Kostelijk 19

The Multi-Disciplinary Aspect of System Devel-
opment

Marcel Boosten 23

The future of Embedded Systems

Wim Hendriksen 27

RecentOOTI Publications

. 33

Advertorials

Thales 4

Philips 10

X TIC
magazine

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

Colofon

XOOTIC MAGAZINE

Volume 10, Number 5
November 2003

Editors
C. Delnooz
N.H.L. Kuijpers
Y. Mazuryk

Address
XOOTIC andXOOTIC MAGAZINE

P.O. Box 6122
5600 MB Eindhoven
The Netherlands
xootic@win.tue.nl
http://www.win.tue.nl/xootic/

SecretariatOOTI

Mrs. M.A.C.M. de Wert
Post-masters Programme
Software Technology
Eindhoven University of Technology, HG 6.57
P.O. Box 513
5600 MB Eindhoven
The Netherlands
tel. +31 40 2474334
fax. +31 40 2475895
ooti@tue.nl
http://wwwooti.win.tue.nl/

Printer
Offsetdrukkerij De Witte, Eindhoven

Reuse of articles contained in this magazine is al-
lowed only after informing the editors and with ref-
erence to “Xootic Magazine.”

2 XOOTIC MAGAZINE

Multidisciplinary Development

Multi-disciplinary Development
Editorial Preface

In today’s systems, embedded software becomes increasingly important. Because of its tight coupling with
the hardware, developers of embedded software need to co-design with engineers of other disciplines, such
as electrical- and mechanical engineering. All those engineering disciplines have their own way of looking
at design, their own ”best practices,” their own design methods. Development team face the interesting
challenge to overcome the boundaries posed by these differences and start to profit from the different
views on a system.

In this magazine, the authors focus on the typical challenges faced in industry and the possible solutions
people have developed.

Emile van Gerwen relates the lessons he and his fellow engineers learned while building a robot from
scratch. The cooperation proved enlightning for both software- and hardware engineers and increased the
mutual respect for eachothers discipline. The quality of their multidisciplinary effort will be measured on
November 22, when the TNO Robot Competition is held.

In the second article, Kees van Overveld looks at the multidisciplinary challenges from a more academic
point of view. He will talk about the challenges faced when designing across the disciplinary borders.

The next two articles are personal observations of two experienced architects. Ton Kostelijk and Marcel
Boosten explain how multidisciplinarity influences their daily work.

Finally, Wim Hendriksen closes the magazine while looking ahead. In his article, he addresses some of
the challenges faced while developing an increasing number of embedded systems and how research and
education can contribute to the quality of those systems.

Enjoy reading this magazine!

Chris Delnooz, editor.

November 2003 3

Advertorial: Thales
Page 4 (should be even)

Multidisciplinary Development

Software Engineers doing Hardware
Lessons learned while building a robot from scratch

Emile van Gerwen

Being a software company working in the advanced machine building indus-
try, many of our employees come across exotic hardware and the hardware
engineers that build them. The project addressed in this paper is completely
different. Instead of blaming the hardware engineers for their faulty work, just
as they routinely blame our software, we have to build the whole package our-
selves, including the hardware. The challenge is to build a robot for the TNO
Robot Competition 2003[1]. Although the main goal is to have fun and all the
work is to be done in spare time, it has all elements of a “real” project: a fixed
set of requirements (rules), a fixed end date, and a fixed budget. At the moment
of writing, all 19 teams have participated in a test mission. Our robot was one
of the four robots, and the only robot that took part for the first time this year,
that completed the mission successfully. It is tempting to write a “the secret of
our success” kind of story, but with the real tournament ahead of us we need
to be a bit careful. Nevertheless, we learned some important lessons that we
think might be valuable for other software engineers doing hardware.

Rules of the Game

To get some feeling of the scope of the project, we
will briefly describe what the robot competition is
about. With a budget of 2500 Euro, a team has
to build a single autonomous mobile robot that can
accomplish 5 different missions. The robot, max-
imum size 60x60 cm, must complete the mission
within 3 minutes to get 10 points awarded. The top
3 robots with fastest time in a single mission get
bonus points. The robot that gathers most points
over all missions, including the points gathered at a
test round held two months before the competition,
wins. The missions are:

1. Escaping out of a known maze;
2. Getting out of an unknown maze;
3. Finding and touching a soccer ball on a grass-

like field;
4. Moving a soccer ball out of the playing field;

5. Driving to the end of an elevated race track with-
out falling off.

All missions, except the last, take place in a 6 x 4
meter playing field.

Where to begin? (Definition)

Not having any reference to previous hardware
projects, we decided to see how we could make use
of our software project experience in this particu-
lar multi-disciplinary project. Being a CMM Level
2-almost-3 company, procedures and best practices
for making software are well-known to us. But how
could they be of any use for building a robot from
scratch? As a start, the title of the documents we
were going to make definitely had to change to re-
flect our new line of business. The table below
shows the revised titles.

November 2003 5

Old (software) New (multi disciplinary)
Customer Requirements Rules of the Game
Software Requirement SpecificationBattle Plan
Architecture and Design Construction Manual
Project Management Plan Bill of Materials, Planning (see text)

Table 1: Document title translation

Let’s discuss these documents in more detail.

Thecustomer requirements specificationor rules of
the game were issued by the TNO jury. Just as in
ordinary project, however careful written down, all
specifications are subject to different interpretation.
The jury in this case anticipated no different and
would answer any questions related to the rules. All
questions and answers would be distributed to all
other teams in as “Frequently Asked Questions”,
unless this would reveal a team’s secret strategy.
Many teams, including us, used that opportunity to
clarify the customer requirements.

Figure 1: Definition phase

A software requirement specificationtranslates cus-
tomer requirements into the domain of software, a
vision from where software design can start. In our
case, we needed a vision on how our robot could

accomplish all missions. The Battle Plan describes
what the robot must be able to do in order to com-
plete the missions. This already works towards to
a solution as there many different ways to complete
a mission. As an illustrative example, in last year’s
event, one team built a zeppelin kind of robot that
would just fly over all obstacles in the maze.

The construction manualthen describes how the
robot can perform the functions laid down in the
battle plan. This steers both hardware design (size,
wheels, power required) as well as software (how
“intelligent” must this be, what are timing issues).
In our case we figured that building a robot from
scratch requires a lot of work, so to be on the safe
side we decided to make the robot as simple as
possible. As our strength is building software, we
would make the mechanical part of the robot as sim-
ple as possible and solve any problems that would
cross our path in software. In hindsight, this turned
out to be a good decision but even so it was based
on a hidden assumption that was violated almost
weekly, namely that simple hardware always works.

Lesson 1
Things you buy never work as advertised.

One particular problem illustrating this is our I2C
bus. The I2C bus is the communication backbone
of our robot as it connects our tactics processor (an
on- board 80386 PC) to our motor controller (an
8051 based microprocessor). The 386 we bought
had built-in I2C support so the only thing we had
to do was to connect the wires. Wrong. It took
us a couple of weeks to realize that the I2C clock
frequency generated by the 386 firmware was too
high for the microcontroller to absorb. The fact that
the 386 firmware did not report a good status on
its functioning (it always reported success) made
things even more difficult to find1. The solution

1One can argue whether firmware must be regarded as software or hardware. I think any hardware engineer would say it is
software, but being “high level software engineers”, little black boxes that fail are a hardware problem.

6 XOOTIC MAGAZINE

came from the hardware supplier who suggested de-
creasing the processor speed when doing I2C com-
munication. As software engineers we are used to
asking for more processing power, more memory,
and more disk space. Intentionally slowing down
the processor sounded like a bad idea, but turned out
to be a good example of out-of-the-box (our box)
thinking.

But let’s go back to the definition phase. Part of any
project initiation is making aProject Management
Plan. The idea of being managed in the weekends
was not very appealing so we decided to settle for
a bill of materials with associated costs and a plan-
ning. The budget part we got nailed down fairly
quickly once the Battle Plan and the Construction
Manual were in their first revision. The planning on
the other hand quickly turned out to be extremely
off, both in effort and in duration. We can point
out various reasons for all that, but in the end two
lessons sum it all up nicely:

Lesson 2
If you think building a robot takes a lot of
time, it takes three times more.
If you think building a robot is easy, do
not start.

Lesson 3
If estimating duration is difficult, estimat-
ing duration for spare time activities is
near impossible.

After the first month of development, we decided
to stop tracking progress and stop re-planning. We
would just go ahead and see where that would get
us. As is not uncommon in these kinds of competi-
tions, most work is done the night before the event,
when the pressure is at its top. We were determined
not to get into that kind of situation but at this point
in time we are seriously taking such a scenario into
account!

Putting things together
(Construction)

Although all our five team members are software
engineer by profession, some of them have an ed-

ucation and hobby in mechanical design and elec-
tronics (which was one of the reasons they took part
in the project anyway). The challenge to build a
robot was not a complete jump in the dark, but we
clearly did not have the professional experience to
be able to design and calculate all relevant parame-
ters up front. We would just try and find out.

Figure 2: Our robot

Figure 3: Bottom view

In general this strategy worked out remarkably well,
but in one particular case it still causes troubles. To

November 2003 7

decide on the motor to wheel gearing, it is impor-
tant to know what the speed of the robot needs to
be. Obviously, to score many points, it has to be
as fast as lightning, but driving fast for example
means coping with excessive decelerations during
emergency stops. The idea was that by regulating
the power to the motor, in software, we would be
able to drive at different speeds. The optimal speed
was to be determined empirically during testing. In
practice, it turned out that our robot cornered too
fast to manage its behaviour consistently. Supply-
ing very low power to the motor means that robot
has low torque and that in turn means that on some
surfaces, our robot would not turn at all. So, a gear-
ing decision at the beginning of development still
causes our robot turning behaviour to be very much
dependent on the surface texture of the playing field.
Solving this issue would be to replace some pulleys
and drive belts, but such a big overhaul would take a
lot of valuable time and the risk of doing harm to an
otherwise good working robot would be too great.
We will have to deal with its shortcomings in some
other way.

Lesson 4
Refactoring hardware is much more dif-
ficult than refactoring software. This
implies that a hardware-related decision
will have great impact on the rest of the
project.

What you see is what you get
(Testing)

From the very beginning it was clear to us that with-
out experience in robot building we could easily
think of great solutions that would turn out to be
useless in practice. To compensate for our lack of
experience at the start of the project, the idea was to
quickly build up this experience by thorough proto-
typing and testing. We put a lot of effort in build-
ing a full scale test environment, in fact, the test en-
vironment was ready even before all robot compo-
nents had arrived.

Figure 4: Test environment for mission 1

Figure 5: Test environment for mission 3

Was it worth the effort and money? Having seen
robots perform during the test mission we tend to
think so. One of the most heard exclamations was a
desperate “what is it doing now?” That sounded fa-
miliar to us. The difference is we had those during
our in-house testing, when there were no precious
points at stake.

Lesson 5
In hardware, testing really pays off.

All software engineers know that “program” testing
can be a very effective way to show the presence of
bugs, but is hopelessly inadequate for showing their
absence [2]. This pearl of wisdom is often used as
an argument to put less effort in testing, and to de-
velop proven correct programs to start with instead.

8 XOOTIC MAGAZINE

In this case, however, where the complexity of real
world could not be modelled adequately (by us at
least), testing indeed proved to be a very effective
way to find bugs. Actually seeing the robot per-
form in its environment makes you realize your er-
ror within seconds.

Lesson 6
In the real world, analysing is good, pro-
totyping is better.

So testing and debugging were considered essential
in our project from the start. The very first soft-
ware module created was indeed a diagnostics mod-
ule that could log all kind of events and values to a
terminal or a file if required. However, the very first
time we asked a hardware-knowledgeable colleague
to help us with some hardware problems, his first re-
mark was “where are the measuring pins, where can
I attach my oscilloscope?” Now who would think of
that?

Lesson 7
Doing hardware implies using hardware
debugging tools.

Evaluation

Looking back at all the things we have learned,
there is one thing that sticks out. In our daily work
we develop software for large, complicated ma-
chines, where we take all the hardware for granted.
By building a robot from scratch, our respect for the
hardware engineers has definitely increased.

Interestingly, we met teams with a more mechani-
cal background with similar experience. They built
the most beautiful robot but after 3 minutes driving
around seemingly randomly made them realize that
there is more to writing software than typing a few
lines of code.

Have we done the right things, or are there more
lessons in store for us? We will see on Competition
Day, November 22!

References

[1] http://www.tno.nl/instit/fel/felnews/nl/
robotcompetitie.html
(in Dutch).

[2] The Humble Programmer, Edsger.W. Dijkstra,
Communications of the ACM 15 (1972).

About the author

After graduating from the Technis-
che Universiteit Eindhoven in 1990,
Emile van Gerwen joined KPN
Research where he developed opti-
cal character reading software, spe-
cialising in reasoning with uncer-
tainty. In 1998 he joined the Na-

tional Aerospace Laboratory where he worked on
multi sensor data fusion and real-time decision sup-
port systems. He now works as a senior software
engineer and consultant for Imtech ICT, where he
develops software for advanced machines. Emile
can be reached at emile.vangerwen@imtech.nl.

November 2003 9

Advertorial: Philips
Page 10 (should be even)

Multidisciplinary Development

Designing across discipline borders:
obstacle or option?

Kees van Overveld

Educating technological designers is difficult. An educational curriculum should
provide both sufficient discipline-related skills, and cross-disciplinary skills. In
order to argue about the balance between the two, we speculate on the relation
between disciplines and application domains, and we give some considerations
as to what disciplinary baggage gives the best preparation for prospect interdis-
ciplinary designers. Finally, we hint at a particular role for software designers
in the process of designing across discipline borders.

Introduction:
Domains and Disciplines

In the past, life was easy. Professions could be
easily distinguished. If John Smith was trained
as a carpenter, it was clear what to expect from
him. You should see John if you needed a table
or a garden fence, but if you were suffering from
a headache you should go to his cousin Peter who
studied medicine. And if you wanted to divorce
from your husband, you should consult his other
cousin Charley who went to law school.

Lawyer, medical doctor and carpenter are profes-
sions with a relatively constant definition. They
have quite a long-standing history, and their edu-
cational programs stayed largely constant for ex-
tended periods.

Nowadays, examples of such stable connections be-
tween education, career, and professional activities
begin to be rare. Over the last, say, 10 years we
have seen both a multitude of new professions, and
a multitude of new educational programs. Further,
the mappings between education and professional
career, between initial and final job within a career,
and between a job and the tasks and activities within
that job, are no longer one-to-one.

In order to argue about the causes and consequences
of this decreasing transparency in education pro-
grams, careers, jobs, tasks and activities, we need
some vocabulary. In particular, we want to talk
aboutdomainsanddisciplines.

We call a coherent set of social needs or desires a
domain. For example, transport is a domain. It com-
prises the desires of people to go from A to B, the
need to maintain roads, the desire to have a dense
and reliable network of petrol stations, et cetera.
The adjective ’social’ refers to the fact that any need
or desire is attributed to (a group of) people. The
type of coherence in a domain is often historically
determined, and it may have a degree of arbitrari-
ness. It may change over time, and as a result do-
main borders are fluid. Domains are not necessarily
disjoint1. As an example, the various departments
in a national government as a partition of the na-
tional concerns form a set of domains.

We call a coherent body of (professional) knowl-
edge, skills and attitudes adiscipline. For example,
physics is a discipline. A discipline refers to a topic
that is studied in a scientific community. Although
to some extent historic whimsicalities influence the
scope and contents of any given discipline, the co-
herence in a discipline also results from knowledge

1Overlapping domains are a frequent source of envy among professionals with different disciplinary backgrounds. Social
needs and desires that do not (yet) belong to a well-recognized domain, on the other hand, often go unnoticed for a long while
and once they are accepted they may cause new disciplines to occur.

November 2003 11

hierarchies (see below). Disciplines, with some de-
lay, give rise to academic curricula, and they can
therefore be mapped approximately to the disci-
plinary baggage of recently graduated practitioners
in any field. Notice, therefore, a self-stabilizing
mechanism, such as depicted in Figure 1.

... which executes the process of
internal discipline development
as explained in the next section
causing the contents of a
discipline to evolve, which ...

... after some delay, and affected
by a selection mechanism that
takes domain-related needs into
account, gives rise to a
curriculum for formal
academic education ...

... which gives rise to the
academic baggage of freshly
graduated practitioners in the
field ...

... who, after gaining some more
experience, knowledge and
skills after completion of formal
education, form a scientific
community ...

Figure 1: The evolution of a discipline.

We will study the nature and the relation between
domains and disciplines in the section below, and
we zoom in for the case of technological disciplines.
Then we discuss the (mis-)match between domains
and disciplines, and we conclude with a possible ap-
proach to remedy the problem.

The nature of disciplines and their
relation to domains

Disciplines, as defined above, possess a structure
that is vaguely hierarchic. A body of knowledge
K is rarely self-contained. It assumes fragments of
knowledge that are outside that body; these frag-
ments may be part of another body of knowledge,
sayK ′. For example: designing wireless telecom-
munication systems assumes knowledge of modu-
lation. The topic of ’modulation’ assumes knowl-
edge of high frequency oscillators. The topic ’high
frequency oscillators’ assumes knowledge of linear
networks. The topic of ’linear networks’ assumes
knowledge of linear algebra. The topic of ’linear
algebra’ assumes basic algebra. Finally, the topic

’basic algebra’ assumes ’logic’. Here, the propo-
sition ’A assumesB’ is considered to be a partial
ordering. It means that in order to actively use
the knowledge (and the implied skills and the im-
plied attitudes) inA, it is necessary to believe that
the knowledge inB is both available and true; fur-
ther, a practitioner of the knowledge inB is, for his
present purpose, not interested in, nor dependent of
the knowledge inA. This partial ordering model
for bodies of knowledge is overly simple and it has
some fundamental problems2 but it gives us a con-
venient vehicle to argue about the complexities and
possible remedies of multi-disciplinary design. The
above example gives rise to the fragment in figure 2
of what we will call the DAG of knowledge or K-
DAG (DAG = directed a-cyclic graph). A node in
the K-DAG is a small chunk of related knowledge;
an arc represents the ’assumes’-relation.

root

high frequency
oscillators

wireless
communication

modulation

electric
networks

linear
algebra

logic

algebra

.....

.......

.....

.......

.....

.......

Figure 2: A fragment of the K-DAG.

2To mention but a few: it is not certain what constitutes the topmost chunk of knowledge (labeled ’root’ in figure 2); it is not
clear if there is such a thing as ’a consistent chunk of root knowledge’; it is not certain if loops in the assumptions can always be
avoided, and it is not certain if the ’A assumesB’ relation, apart from the knowledge components, also can be formulated for
skill and attitude components of a discipline.

12 XOOTIC MAGAZINE

Nodes in the DAG close to the root represent
generic notions that underlay much of scientific
practice, such as ’observation’, ’hypothesis’, ’ex-
planation’, ’model’, ’definition’, ’approximation’,
’causal relation’, as well as formal reasoning and
logic. Much of what is usually called ’common
sense’, as well as many abstract patterns for prob-
lem solving also reside in these nodes. Few disci-
plines, except from philosophy, some sub-fields of
mathematics and some branches in cognitive psy-
chology give explicit attention to these notions. In
other disciplines, they are assumed implicitly, and
usually they are not part of formal education. The
abilities, represented by these knowledge fields are
also difficult to asses by exams or tests, and there-
fore at present they play only a small part in our
understanding of ’academic abilities’.

In the area of knowledge engineering, attempts are
made to formalize (parts of) the K-DAG, including
(some) root-like nodes, in terms of formal ontology
- with the eventual aim to have disciplinary knowl-
edge represented in knowledge bases that can be
consulted by dedicated software applications (see
for instance http://www.steplib.com). For our pur-
pose, we will only use the terminology of graphs to
argue about education and design practice.

A ’discipline’ can now be defined, more precisely,
as a connected sub-graph of the K-DAG. It seems
likely, however, that a discipline is typically not the
result of some august body of experts, drawing end-
less ellipses and arcs on a huge sheet of paper. It is
interesting, therefore, to speculate on the evolution
of a discipline - that is, to zoom in the mechanisms
that are hidden in the various quadrants in figure 1.

We can imagine that there are two basic types of
mechanisms involved in the evolution of a disci-
pline. The first is the internal evolution (upper left
quadrant in figure 1). When seeking answers to
’why’ or ’how comes’ questions, a chunk of knowl-
edgeA asks for the connection to, or the develop-
ment of a chunkB with which it has an ’A assumes
B’-relation. Similar (although maybe less frequent)
a question such as ’what can we do with this’ may
lead to an instance of the opposite relation. In any
case, the internal evolution maintains connectivity;
it is a local process in the sense that the K-DAG
grows with one arc at the time.

The second process can be called external evolution.
This corresponds to the upper right quadrant in fig-

ure 1. It comes from the interplay between disci-
plines and domains. We remember that a domain
also has an internal coherence, but this comes from
social needs, governmental arbitrariness, or histori-
cal chance. The set of domains definitely does not
have a DAG structure similar to disciplines - if it
has any meaningful structure at all. Nevertheless,
the persistence of domains causes certain needs to
occur in matched combinations. For instance, in
the domain of transport, the initiative of project-
ing a highway raises simultaneous questions in the
disciplines of geography, civil engineering, econ-
omy, meteorology (with respect to the environmen-
tal consequences of the CO2 production of the traf-
fic on the projected road), and ecology. The merg-
ing of such (initially separate) disciplines into one
new, ’multidisciplinary’ discipline as a result of ex-
ternal evolution can be depicted, schematically as in
figure 3.

root root

X

root

Figure 3: Three phases in the external evolution of
disciplines.

In figure 3, we depict three stages of the evolution
of a discipline as triggered by external factors.

In the leftmost diagram we have the initial situa-
tion. Two separate disciplines exist, both depicted
by their (schematic) K-DAG. One discipline is in-
dicated by line-textured ellipses, the other one by
dotted ellipses. For simplicity, the disciplines have
been drawn as simple chains of knowledge do-
mains; in general, they will consist of many branch-
ing chains. Notice that typical disciplines don’t con-
tain the ’root’ knowledge domain, nor knowledge
domains close to the ’root’. The non-textured el-
lipses represent the ’implicit’ knowledge that is as-
sumed to underlay the disciplines, but that is not

November 2003 13

part of the formal curriculum, and therefore it is not
part of theexplicitworking knowledge of workers3.

In the second stage (middle diagram in figure 3) a
chunk of knowledge, labeled ’X’ appears from an
application domain. It assumes knowledge chunks
from both disciplines. If the ’A assumesB’ re-
lations can be successfully established, and this
circumstance appears sufficiently often, the third
phase may occur.

In the third phase (rightmost diagram in figure 3),
the two formerly separated disciplines have been
merged into one new discipline (indicated by gray
ellipses). For instance, if the two former disciplines
were ’mechanical engineering’ and ’logistics’, then
the new discipline could be ’transport sciences’.
Notice that some ellipses, that were formerly tex-
tured, now have become blanc (indicated by dotted
outlines). This is because, as we saw earlier, a disci-
pline is carried by a curriculum, and a curriculum is
the result of a resource constrained design problem.
The constrained resources, in this case, are time (be-
tween 4 and 9 years for various tracks of scientific
education) and learning capacity. In phase 3 we see
that typically those knowledge domains are sacri-
ficed that in the original disciplines were closer to
the ’root’-nodes. The curriculum for the new dis-
cipline must contain the node formerly labeled ’X’
and related nodes, and therefore doesn’t have suffi-
cient room left for the most upstream nodes in the
original curricula.

This may cause a significant problem. Due to their
nature, the domains close to the root are quite ab-
stract, and many are widely applicable. Omitting
these nodes makes it more difficult, in particular
in freshly graduated practitioners, to see the under-
lying relations between (application) domains, and
therefore learning these knowledge domains later
(=after completion of the formal education) takes
more effort. In phase 3, taught knowledge, skills
and attitudes have the risk to be of a rather ency-
clopedic nature - which falls short in complex sit-
uations where deep and abstract understanding are
required.

Disciplines in technological educa-
tion

The above observations hold in arbitrary fields of
science. For technological sciences, there are some
additional conditions. First, the range of notions in
the ’root’ node and nearby nodes in the K-DAG is
less broad than in general science. Many patterns
can be identified that have proven adequate in a
large range of situations.

Many of these have been formalized in terms of
mathematical notions (e.g., ’function’, ’discrete vs.
continuous’, ’variable’, ’operation’, ’state’, ’singu-
larity’, ’graph’, et cetera). Apart from their precise,
technical meaning, they have an important value as
metaphors.

For instance, even though ’monotonicity’ is a for-
mal property, typically applied to mathematical
functions on sets of numbers, it is insightful to use
this term in economical or even psychological con-
texts to indicate ’that something develops in one di-
rection only’.

As another example, we have used the terminol-
ogy of directed a-cyclic graphs in this paper to
facilitate arguing about the development of disci-
plinary knowledge. It is important to notice that
we don’t (necessarily) use these terms for the pur-
pose of technical manipulation, but we use them
because of their metaphorical intuition. For in-
stance, using the term K-DAG made it natural to
talk about ’root-nodes’ and ’partial ordering’ with-
out having to spend much words in explaining what
these things mean. Furthermore, it invites us to
think of algorithms for ’merging’ and ’traversing’
DAG’s as metaphors for understanding the pro-
cess of discipline development. Since terms such
as ’merging’, ’traversing’, and the numerous other
concepts from mathematics and computing science
come with a cloud of useful associations4, they pro-
vide convenient communication shortcuts that avoid
a lot of potentially confusing verbose prose.

Moreover, once they are used in the early, ex-
ploratory phase in a communicative process (such
as a design process), where terms are not yet for-
mally defined, there is a large chance that the same
terms can be used later when things get more pre-

3Which is not to say that they don’t use this knowledge; they just don’t know how to talk about it.
4These associations are useful in a large variety of contexts, otherwise the terms would not have gained the status of broadly

used abstract notions.

14 XOOTIC MAGAZINE

cise - including (some of) their technical connota-
tions.

Second, practitioners in technical disciplines have
at least some familiarity with formal argumentation.
They are trained to formally manipulate with terms
and symbols in math courses. This means that the
habit of using precisely defined terms comes more
natural to technologically educated professionals -
even when, in early stages of exploring a topic, the
formal manipulations with such terms is not yet in
order. There is a rich potential of problem-solving
patterns hidden in the usage of precise terminology
- if only this potential is recognized and stimulated
by teachers and adopted and practiced by students.

Problems and solutions

After having studied the notions of disciplines and
domains, and having explored the mechanisms of
discipline development - both under internal and ex-
ternal factors - and having touched upon the partic-
ular circumstance of technological disciplines, we
now arrive at the main theme of this paper.

Designing across discipline borders is a difficult
process. It resembles the external evolution of a
discipline as outlined in figure 3. The design prob-
lem at hand corresponds to the (application domain-
induced) node ’X’. The disciplines that need to be
connected are the bodies of disciplinary baggage of
the involved designers. These disciplines seem un-
related because both involved designers lack a suf-
ficient shared body of underlying, more abstract no-
tions. As with merging disciplines, this is again a
result of resource constraints (limited time, knowl-
edge, effort and expertise of the designers at hand).

The resulting complication is most often called a
’communication problem’, but it would be more ap-
propriate to call it a problem of lacking shared, suf-
ficiently abstract thought patterns5.

In an attempt to remedy such ’communication
problems’, new ’interdisciplinary’ curricula are
presently developed. The underlying idea is prob-
ably that, as soon as an application domain is em-
bedded within a discipline, and hence a curriculum
is developed for this new discipline, the problem
of designing across discipline borders vanishes. In-
deed, in this new discipline, both earlier disciplines

have been integrated, the discipline border has van-
ished, and the problem has gone away - or so it is
hoped.

From our analysis, however, it seems that this ar-
gument is flawed. Rather, we think that the prob-
lems with interdisciplinary design increase when
new ’interdisciplinary’ curricula arise. Indeed, due
to the resource constraints that are inherent in any
curriculum such very broad and interdisciplinary
curricula are increasingly devoid of the root-like
nodes in the K-DAG. The ultimate version of such
a trend would be that there is only one (technolog-
ical?) discipline left, which would include all pos-
sible application domains. Then there are no disci-
pline borders left, and hence no problems of cross-
discipline design. In the limit case of such an ul-
timate interdisciplinary ’discipline’, however, there
would be hardly any room for abstract thought pat-
terns, and as a consequence, there would be hardly
any insight in underlying relations between (appli-
cation) domains.

Instead, we recommend a more paradoxical rem-
edy to prepare designers for interdisciplinary design
challenges. Rather than spending large amounts
of curriculum space to application domain-related
knowledge, we propose to increase the amount of
fundamental ingredients. This includes formal no-
tions and mathematical and logical techniques. No-
tice: this should not be mistaken as a recommen-
dation for ’more math’. Rather, it is a recommen-
dation to focus on explicating thought patterns and
problem solving strategies. A vehicle could be to
study the intuitions behind mathematical notions, to
practice with designing and studying models for the
sake of understanding the methodology of model
making, and to exercise definition-making skills in
order to perfect precision and exactness in the ex-
pression of ideas, assumptions and propositions.
Because of their abstraction and wide applicabil-
ity, these skills seem to be the best candidates for
dealing with arbitrary cross-disciplinary design and
engineering problems.

A natural question would be what effects such an
approach to cross-disciplinary design could bring.
Since the distance to domain-specific applications
is larger than in many ’interdisciplinary curricula’,
a curriculum according to the above recommen-
dation may not be a fail-safe recipe for spectacu-

5Perhaps many communication problems are just the lack of sufficient shared, abstract, underlying notions.

November 2003 15

lar innovation or for revolutionary new products.
Indeed, ideas for new products often come from
workers close to application domains. If such ex-
perts have less familiarity with fundamental issues,
however, a thorough understanding of the under-
lying principles may be an underestimated ingre-
dient - which can cause overstrained expectations
and disappointing performances of hastily designed
products. Rather, our recommendation for a more
foundation-oriented curriculum to educate design-
ers to work in cross-disciplinary contexts could give
rise to well-structured, consistent and smooth de-
sign processes that are less hampered by commu-
nicative noise.

An option for computing science

Above we gave a recommendation that applies to
curriculum design. There is, however, another route
to mitigate the problems of designing across disci-
pline borders. As follows:

Among all the sciences, computer science forms a
peculiar case. In any other science, a scientific argu-
ment is judged for its convincingness with respect to
(human) colleagues. In computer science, a scien-
tific argument (e.g., an algorithm) is judged for its
convincingness with respect to a formally defined
machinery (namely, an (abstract) computer or some
other formal framework).

This has a major consequence. In all sciences ex-
cept for computer science and mathematics, there is
a large amount of interpretation involved in assess-
ing the validity of an argument. Even in empiric
sciences, where so called objective observations are
the cornerstones of progress in understanding, deal-
ing with such observations often leaves room for in-
terpretation. Interpretation, in turn, leaves room for
misunderstanding, confusion or ambiguity.

A computer cannot tolerate ambiguity, and there-
fore a computer program cannot rely on interpreta-
tion. Hence computer scientists are trained to give
precise and unambiguous definitions. At the same
time, unlike some branches in mathematics, com-
puter science is involved with modelingreality. A
computer program has a purpose, namely to add in
dealing with (aspects of) a real situation, whether
this is a computer controlled machine, an adminis-
trative system or a communication network.

Therefore, by their education, computer scientists
possess a rather unique combination of skills, that
is essential in interdisciplinary design, namely (a)
to be capable to think in terms in models (because
computer programs that have something to do with
real systems only do so by dealing withmodelsof
such systems), and (b) to be capable to formulate
such models in a precise and unambiguous manner
(because computers require precise and unambigu-
ous instructions).

It is remarkable that most computer scientists only
exercise this rather unique combination of skills
when it comes to IT-related design. The reasons
for this may be several (perhaps students choose
for computer science because of the prospect of
luxurious salaries, to be earned with writing soft-
ware; a hobby in computer programming is the
main motivation for others), but it would be tremen-
dously helpful in all sorts of interdisciplinary design
if computer scientists would offer their assistance
to help clarifying interfaces between (models of)
knowledge domains - irrespective whether it regards
mechanical, chemical, biomedical or any other dis-
ciplines.

Maybe in the light of subsiding economic activity
in the software branch, this could be an interesting
option for computer scientists who are not afraid to
broaden their scope.

To conclude with a paraphrase of Dijkstra’s famous
motto ’Beauty is our business’, we might give as a
characterization for this new group of professionals:
’Precision is our profession’.

About the author

Kees van Overveld(1957) obtained
a MSc and PhD degree in physics at
the Eindhoven University of Tech-
nology (EUT). In 1985, he joined
the computing science department
of the faculty of Mathematics and

Computer Science of EUT as a university lecturer;
since 1990 as associate professor. From 1989 to
1998 he was head of the Computer Graphics group.
From November 1996 to June 1998 he was part-
time employed as a Senior Researcher at Philips Re-
search; further, he still held the position of associate
professor at EUT. In June 1998 he founded ’Van
Overveld Coaching’, a consultancy company. In

16 XOOTIC MAGAZINE

this company he works on a regular basis for Philips
Research, the University of Calgary (Canada) and
the University of Magdeburg (Germany). In May
2000 he left the computing science department of
EUT; he changed his academic affiliation to the Stan
Ackermans Institute at EUT. In 2002, he joined the
Faculty of Industrial Design (ID).

Among his previous research interests are the fun-
damentals of raster graphics algorithms and dis-

cretisation, computer aided geometric design, in-
teractive motion specification and (dynamic) sim-
ulation for computer animation, image processing
and some aspects of 3-D computer vision. Re-
cently, he initiated a research activity in the field
of the methodology of technological design. He
is currently responsible both for the teaching pro-
gram and the research in this field. In ID, he is
mainly involved in teaching mathematical modeling
and structured creativity-related techniques.

November 2003 17

Multidisciplinary Development

Some personal notes on multidisciplinary
development

Ton Kostelijk

This text contains notes on my experience with some disciplines: software and
mathematics, embedded software and hardware, proceeded by a more per-
sonal introduction.

Several months ago, I was invited to put some words
on paper about my prejudices of different disci-
plines. Thinking about it, and extending it to the
cultural issue as well, I realize that I have crossed
a lot of “cultural” boundaries in my profession and
because of my personal background.

I was born in 1961 as the 11th child of an agricul-
tural farmer, a religious family, in a small village
in a polder (North-Holland). In particular here in
Brabant, I still miss the wide outlook over the land
20 km far, the waters and wind that surrounded me
there. With the sixties and growing welfare, a lot
changed in my first 20 years. My eight brothers in
particular were quite outgoing and paved my path
to be allowed a lot of freedom in behavior. Already
with my scooter, I visited my eldest married sister
at the age of 4, a trip of 5 km away (I was very well
taught to duck to the side when a car passes). As
one of the very few of my town, I was educated at
the Athenaeum, in the nearby (12 km) city. I realize
now that it was the first time of many that I joined a
new group, where many of my old group did not fol-
low that step. In the city, things go very differently.
My circle of movement kept on growing, and I de-
cided to go to the Free University in Amsterdam, to
become a scientist.

In different ways, most of us cross cultural bound-
aries, even when you are Dutch, and you live in The
Netherlands. Differences between groups are an in-
teresting subject to discuss, provided that it is done
with the willingness to understand. When done in
a reproaching or even accusing way, there are only
losses. However, in the end the differences between

individuals are larger than the differences between
groups. So I propose you read the remainder with
some relativism.

My education (experimental solid state physics)
combined a strong mathematical foundation with
pragmatism and a sharp eye for deviations in ex-
pected behavior. In short, physics is all about con-
structing, rejecting, validating and extending mod-
els of the experimental reality. Mathematics is
about models of the imagination. When an exper-
imental model is equivalent to an imaginary model,
knowledge of mathematicians can be used.

Software and mathematics

Some people think that programming is a form of
applied mathematics. In my view software origi-
nates more from engineering than from mathemat-
ics. I respect Dijkstra for his contributions but I dis-
agree with his rigid view on software development.
Even G̈odel’s incompleteness theorem has proven
that proofs and completeness are not fully united.
Still there are people that keep on searching for the
ultimate software development method or tool that
will enhance productivity enormously, and prevent
any mistake that happened in the past. Instead of
posing the question “what is the best method for all
systems?” one should pose the question “what is the
best approach for my system?” In this way, mean
and lean solutions most likely occur. First of all, one
can benefit of the intrinsic structure of the problem
at hand. Secondly, the notion “approach” instead
of “method” indicates which route to take without

November 2003 19

claiming to know the solution. The typical prob-
lem is too difficult to tackle in one go, leading to
another element: usage of an incremental approach,
or in other words, a spiral development model. And
last but not least, the job is performed by a (set of)
group(s) of people, where experience, communica-
tion and other cultural items play an important role.

Nevertheless, one can benefit a lot from mathemati-
cal insights, just like physics benefits from it, with-
out implying that physics is a sub-domain of math-
ematics. Since problem / system modeling is appar-
ently so important, it may no longer be a surprise
that so many software architects originally studied
physics.

Figure 1: Typical hardware view of a system

Embedded Software and Hardware
Development

There are several differences between hardware and
software.

First of all, the definition of a system is quite dif-
ferent for hardware or software. For a hardware de-
signer, a system is a collection of hardware blocks
that are interconnected. For a software designer,
a system consists of several layers; an application
(including services) runs on drivers where drivers
are “almost hardware.” Whereas for hardware de-
signers interrupt routines are considered out of their
scope. This implies that a gap in responsibility ex-
ists, the hardware software interface.

Secondly, embedded software is mostly engaged in
handling use-case transitions, whereas hardware de-
signers are focused to make a block process well in
a steady-state use case.

Thirdly, hardware typically is designed bottom-up
(“re-use”) whereas software is typically designed
top-down. This latter statement may no longer be
completely true: because of high development cost,
software re-use is growing rapidly, resulting in more
and more glue code in systems. One may wonder
whether the amount of glue code is in balance with
the shielded amount of core code.

Application Software

Driver Software

Figure 2: Typical software view of a system

Fourthly, hardware has real concurrently running
functions. Software only has timesharing, where
concurrency is faked by the operating system. The
software performance is deteriorated many fac-
tors by limited caches, uncached access, context-
switches (interrupts in particular and task-switches)
and busload. As a result, hardware designers typ-
ically overestimate the software performance of a
system. The average software designer is not at all
focused on performance whatsoever. This means
that performance set-backs are common when ex-
ecution architecture view is not elaborated in a sys-
tem.

Fifthly, one of the major separating issues is that
software development lags behind one or two gener-
ations of the hardware development. In other words,
the hardware and software focus differs.

Finally, software suffers from hardware bugs, not
vice versa. On average, 30-50% of the effort to
make drivers is related to bug fixing, unclear specs,
system errors, etc. One of the opportunities is to
keep the overall balance sound: whether to save ef-
fort in hardware design by spending effort at the
software side, or vice versa.

20 XOOTIC MAGAZINE

Final remarks

The clich́e that technical software people talk to
computers only and work in isolation is so beside
reality. This paper could have grown many pages
more because making products involves so many
different disciplines. In the global world we live in,
it involves many different cultures and nationalities
as well. In our work, this gives extra color to our
profession. It is also the reason why the educational
focus of an architect shifts from technical towards
social during his or her professional life. Since the
differences between individuals are larger than the
differences between groups, it helps to forget the
group your colleague might be part of, and appre-
ciate the unique person you are in contact with. In
case of misunderstanding, the group habits may be
a cause though, but firstly focusing on the group
clichés ignores most value of the person. Multi-
disciplinary work can thus become an adventure of
synergy and appreciation.

About the author

Ton Kostelijk Born in 1961, Mar-
ried. From 1979 to 1985 Ton
Kostelijk studied physics, Experi-
mental solid state physics with IT,
at the VU Amsterdam. From 1985
to 1995 he worked at Philips Natlab

on CAD for VLSI Design, for which he received
his Ph.D. in 1994. Thereafter, he was Chief soft-
ware archtict Digital Receivers program (G+4 set-
topboxes) at Philips’ ADC/ASA until 1999. Cur-
rently, Ton Kostelijk works as system architect at
the Philips Digital Systems Lab in Eindhoven.

Currently engaged in

• System Performance Feasibility
• Member of Core Architecture Team Disk Sys-

tems product family.
• Coaching of architects
• Chairman of “QITARCH” of PDSL
• Teaching courses for CTT (3), ESI, OOTI.

November 2003 21

Multidisciplinary Development

The Multi-Disciplinary Aspect of System
Development

Observations from Daily Life

Marcel Boosten

Within our daily professional lives, many of us feel that multi-disciplinary coop-
eration and development is a crucial aspect of the system development pro-
cess in which we participate, and consider it of vital importance to the success
of the developed products. In this article, I will report some observations on
multi-disciplinary development from my own daily practice.

Multiple disciplines

In my current role as technology manager and
project architect of the Volumetric Imaging product
at the Cardio Vascular Product Management Group
of Philips Medical Systems (PMS), I cooperate on
a regular basis with people from the following dis-
ciplines:

• software (engineer, architect, team leader, test
manager, configuration manager)

• system design (technology managers, archi-
tects, designers, norm compliance)

• image quality
• project management
• product management (neuro vascular, cardio)
• clinical science (neuro vascular, cardio, work-

flow), clinical application
• system engineering
• mechanical engineering
• service innovation
• pre-development (developers, group leaders)
• research

In the architectural roles I fulfill, multi-disciplinary
cooperation and negotiation is daily work. More
than others, architects are involved in multi-
disciplinary cooperation. Even so, multi-
disciplinary cooperation is regarded as something

so common by many people within the organiza-
tion, that it is usually not looked upon as a separate
entity or activity. It is simply embedded in the or-
ganization, and naturally present in daily working
life.

Multi-disciplinary cooperation

In my daily working situation, the many differ-
ent disciplines cooperate via common-sense com-
munication and negotiation. In order for different
disciplines to communicate effectively, they use a
shared ’language’:a language consisting of con-
cepts, terminology, and principles that they share
and understand, and that covers the topic at hand.
Typically, the shared language is naturally devel-
oped while talking about a specific problem; it is
built up from concepts originating from the dis-
ciplines participating in the discussion. The de-
veloped concepts end up in specifications and de-
signs, and thereby become the language of the team.
Everyone in the team, but especially the architect,
has the responsibility to keep the shared language
simple and understandable for all involved disci-
plines. Often, drawing pictures helps in support-
ing the multi-disciplinary documentation or discus-
sion. Personally, for multi-disciplinary communi-
cation, I strongly believe in the power of artistic

November 2003 23

free-style pictures. I’m convinced that in most sit-
uations free-style pictures are more powerful than
standardized (e.g., object-oriented) diagrams, espe-
cially because the free-style pictures allow you to
artistically express the concepts at hand, and be-
cause standardized semantics are only remembered
by experts from software development.

I often experience that people from other disciplines
are very much willing to present their views in
simple and understandable terminology. I remem-
ber visiting Prof. Moret, one of the world’s top
neuro radiologists. While Prof. Moret was at work,
a colleague neuro radiologist commented on Prof.
Moret’s work. He used terminology he knew we
would understand - similarities between plumbing
and Prof. Moret’s life-saving work were regularly
made. I’m convinced that people who really know
what they are talking about, are also able to express
their ideas in simple down-to-earth terms. Keeping
it simple is a key to success.

In general, in system-level requirements documen-
tation and corresponding discussions, I try to keep
everything understandable for all involved disci-
plines. I thereby avoid having to actively maintain
different views on the same topic for different stake-
holders - this reduces maintenance work, reduces
inconsistencies, and stimulates discussions between
the involved disciplines.

Uni-disciplinary cooperation

Nearly all the decision making teams in which I co-
operate consist of people from different disciplines.
However, even in case people belong to the same
discipline, they typically have a different area of ex-
pertise, or they play a different role in the develop-
ment process. For example, in our software team,
we have experts in the following areas of expertise:
platform, processing, and viewing. All three areas
have their own concepts, terms, and correspond-
ing technologies. So, even though all three areas
of expertise are represented by architects from the
same discipline, i.e., software, the area of exper-
tise differs significantly. Consequently, for me, as
project architect, the cooperation with these three
software architects has many similarities with true
multi-disciplinary cooperation.

Avoid walls between disciplines

It is of importance that the different disciplines do
not create isles of isolation. They have to be open
to each other, and depend on each other. As an ar-
chitect, you sometimes notice signals of isolation;
at that point stimulating the multi-disciplinary com-
munication is important. Furthermore, the project
organization can have a major impact on inter-
disciplinary communication. Often, projects are or-
ganized as a collection of subprojects, one for each
discipline. In many situations it would be preferable
to organize projects according to the components
defined in the system architecture, thereby group-
ing disciplines working on the same component in
one team. This has been illustrated in Figure 1.

A

HW

B

A

SW

B

A

ME

B

Component A
(HW+SW+ME)

Component B
(HW+SW+ME)

Figure 1: Reorganizing projects from a
discipline-oriented structure to a component-oriented
structure.

Experts on key technologies

For many products, including most of the medical
systems that PMS develops, the success of a product
often depends on achieving excellence in a few key
system aspects. These system aspects usually are of
a multi-disciplinary nature. Cardio Vascular uses an
organizational structure in which individuals, called
Technology Managers, are assigned to carefully se-
lected key aspects of the system. I fulfill this role
for all technologies related to Volumetric Imaging.
This approach works well: it leads to focus in the or-
ganization and stimulates multi-disciplinary devel-
opment in key success factors of the product family.
On a smaller scale, we use the same approach. We
have, for example, a team that specializes itself in
3D image quality and builds up multi-disciplinary
knowledge on a critical system aspect.

24 XOOTIC MAGAZINE

Multi-disciplinary design method-
ologies

Even though, in my daily work, I cooperate with
people from many different disciplines, I must say
that we do not use any structured multi- disciplinary
design methods. This is not surprising - in our
team, onedevelopmentdiscipline dominates: soft-
ware. Teams in which multiple development disci-
plines (hardware, mechanics, software) coexist, and
in which success depends on intensive and carefully
balanced interaction between the parts developed
by the different disciplines, could very well bene-
fit from such techniques. However, I’m not aware
of any development team that uses design method-
ologies tailored for multi-disciplinary development
in practice. Some opportunities in this area might
be:

• HW/SW co-design and implementation
During my period at CERN, I ran into Handel-
C, a programming language and toolkit enabling
hardware/software co-design and implementa-
tion. It allows easy migration of code between
software and FPGA firmware.

• Multi-disciplinary modeling and simulation
For mechatronical designs, I can imagine that
modeling hardware, software, and mechanics in
a single simulation model would allow for even
more advanced systems to be designed, and to
be tested beforehand. Considering the pressure
towards more and more integrated systems, I ex-
pect that such approaches will be picked up in
the near future.

Conclusions

Summarizing, I see that:

• Multi-disciplinary cooperation occurs via sim-
ple down-to-earth negotiation and cooperation.

• The language understood by all disciplines, con-
sisting of concepts, terminology, and principles,
grows together with the product.

• Uni-disciplinary cooperation can have strong
similarities with multi-disciplinary cooperation
when the areas of expertise differ significantly.

• Avoid isles of isolation. Consider reorganizing
projects to combine cooperating disciplines to
component oriented teams.

• Assign people to multi-disciplinary key aspects
of your product line.

• Multi-disciplinary design methodologies are lit-
tle used. They will become more important.

About the author

Dr. ir. Marcel Boosten MTD
is Volumetric Imaging Technol-
ogy Manager at the Cardio Vascu-
lar Product Management Group of
Philips Medical Systems. In this
role, he is responsible for the tech-

nological aspects of one of the key success factors
of the Cardio Vascular business. Since 1994, Mar-
cel holds a M.Sc. in computing science from the
Eindhoven University of Technology. In 1996, he
finished the post-master program in software tech-
nology (OOTI). He holds a Ph.D. in software design
for work performed at CERN, Geneva, Switzerland.
Since 2000, he works for Philips Medical Systems.

November 2003 25

Multidisciplinary Development

The future of Embedded Systems
You Ain’t Seen Nothing Yet

Wim Hendriksen

If you would have a choice, which time in the history of mankind do you want
to live in? I would have selected today immediately. Listening to the Violin
Concerto of Beethoven I write this story. One hundred years ago we had to hire
a complete symphony orchestra to hear a performance of this violin concerto.
That is a little bit outside the budget. What a pity that you could hear such a
marvellous masterpiece only once in your lifetime. Or not at all. . .

Introduction

Last century human beings started to store and re-
produce music. It was a struggle with a nail that
scratched through the rills of a black plastic disk to
reproduce music. We could hear the music through
the rumble of the electrogramophone and we knew
all too good what wow and flutter meant. When you
turned up the bass and the volume, you could expe-
rience the concept of positive feedback with a loud
booming sound.

Today, we can hear at home the world’s finest per-
formers - with a better quality than in the local con-
cert hall - with our own stereo or home cinema sys-
tem at any moment. Although music is just care-
fully moved air, you feel it is pure emotion. Your
Quality of Life improves.

How is this all possible? By using Embedded Sys-
tems in our CD players, DVD players and Sound
Processors. It is not difficult to find equal exam-
ples in cars, nuclear power plants, medical equip-
ment, smart bombs, domotica or gaming devices:
they cannot exist without embedded systems. Em-
bedded Systems are invisible. You don’t see them,
you cannot drop them on your toes and they don’t
smell. Only when they don’t work as expected, you
notice their existence. They hide very modest in
their embedding system. But what is an embedded
system? In literature many definitions are found.

In this paper we will use the definition of NetBSD,
found in [1]:

An Embedded System is a combination
of computer hardware and software

and perhaps additional mechanical or
other parts, designed to perform a
dedicated function. In some cases,

Embedded Systems are part of a larger
system or product.

Quality

One of the greatest misconceptions in the area of
embedded systems is the insistence of developers to
strive for zero defect products. Unfortunately, with
today’s means and methods this goal can be reached
only in an infinite amount of time. Not one com-
pany has the financial resources to reach this goal.
Of course for nuclear power plants you have differ-
ent reliability requirements than for a MP3 player.
But, even with all possible effort the zero defects
goal still cannot be reached. So unfortunately this
goal must be consigned to Utopia. It is better to ac-
cept a “just good enough” approach.

What this means is different for every product. For
a pacemaker just good enough is that the pacemaker
keeps the user alive during the lifetime of the prod-
uct. So you need very high standards on reliability,

November 2003 27

availability, robustness and lifetime. However the
number of features on a pacemaker is limited and
time to market is no issue.

We accept that a GSM phone breaks down after one
or two years, and, when it locks up once a week,
we know that we have to remove the battery for a
few moments to make it work again. But the num-
ber of features increases year after year. Time to
market makes the difference between a commercial
success and commercial disaster.

What is the quality of a product? Is the quality of
a Rolls Royce better than the quality of a Volkswa-
gen Golf Diesel? No, car owners buy a product that
fits their needs for a reasonable price. So value for
money is an important issue, but also status, relia-
bility, bells and whistles, image and design are im-
portant. Robert Pirsig, author of Zen and the Art of
Motorcycle Maintenance [2] changed my mind by
writing:

And what is good, Phaedrus,
And what is not good-

Need we ask anyone to tell you these
things?

You know what quality is when you see it.

About three bugs per thousand lines of code can be
found in commercial products with embedded soft-
ware. And this number of lines increases exponen-
tial, so we have to live up with more and more bugs
in the systems we buy. And still we buy these prod-
ucts. Why? Because customers do have different
ideas about quality than the quality departments of
embedded systems builders. Customers want the
right product on at the right moment for the right
price. So delivering a good product one month late
is just as bad as delivering on a time a product with
fewer features.

Here is an example:

Last month I bought a DVD player. After unpack-
ing I read the owner’s manual [3]. Somewhere in the
middle of the book I saw the following instructions
about a button on the remote control: “Press the
P-scan button to activate the progressive scan fea-
ture for 480p output to a HDTV monitor. The unit
powers down briefly and restarts in a new mode”. I
agree, this didn’t look like a well thought out soft-
ware architecture: I should have been warned.

On a separate inlay I read “Do NOT activate the Pro-

gressive Scan feature when the video output is set to
the SCART setting in the setup menus; unstable op-
eration of the RDV-1060 will result”. So they ask
me NOT to push a button on the remote control of
a new piece of equipment. How long is an engineer
able to resist such an order? I managed to avoid
pushing the button for five long minutes. The DVD
player died instantaneously when I finally did.

It took fifteen minutes before it worked again after
following the “Troubleshooting instructions in case
of No Power or unit freezes up after activating pro-
gressive scan in PAL systems.” Maybe this piece
of equipment should not yet have been shipped to
customers.

But it looks good, sounds great, and displays a mar-
vellous picture and all this for a reasonable price.
So if I had to select again, would I have selected the
same Rotel DVD player? Oh, yeaaah !

Challenges in Embedded Systems
Design

Embedded systems are always designed in multi-
disciplinary teams. So people with backgrounds in
electronics, mechanics, informatics or optics must
work together to get the desired system. Nowadays
projects are done in large to extreme large teams,
sometimes divided over several sites, sometimes in
different time zones, sometimes with different com-
panies. Problems in optics are solved in software;
problems in software are solved in electronics. Or
vice versa, depending on the cheapest way, calcu-
lated over the whole lifecycle of the product.

For instance removing one of the power supplies
from a product may save 500 Euro; with 3000 ma-
chines per year over 3 years this saves 4,5M Euro
on cost of goods. You can program a lot of code
for this amount of money, even though the software
architecture may be not as transparent as before.
(Because two motors in completely different sub-
systems are not allowed anymore to run simultane-
ously, the embedded software must perform some
energy management).

First a team has to define the multidisciplinary re-
quirements. Fortunately today processes and tool-
ing are available to define requirements, but it only
works in one discipline. So here comes the fun part:
Mechanics, Physics and Electronics engineers are

28 XOOTIC MAGAZINE

used to work a little bit bottom up: “Let’s start us-
ing known parts and see where we end”. Informat-
ics engineers in the meantime only want to think
top down, so they refuse to think about solutions,
they only want to think about requirements. In their
hearts they want to start at the “oersoep,” the be-
ginning of life. After a while building this product
starts with the architecture and the system design.
As you can expect the bottom uppers are already
far ahead, but are hindered by the top downers, who
are asking nasty questions about the “what” and the
“why” of the product. Things the first had forgot-
ten to ask. With this way of working, you have a
quick start, but not always in the good direction, fol-
lowed by steering in the right direction. This may
be the best of both worlds, only you don’t learn it at
school.

Somewhere halfway the project all disciplines meet
again and in close cooperation the product is tested,
debugged, verified and validated. When you look at
such a project, it looks more like a jazz band than
a symphony orchestra: everybody starts playing at
the same time, everybody stops at the same time, but
in between everybody plays his own solo without
much attention to his peers. And still the audience
can hear which song they play.

The story about top down and bottom up can be seen
in a lot of embedded systems companies. Every dis-
cipline thinks that the others are complete and utter
idiots, which often results in a lot of red faces, bad
heartbeats, stonewalling and moaning: if everybody
would use my methods, life would be much simpler.
But the others have the same thoughts. Why don’t
we just accept that every discipline has its own de-
sign method, suited best for that discipline? So we
are professionals in our own discipline. And in the
meantime we must learn to communicate in the lan-
guage of the other disciplines.

This is one of the reasons why formal methods
never will survive in the embedded systems world:
only people with informatics background are able to
understand what is written down there, so nobody
outside the own informatics group is able to review
the output of these methods. As a result you very ef-
ficiently build the wrong system (twice), which was
not the initial intention.

When you are able to understand what the restric-
tions of other disciplines are, then you are able
to balance solutions in different disciplines. This

means lots of communication in the project. Lots
of communication is only possible when people are
working close together. That is why projects de-
signing mechanics in Eindhoven and software in
Bangalore are doomed. But the managers don’t see
it until it is integration time. And then it’s too late.

To probe further take a look at the Gaudı́ site of Ger-
rit Muller [4]. It gives a very good insight in the
state of the art of embedded systems architecture,
written by one of the most experienced embedded
systems architects in the Netherlands.

Research

On a number of universities research is done in the
area of Embedded Systems.

PROGRESS (PROGram for Research on Embed-
ded Systems & Systems) wants to improve the
knowledge in the area of Embedded Systems
at Dutch universities and companies in order to
improve the competitiveness of Dutch industry.
PROGRESS has written an Embedded Systems
Roadmap [5]. This book describes a vision of
embedded systems and is used to steer research
in the right direction. More information about
PROGRESS and the running research subjects can
be found on the PROGRESS website [6]. A
new initiative of PROGRESS is to start with Pub-
lic Outreach, which will disseminate the results
of PROGRESS research to the appropriate peo-
ple in companies, schools and universities. When
you need more information about the results of
PROGRESS research, please mail the author of this
story.

ESI, the Embedded Systems Institute in Eindhoven,
is organized around large Dutch embedded sys-
tems companies. Huge research projects have been
started and will be started. Check the ESI web-
site [7].

Dutch Institutes of Higher Education (HBO) have
introduced so called ”lectoraten”. Lectorates about
on e.g. embedded software, embedded systems and
mechatronics are all up and running now. They
mainly focus on pragmatic applied research and
want to serve mainly the small and medium sized
companies in the Netherlands.

In the European programs ITEA and MEDEA an-
other set of projects is running, but it is difficult to

November 2003 29

get an overview over of those these projects.

Education

In the future the Embedded Systems community
needs people with a variety of skills on different lev-
els.

For 30 years Institutes of Higher Education have
delivered engineers on Bachelors level with knowl-
edge of more than one discipline. A lot of the multi-
disciplinary architects today have this background.
They are the pragmatic generalists who have found
their way in the embedded systems jungle.

Unfortunately mathematics is taken out of the cur-
riculum nowadays, while math is the Esperanto of
the technicians. There is no doubt that in the fu-
ture this will have its impact on the employability
of these students in the embedded systems world.

Nowadays Institutes of Higher Education also de-
liver engineers with a Masters degree. These en-
gineers are meant for the above mentioned excel-
lent bachelors students. These Masters are more
generalist or more specialist. An example is the
Hogeschool of Arnhem en Nijmegen which deliv-
ers a masters study in Control Engineering. These
Masters studies are also a good way to keep knowl-
edge up-to-date of experienced engineers. They are
also available in part time versions.

Dutch universities deliver Bachelors and Master
with a more scientific approach: less general-
ist, more specialist. Universities are working on
more multidisciplinary masters. The Universities of
Eindhoven and Enschede are going to deliver Mas-
ters of Science for Embedded Systems students.

On the Stan Ackermans Institute of the University
of Eindhoven you can get your MTD degree in
Technical Informatics. I hope these people become
the next generation of System Architects. An extra
level of abstraction is needed in the complex sys-
tems of tomorrow and MTD’s are able to cope with
this. It is a pity that last year the Stan Ackermans
Institute was broken up and organizationally placed
under the ivory towers of the old faculties. This
means that only mono-disciplinary MTD studies are
possible from now on. A missed opportunity!

What we are missing is “post traumatic education”.
First you build a product in the real world and you
have a feeling that you can do better. Therefore

a fast track is needed for “born” embedded sys-
tems architect. Now it takes too long before they
have enough experience to design large large-scale
projects. Maybe a new future for OOTI?

Epilogue

We are building Embedded Systems for no more
than 30 years now. And look where we are today.
Now try to imagine what YOU can do in the next 30
years. The only restriction is your own creativity!

References

[1] Wim Smit, Wim Hendriksen (2003).Embed-
ded Systems, Smart and Intelligent Tools in an
Increasingly interconnected globalized world
(ISBN 90-806440-2-1)

[2] Robert M. Pirsig (1974)Zen and the Art of Mo-
torcycle Maintenance(ISBN 0-688-05230-4)

[3] Rotel Owner’s manual RDV-1060 DVD au-
dio/Video player 2003.

[4] Gerrit Muller: Gaudi site
http://www.extra.research.philips.com/
natlab/sysarch/

[5] Embedded Systems Roadmap
http://www.stw.nl/progress/ESroadmap/
index.html

[6] PROGRESS
http://www.stw.nl/progress

[7] ESI
http://www.embeddedsystems.nl

[8] Route67
http://www.route67.nl

30 XOOTIC MAGAZINE

About the author

Wim Hendriksen is part time Lec-
tor in the area of Embedded Sys-
tems at the Hogeschool van Arnhem
en Nijmegen besides being an inde-
pendent consultant in his own com-
pany Route67 [8]. He is involved in

the applied research of multi- disciplinary require-

ments management and the application of embed-
ded systems in the homes for senior citizens. Be-
fore 2000 he was manager software development at
ASML and design engineer at ICT. He received his
masters’ degree in electronics at the University of
Twente in 1979. He is a member of the advisory
committee of OOTI and the program committee of
PROGRESS. Email: wim.hendriksen@route67.nl
or wim.hendriksen@han.nl

November 2003 31

Multidisciplinary Development

m

RecentOOTI Publications

The post-masters programmeOOTI is concluded with a design project. The final reports of these projects
are in general publicly available
unless stated otherwise. The following reports have been published lately.

Tim Albu
a Visual Programming Language
ISBN: 90-444-0260-9

Alina Albu
Design Criteria for FPGA Applications
ISBN: 90-444- 0323-0

Michiel Tas
Two Case Studies in Software Analysis and Design
ISBN: 90-444- 0314-1

Yegor Bondarau and Lucian Voinea
IBO+ Dual Streaming
ISBN: 90-444-0315-X

Chris Delnooz and Laurens Vrijnsen,
The Caribou Project: a Scenario-based Approach towards a Prototyping Framework
ISBN: 90-444-0316-8

Dmitri Jarnikov
Towards Balancing Network and Terminal Resources to Improve Video Quality
ISBN: 90-444-0317-6

Jana Kapustova and Alena Kryvinchanka
Metadata for Everyone
ISBN: 90-444-0318-4

Xiaoyo Liu
Integration of Analogue TV Services into MHP
ISBN: 90-444-0327-3
Yarema Mazuryk and Cristian Pau,
Frame Accurate Editing of DV Material on a HDD/DVD+RW Recorder
ISBN: 90-444-0318-4
Andrey Mikheev,
Rendering of 3D Geometrical Objects Embedded into Volume Images
ISBN: 90-444-0320-6

Michiel van Osch,
Client Side Caching of Dynamic Web Pages
ISBN: 90-444-0321-4

Elena Shumskaya,
User Friendly Pulse Programming Environment for Philips MR Scanners
ISBN: 90-444-0322-2

November 2003 33

