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In this paper we will discuss the process of automatic test derivation from formal

specification. The process will be

illustrated in the TorX algorithm. We will

present an optimization of TorX. The extension of the algorithm with explicit
probabilities leads to improvements in the tests generated with respect to the
chances of finding errors in the implementation.

Intr oduction

Testingplaysanimportantrolein theprocesof de-

tecting the errors of the systemimplementations.

Today more and more enegy is concentratedn
building up testingsystemswvhich canproducebet-
terresultsin detectinganfaulty implementation.

The approachby which a set of behaiours are
transformedin testscanleadto the hiddenerrors
not beingdetectedthe methodis not basedon ary
theory). A moreoptimalapproactis to usethefor-
mal specificationand an algorithm for testderiva-
tion for obtainingtestswhich will beableto detect
moreerrorsasin thepreviousapproachThis ability
is justified becausehe formal specificationwhich
expressesherequirementenwhichtheimplemen-
tation shouldwork definealsowhatis an error for
it. Soall behaioursareexpressedn the specifica-
tion andtheoreticallythe testderivation is capable
to detectall theerrorsof theimplementation.

There are two ways of test deriation: the man-
ual one and the automaticone. The manualpro-

cessof testderivation is time consumingand sub—
optimal. Theautomatidestderivationprocesgains
more and more interests. Thereis much effort in

building up theoryfoundationandtoolsin thisarea.
Oneexampleis the projectCote—de—Resys{€dR)
formedby a consortiumof Dutch researchgroups
from academiandindustry Thetool for automatic

test derivation developedby the CdR projectwas
baptizedTORX (se€[5]).

The ToORX tool tries to be an opensystemandto

interconnecits systemwith awide rangeof related
tools. With ToRX, seseralcasestudieshave already
beenperformed(seee.g.[2] andTretmanssarticle
in this XOOTIC MAGAZINE).

The TORX testgeneratiortool is basedon theioco
theory developedat the University of Twente. In
the heartof the theoryis the ioco relation, which
formally expresseghe assumptionsboutstimula-
tion and obseration during testing. An algorithm
for derving asoundandcompletetestsuitewith re-
spectto this relationformsthe centerof the TORX
testgeneratiortool. This algorithmis incorporated
in suchawaythatit canbeusedbothfor on—the—fly
testing(testgeneratiorandtestexecutionare com-
binedin onephaselandbatch—orientediesting(test
generatiorandtestexecutionareseparateghases).

Thisalgorithmis non-deterministién thesensehat
in every statewherethe systemcando bothanin-
put andan outputa choicemustbe madebetween
thesetwo. In practicearandomgeneratowasused
to resole this non-determinismwhich resultedin
anequaldistribution of chances.

Practicalkexperimentshavedthatin mostcaseghis
equal distribution sered very well, but in some
caseswe encounteredan anomaloussituation. A
casestudy concerningan elevator, indicatedthat
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the derived test suite was not optimal. Analysis
shaved that the test suite mostly containedrather
uniform test caseswith respectto the ratio of in-

puts and outputs. Therebyneglecting a collection
of unbalancedehaiourswhich werevery interest-
ing for this particularcasestudy The naturalsolu-
tion to this problemis to extendthe testderivation
algorithmwith explicit probabilities.

This researchon the role of probabilitiesin test
derivation is also inspired by our experiments,
performed with the SDT tool set from Telel-
ogic (see[4]), on testingthe confeence protocol
(see[3]). This casestudyalsoshaved thata poor
testsuite may resultwhensimply selectingat ran-
dombetweennputsandoutputs.

This paperis structuredasfollows. We startwith an
explanationof the TORX testderiation algorithm.
Thenasectionfollows in which we discusghepro-
posedmoadification. We summarizeour findingsin
thefinal sectionof thearticle.
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The TORX algorithm

Before explaining the TORX algorithm, we will

presentin more detailsthe testderivation process.

This processs representeth Figurel.

In this processthe specificationis the input of the
test generationalgorithm. The specificationde-
scribesthe actionsthatthe systemis allowedto do.
Using it, the algorithm producestest caseswhich
aretaken by the testersystemandexecutedagainst
the ImplementationUnder Test (IUT). The tester
and the IUT exchangestimuli and responses. If
one of the executionsleadsto an error the verdict
will beFail. If noerroris discoveredthe verdictis
Pass.If the testergivesfeedbacko the testgener
ation algorithmwhich will be usedfor building up
the test case,the test derivation is called on—-the—
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fly (testgeneratiorandtestexecutionarecombined
in onephase);in ary othercaseit is calledbatch—
oriented(testgeneratiorandtestexecutionaresep-
aratedphases).

specification

test generation
algorithm

test
cases

tester

stimuli

’ responses

lUT

Figurel: Automatictestgeneration

The TORX testgeneratioralgorithmis at the heart
of the TORX architecture. The algorithm has a
soundtheoreticabase known astheioco theory

In this theorythe behaiours of theimplementation
system(physical, real object) are testedby using
thespecificatiorsystemmathematicamodelof the

system).Thebehaiours of thesesystemsaremod-

elled by labelledtransitionsystemssystemswhich

are formed by: 1) a countable,non-emptyset of

states;2) a countable non-emptysetof obserable
actions;3) the setof transitions;4) theinitial state.
Futhermoreaspecialtypeof transitionsystemsthe

input—outputtransitionsystemsareused. In these
systemghe setof actionscanbepartitionedin a set
of inputactionsl; anda setof outputactionsZ;.

Example

For a good understandindet us take the follow-
ing example: the input—outputtransition system
for a simple candy machine(Figure 2). The la-
bel set of this automatonis the union of the set
of inputs L; = {but;} andof the setof outputs
Ly = {null, lig,, choc, } (for this systenthesetof
outputsis extendedwith the null outputwhich de-
notesheabsencef outputs).After pushinghebut-
ton but;, the machinewill produceliquorice (l7g,,)
or nothing (null). Whenthe button but; is pushed
againthe candymachinewill produceliquorice or
chocolate(choc,). If nothing was producedand
thebuttonis pressedthe machinewill provide only
the chocolate. After the chocolateor the liquorice



is given, pushingthe button will give no response
(null output).

but;,
null

but; ,null

but;
chocy,
9

but;j ,null

Figure2: Thespecificatiorof acandymachine.

In iocotheory suchsystemsasthesystenfrom Fig-
ure2 in whichthesetof outputsis extendedwith the
null outputarecalledsuspensiomautomaton.

Oneof themainingredientsof the TORX algorithm
is the correctnesselation. Informally, an imple-
mentationis a correctimplementatiorwith respect
to the specifications and implementationrelation
iocog if for every tracefrom F the setof possible
outputsthe implementationcan generateafter per
formingthetraceis specifiedby the specification.

The correctnes®f animplementatiorwith respect
to a specificatioris checled by executingtestcases
(which specifiesa behaiour of theimplementation
undertest). A testcaseis seenasa finite labelled
transitionsystenmwhich containgheterminalstates
PassandFail. An intermediatestateof thetestcase
shouldcontaineitheroneinput or a setof outputs.
The set of outputsis extendedwith the output
which meanghe obsenation of arefusal(detection
of theabsencef actions).

When executing a test caseagainstan implemen-
tation the test casecan give a Passverdict if the
implementatiorsatisfieghe behaiour specifiedby
thetestcaseor a Fail verdictif theimplementation
doesnot satisfythe behaiour

A testsuiteis a setof testcases.The conformance
relation usedbetweenan implementation: and a
specifications is iocor. In theideal case theim-
plementationshould passthe test suite (complete-
ness)if and only if the implementationconforms.
In practice becausehetestsuitecanbevery large,

completenesss relaxed to the detectionof non—
conformancgsoundness)Exhaustvenesof a test
suitemeanghatthetestsuitescanonly assurecon-
formancebut it canalsorejectconformingimple-
mentation.If animplementatiorpasses testsuite,
thantheimplementatiorconformswith the specifi-
cationwith respectwith the conformancerelation.
Hoever this doesnot meanthat every conforming
implementatiorpasseshattestsuite. For deriving
teststhe following specificationof an algorithmis
presentedn [1]:

The specificationof the testderivation algorithm
Let S bethe suspensiorautomatorof a specifica-
tion andlet F' be a setof tracesincludedin the set
of tracesof S; thenatestcaset is obtainedby afi-
nite numberof recursve applicationsof oneof the
following threenondeterministichoices:

1. terminatethetestcase
t = Pass

2. supplyaninputfor theimplementation
take aninputa suchthatthereexistin F' atrace
which containstheinputa. Remaove from F all
the traceswhich doesnot containtheinput a at
the currentposition and go into the new state
of the specificationthe statereachedvith thea
input).
t=a;t,
wheret, is obtainedby applyingthe algorithm
recursvly to thenew F' andfor the new stateof
the specification.

3. chedk thenext outputof theimplementation

t=>" x;Fail
if outputz is not producedby the specifica-

tion andit is presentn atracefrom F' and F'
containstheemptytrace;

+> " x;Pass
if outputz is not producedby the specifica-
tion andit is presenin atracefrom F' but F'
doesnot containtheemptytrace;

+2 Tt
if outputz is producedby the specification;
t,. is obtainedby applyingthe algorithmfor-
ward for thenew F' (from F' areeliminated
all thetraceswhichdo not containthe output
x) andfor the new stateof the specification
(thestatereachedvith thez output).

The summationd. meanschoice. In the imple-
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mentationof thealgorithminitially F' equalsall the
tracesoff the specification.

ThealgorithmhasthreeChoices In every moment
it canchooseto supplyaninput a from the setof
inputs L; or to obsere all the outputs(Ly U {6})
or to finish. Whenit finishes,the verdictis Pass,
thatis, no erroris detected.After supplyinganin-
put, theinput becomegart of thetestcaseandthe
algorithmis appliedrecursvely for building thetest
case Whenit checkshe outputs|f thecurrentout-
put is presentin out(S), that outputwill also be-
comepartof thetestcaseandthe algorithmwill be
appliedrecursvely. If the outputis not presentin
out(S) thealgorithmfinishesin almostall thecases
with a Fail verdict (if theemptytraceis considere
anelemenbf F). If theemptytraceis notin £ then
theverdictwill bePass.

Thisalgorithmsatisfieghefollowing propertiegfor
aproofsee[l]):

Theorem 1 1. A testcaseobtainedwith this
algorithm is finite and soundwith respectto
10COF.

2. The setof all possibletestcaseghatcanbe
obtainedwith thealgorithmis exhaustve.

For agoodunderstandingf thealgorithmlet usap-
ply it on the suspensiorautomatonfor the candy
machinefrom Figure2.

Theimplementatiorof this algorithmin the TORX

architecturaisuallygeneratethetestcaseon—the—
fly. To simplify our explanationbelov we will use
abatchorientedapproachThesetF' equalsthe set
traces(candy).

A possibleexecutionsequencef the algorithmon
this automatoris:

e First Choice 2 (*selectan input*) (S = S5y,
F = traces(51)):
t = but;;tq;

e To obtain t; the algorithm choosesChoice
2(S = Sy, ' = traces(S2)):
t1 = but;; to;

e Now Choice3 is selected*check the output*)
for computingt, (S = S5, F' = traces(Ss),
€ € F):
to = ligy; to1 + chocy; tas + 6; Fall,

e Forlig, thealgorithmfinishes(Choicel) (S =
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Sz, F' = traces(S7)):
to1 = Pass;

e Forchoc, thealgorithmagaincheckshe output
(Choice3):
too = ligq,; Fail + choc,; Fail + 6;t3; (S = Sg,
F = traces(Ss), ¢ € I);

e If 0 actionis produced,it choosesChoice 1
(S = Sg, F' = traces(Sg)):
t3; = Pass.

Theresultingtestis shavn in Figure 3. Recallthat
the outputd meangheobseration of arefusal.We
seethat but;but;liq, is correctbehaiour. We can
also seethat but;but;choc,choc,, is incorrectbe-

q haviour.

o
bu

o
but

%,
chog
Fail

Pass

liq © \choc,

Fail Pass Fail

Figure3: The Testgeneratedor the candymachines.

The optimization of the TORX algo-
rithm

Our optimization of the TORX algorithm intro-
ducegglobalprobabilitiespy, po» andps to thethree
choicesof thealgorithm. To getstartedwe assume
that the probabilitiesp:, po and ps are globalsby
which we meanthatthey do notdependnthe spe-
cific momentof generationFurthermorewe have:

pL+p2+p3=1,p1 #0,p2 #0,p3 #0

The modified TORX algorithm now readsas fol-
lows:

e ChooseChoice 1 (*terminate the test case*)
with probabilityp; ;

e ChooseChoice2 (*supply aninput for theim-
plementation*with probabilityp.; Selectevery
inputwith the sameprobability;



e ChooseChoice3 (*checkthe next outputof the
implementatiort) with probability ps;

An importantobsenationis thatthe extendedalgo-

rithm still producesthe sametest cases. We only

controlthe chanceof a traceto occur This means
that it keepsthe propertiesof the old algorithm
(Theoreml): a generatedest-cases finite, sound
andtheunionof all testsis exhaustve.

After having extendedhealgorithmwith probabili-
ties,thequestiorwhichwill ariseis: whatvaluewe
shouldgive to theseprobabilities?

The answerof this questionis relatedwith the in-
troductoryproblemof ratio betweerinputsandout-
puts. Givenarequiredratio betweertheinputsand
the outputsin a testtracewhat valuesshouldthe
probabilitiesof sendingan input and receving an
outputhave?

After somecomplicatedcomputationgsee[8]) we
arrivedto aformulawhich maximizesthe probabil-
ity to arrive atthe endof onegiventraceasfunction
of the traceratio betweeninputs and outputs. We
will illustratethe computationin the following ex-
ample

Example

MSC A

MSC but; MSC liq,, MSC chog,

illlnlinlin

Figure4: Testsderivedfrom candymachinerepresented
inanHMSC.

Let usconsiderll executiontracesof thetestsgen-
eratedfrom the candy machinewith a lengthless
than or equal to three. Thesetracesare repre-
sentedin the HMSC (see[3]) from Figure4. We

use HMSC (High level MessageSequenceChart)
to representhe testcaseshecausehis is a corve-
nienttechniquewhich supportseusingpartsof the
diagram

In theHMSC theFall traces{null lig,, null choc,,
null null lig,, null null choc,} are not repre-
sentedbecausean conformancewith our obsera-
tion, only choosingto checkthe outputswill not
leadto interestingtestcaseqso for the sale of the
simplicity we excludedthem). Our exampleworks
even if thesetracesare presentin the set of Falil
tracesconsidered.

Thesetof all the Fail tracesarerepresenteth Fig-
ure5. In thisfigure,alsotheratio betweerthenum-
berof inputsin thattraceandthe numberof outputs
is representedSo for examplethe tracebut; null

lig,, hasoneinputandtwo outputssotheratiois %;

the sameprocedurds appliedto every tracein the
set.

In this setof Fail tracesthereare two traceswith

a ratio betweeninputsand outputsof % six with a

ratio 5, onewith ratio } andonewith ratio 2. It

is clearthatthe numberof traceswith ratio £ is the
biggestandwe will choosét to betheratiobetween
inputsandoutputs(;: = %). For computingthenew

configurationof the probabilitieswe choosep; = 0

if thelengthof thetraceis lessthanthreeandp; = 1

if thelengthis equalto three.The new probabilities
configurationis computedasin thefollowings

x (1—0) ~ 0.33

1
2

1
3

— 1
3+l

Figure5: Fail tracesrepresenteth HMSC.
The old configurationof the TORX algorithm of

(p2, p3) was(0.5,0.5) the new oneis (0.33,0.67).
For computing the probability of getting a Fail
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whenthe algorithmrunsonetime againstan erro-

) = 0.51 andfor thenew configurationit iS Pr,eq,(

neousmplementatior(which hasall theFail traces Fail, TORX, 1 ) = 0.64. This simple caseclearly

from theset)first the probability of every individual
Fail traceshouldbe computed.A graphicalrepre-
sentationfor the computationof the probability of
thetrace(but; null lig, ) is givenin Figure6 for the
old andthe new configurationof (ps, ps).

The old configuration
of (b, By ) i€0.5,0.5

The new configuration
of (p, By ) 1033, 0.67)

{There is 1 input

1%(0.33*1)

The probability of
sending null is 1/

1%(0.5%1)

The probability of | |,----~"
sending nullis 1/3 ' jiq

tlig ¢ ichogy;

The probability of] i na

, . The probability of|
sending liq, is 1/3 | inull}

sending ligy, is 1/

1%0.5*1)*
(0.5%0.33)*
(0.5%0.33)

1%(0.33*1)*
(0.67%0.33)
(0.67%0.33)

‘ Pro (fail, bult null Ii(l:] )=0A0014‘ ‘ P, (fail, bult null Iiﬂ )=0.0018‘

Figure6: Theprobability of generatingandexecuting
thetracebut; null lig,.

After performingthe tracebut;, the IUT cansend
threeoutputsnull, lig,, choc,,, Sotheprobability of

sendingone(for examplenuil) is 0.33. In thesame
way the probabilityof sending/iq,, is also0.33. So,
theprobabilityof generatingandexecutingthetrace
but; null lig, is 0.0014 for the old configuration
of the probabilitiesand0.0018 for the new one. In

a similar way the probabilitiesfor every individual

tracewhich endsin aFail arecomputed.

It is not entirely trivial to seethat optimizing for
eachindividual Fail traceleadsto a bettererrorde-
tectioncapabilityfor the suiteasa whole. In order
to shaw that this is the case,we madesomefur-
thercalculationin the context of this example.The
generaklaimsaboutbettererror detectioncapabil-
ity areoutsidethe scopeof the presenpaper
Theprobability Pr(Fail, TORX, 1) of gettinga Fail
verdictwhenthe TORX algorithmrunsonceagainst
the IUT is obtainedby summingthe probabilities
of every individual Fail trace; so for the old con-
figuration this probability is Pr,4(Fail, TORX, 1
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demonstrateshat a modification of the probabili-
ties canleadto a higherchanceof discovering an
erroneousmplementationin the sameamountof
algorithmruns. This is also clear from the graph
in Figure7 in whichtheprobability of gettinga Fail

(Pr( Fail, TORX, n)) in function of the numbern

of testgeneration-acutiors is expressedfor the
old andfor the new probabilitiesconfiguration).

Pr( Fail, TorX, n)

(PR )=(0.33, 0.67)
L omimimiminn .

0.8

0.6

0.4 (p,B )=(0.5,0.5)

0.2

Pr( Fail, TorX, n)=1-(1-Pr(Fail, TorX,lﬁ
Figure7: Theprobability of gettinga Fail asfunction of
thenumberof testgeneration—eecution.

Conclusions

In this paperwe gave a shortdescriptionof the au-
tomatictestderivation processaninformal descrip-
tion of the ioco theory and we proposedto mod-
ify the TORX test derivation algorithm such that
the probabilitiesof the non-deterministicalterna-
tivesaremadeexplicit.

We amguedthat in some casesthe generatedest
suite can be optimized by adaptingthe valuesof

these probabilities. Case studiesgave evidence
thatassumingan equaldistribution of chancesthe
ToRX algorithm will sometimesyield relatively

few reallyinterestingestcasesOur calculationn

thetoy exampleof the candymachinealsoshaved
that an appropriatechoice of the probabilitiesim-

provesthe chanceto detecterrorsin theimplemen-
tation.

An importantquestionis, of course whetherthere
are heuristicswhich help in selectingappropriate
valuesfor the probabilities. In the casestudies
which we performed clearly the ratio betweenthe

numberof inputsandthenumberof outputsin atest
traceinfluencedthe quality of thetestcasesThere-
fore,we derivedin this paperthe optimalvaluesfor



the probabilitiesin the algorithmgiven somepref-
eredratio betweenthe numberof inputs and out-
puts.

The proposedmodificationof the TORX algorithm

has already beenimplemented. Futher research
couldinvestigatetheimpactof this work ontheon-

going seriesof casestudiesperformedin the CdR

project.

An importantfollow-up of the currentresearchs

the extensionof thetestingtheoryfrom [7] in more
wayswith probabilities. In particularthe study of

the probabilisticcoverageseemgpromising.
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