
Free the Software

Free Software = Software for Free?
Andrew Mikheyev and Laurens Vrijnsen

“Free as in ’free speech’, not as in ’free beer”’
(Free Software Foundation[2])

In this paper, we present the basic characteristics of free software and open
source software. We illustrate their impact on today’s world of computing with
a number of examples, before we compare the two against main-stream, pro-
prietary software. The discussion will not be about holy versus evil, Redmond
versus Red Hat, or Bill versus Linus; that has been covered by too many al-
ready. Rather, we will look at free software from a (system) developer’s point of
view: how about quality, security, usability, development speed, portability and
profitability?

Introduction

Free software, open source. . . just a few terms that
are emerging these days. Many associate it with
software hacked together by a group of enthusias-
tic amateurs from that ancient UNIX-world. Soft-
ware placed on the Internet to make it available for
everyone, for free, without guarantees. That can’t
be serious software, can it? However. . . the growing
popularity of Linux, also in the embedded world, is
for a large part based on the fact that it is free soft-
ware. But what does this concept mean?

In this article we will explore what “free” really
means. First we introduce the concepts of free
software and open source software. After a brief
demonstration of its viability, we present a compari-
son of free software versus proprietary software. Fi-
nally we give some concluding observations.

Free software? Open source?

Contrary to what one may expect, the word “free”
refers to freedom, not to “for free”. Free software
offers following freedoms to its users:

1. The freedom to run the program, for any pur-
pose;

2. The freedom to redistribute copies1 of both
source code and binaries so you can help oth-
ers;

3. The freedom to study how the program works,
and adapt it to your needs;

4. The freedom to improve the program, and re-
lease your improvements to the public, so that
the whole community benefits.

A program is free software if users have all of these
freedoms. Thus, you should be free to redistribute
copies, either with or without modifications, either
for free or charging a fee for distribution, to any-
one, anywhere. Being free to do these things means
(among other things) that you do not have to ask or
pay for permission.

Open source is another commonly used term to re-
fer to this type of software. A closer look at the
two different movements “free software” and “open
source” learns that they use almost the same criteria
for judging software, but with different rationale:

• the free software movement has an ideological
focus towards freedom for the user;

1An exception is made if export regulations are violated by this, e.g. for encryption software.

June 2002 5



• the open source movement takes a more prac-
tical approach: it promotes software reliability
and quality by supporting independent peer re-
view and rapid evolution of source code.

In this article, we will focus on the practical aspects
of free software. Therefore, we permit ourselves
to use free software and open source software as
synonyms. Instead of having developers that create
software in their ivory tower and then give it to their
customers, open source software (and free software)
creates a community of developers and users that in-
teract.

The above-mentioned freedoms have two intriguing
consequences for producers of software:

• they may not get a fee for every copy that is
used;
• their solutions to problems (as found in the soft-

ware) are exposed to everyone outside of the
company, including their competitors.

Many vendors of proprietary software use copy-
rights and patents to prevent users from claiming
the above-mentioned freedoms. On a more practi-
cal note, these tactics prevent knowledge and ideas
to spread and be improved by others, thus limiting
the speed of development and progress in the field
of computing science.

In spite of these consequences, more and more com-
panies are turning to producing open source soft-
ware, as will be demonstrated in the next section.

A few examples of open source
projects

One of the most well-know open source projects is
the Linux operating system. The open nature of its
development has boosted its development and there-
fore has created the basis for its current popularity,
both with “hobbyists” and professionals. People
who have problems with their Linux find that the
community is not only open for development, but
also for providing fast and good support.

Apache, by far the world’s most popular web server
with a 58% market share ([1]), gives another ex-
ample of the high quality provided by open source
software.

Apple was the first mainstream computer company

to build its future around open source, and is part-
nering with the Apache Group, FreeBSD, NetBSD,
and other open source developers to work on evolv-
ing the Mac OS X platform. It has released the core
layers of Mac OS X Server as an open source BSD
operating system called “Darwin”.

IBM chose the open source Apache web server to
support and bundle with its WebSphere suite. It has
since released the Secure Mailer in open source and
launched a web site to distribute alpha-status IBM
technology in source, before they are licensed or in-
tegrated into products. This allows developers all
over the world to both evaluate and influence IBM
research and development.

Sleepycat Software builds, distributes, and supports
Berkeley DB, an open source embedded database
system. Their customers include many of the lead-
ing open source projects, as well as Fortune 500
companies whose own products are proprietary.

These are only a few examples. We encour-
age the reader to search for open source products
that match his/her personal preferences. . . there is a
good chance you will be pleasantly surprised by the
results.

As shown in the above examples, “free software”
can be commercial. One has to realize that software
is more than just a collection of bits: it is a product
that requires support to tune it to specific require-
ments. It is beyond the scope of this introduction
to elaborate on possible business models here; we
refer interested readers to the articleOpen Source
Business Modelsby Anthony Liekens, later in this
magazine.

Open source versus closed source

So free software can be economically viable, but
what are the benefits? In order to answer this ques-
tion, we will compare open source to its opposite,
closed source or proprietary software, on a number
of criteria:

• Quality;
• Security;
• Usability;
• Development speed;
• Portability;
• Profitability.

6 XOOTIC MAGAZINE



Quality

The good quality of the final product is a sum of two
major components: good design and good imple-
mentation. For a major part of open source projects
we can say that usually both are at a very high level.
Two factors contribute to this - the accessibility of
the source code and the professional level of the de-
velopers.

The source code being publicly available can be
analyzed by thousands of amateur-programmers or
professionals whose interests lie in the field for
which the product is being targeted. Everyone is
free to update the source code or send a feedback
to the author of the erroneous module in the case a
bug is spotted. This tremendously accelerates the
testing procedure of the product in comparison with
the closed-source projects, where the testing is usu-
ally done by a limited number of beta-testers, and
only the project’s development team does the cor-
rections in the code.

The availability of the source code partly explains
the high quality of open source products. However,
this is not the only reason for that. The professional
level of the developers participating in open source
projects is on average very high. The Boston Con-
sulting Group in one of its surveys partially men-
tioned in [4] found that the open source developers
surveyed are mostly experienced professionals hav-
ing on average 11 years of programming experience
and the average age of 28.

Peer reviews play an important role in the open
source development process and contribute to the
high quality of the resulting products as well. Since
all open source developers can see source code pro-
duced by the others, they can spot defects in the
code and provide its author with feedback. If low
quality of the source code becomes a persistent is-
sue for some developer, then eventually he will have
to leave the community.

All these factors contribute to the quality of the open
source products, allowing them to score better in
this category than the closed-source products.

Usability

As mentioned before, almost all open source
projects are carried out by people who are fluent in
modern software and hardware technologies. Tra-

ditionally, those people tend to concentrate more on
the technical side of their work rather than paying
attention to such details like user interface design.
The implementation of a convenient user interaction
in their products is not at the top of their priority
lists. This is where the commercial closed-source
products (usually working under Windows), defi-
nitely beat open source products with their amateur-
like user interfaces.

Meanwhile, the open source community seems to
have finally understood the problem. The situation
with the usability of the open source software is
constantly ameliorating. For already several years,
newer versions of popular desktop managers for
Linux having a constantly improving user interface
are a good example of this positive trend. However,
the developers still seem not to have found the right
balance between the amount of functionality they
offer in their interfaces and their ease of use.

Security

In the software systems there are many ways how
security holes can appear. They can be caused by a
bug that makes the system behave in a non-specified
way. They can also appear as a side effect of some
feature of the system - of which no one had ever
thought before. The communication protocols used
or implemented by the system can be poorly speci-
fied and use of them in an improper way can lead to
security problems as well.

What will developers do in order to spot all the po-
tential sources of security problems?

In the closed-source world testing is performed in-
side the company where the product is being de-
veloped. Some companies even hire professional
hackers and let them explore the source code and
the product itself to find as many potential security
issues as possible.

In open source, all software developers of the world
can have access to the source code of the open
source products. If someone suddenly discovers a
security problem, it will be known very soon by
the open source community and the necessary mea-
sures will be taken by the authors of the system or
concerned users. The fact that the source code of
all widely used products is being constantly ana-
lyzed by thousands of software specialists all over
the world raises the security of those products to the

June 2002 7



level yet unreachable by the closed-source software
industry.

Another advantage of open source is that using an
open source product you can be sure that it doesn’t
contain any sort of back-doors - a hidden function-
ality that can be activated and used by the author of
the system, intelligence or military organizations -
without keeping you aware of this. As long as you
have the source code of the system, it will be im-
possible to hide anything like this inside of it.

Development speed

The open source projects are usually developed by
teams consisting of many people distributed all over
the world. Most of them works on the project dur-
ing their spare time, taking no obligations of any
kind before the community. Some people do it be-
cause they believe source code should be open, oth-
ers participate to improve their programming skills
or just for fun. There are also people who do it for
their professional needs, working on the parts that
they need themselves. In all cases, the level of mo-
tivation of the developers is high enough to compete
in development speed with the commercial closed-
source projects.

Since Linux appeared in 1991, its today’s releases
contain tens of millions lines of code - all writ-
ten by the participants taking no obligations of any
kind before the community. Thus, Red Hat Linux
6.2 contained over 17 million lines of code, and
Red Hat Linux 7.1 is composed of 30 million lines
of code which is even more than those 29 mil-
lion lines of Windows XP, which is considered to
be the largest commercial project ever carried out!
These figures are not only a testimonial of the high
development rate that can be reached in the open
source projects, but these figures also give us an evi-
dence of a very high potential scalability of the open
source development process.

However, open source development strategy has its
drawbacks. The non- obligatory participation in the
projects makes it possible for every participant to
stop contributing whenever he wishes so. As a con-
sequence, it is almost impossible to predict the re-
lease date for a next version of any open source
product.

Another disadvantage of the open source develop-
ment process is its development latency for support-

ing new hardware. One can run into troubles trying
to install Linux on a brand new machine equipped
with the latest graphics card, wireless connection
card and other just released hardware equipment
due to the lack of drivers for all this hardware.

Portability

Portability is becoming a very important concern
for the developers who are working on the non-PC-
based platforms. Embedded systems developers, for
example, would greatly benefit from the possibility
to tailor an external piece of software for their own
hardware configuration. This is where open source
solutions are much more attractive than the ones us-
ing closed-source ideology.

At present moment, many companies are work-
ing on their own versions of Linux for use in
their proprietary embedded systems. This dispenses
them from developing new operating system from
scratch.

NetBSD operating system is just another good ex-
ample of the portability of open source solutions.
Up till now this operating system has been ported
to as many as 48 different platforms! Different de-
velopment teams got the possibility to port NetBSD
to the platforms they are interested in, since its ar-
chitecture and source code are publicly available for
downloading.

Such an activity wouldn’t be possible if the source
code of the system had been proprietary and closed.
The company-owner simply wouldn’t have coped
with the task of porting the system for so many
hardware platforms. Most likely, it would favor
one hardware configuration (one specific CPU) and
produce builds for this particular device. This kind
of strategy has been undertaken by Microsoft with
their latest PocketPC 2002 operating system for
which it had been announced that only Intel’s Stron-
gARM processors would be supported starting from
that version.

Conclusions: applicability?

So strangely enough, free software seems to be most
appropriate for those who are willing to pay for it.
In the market of embedded software, it can lead to
closer ties through co-development. Instead of sell-

8 XOOTIC MAGAZINE



ing software, companies can focus on selling sup-
port, e.g. tailoring software products to unique cus-
tomer requirements. Open source software allows
for fast progress in development of new software
products by sharing new ideas. Exactly this is the
secret to why free software products outdistance
their commercial counterparts on a number of as-
pects.

For the large group of home users and office au-
tomation, open source software is becoming more
and more attractive as an alternative for expensive
software products. However, how a company can
sell support to this group of customers remains un-
clear. Therefore, the viability of delivering open
source products to this group is questionable, but
companies must react to the competition offered by
high-quality open source software products.

References

[1] Netcraft, ”Netcraft Web Server Survey”,
http://www.netcraft.com/survey/

[2] Free Software Foundation, ”Philosophy of the
GNU Project”, http://www.gnu.org/philosophy/

[3] The Open Source Initiative,
http://www.opensource.org/

[4] Why Open Source Soft-
ware? Look At The Numbers!,
http://www.dwheeler.com/ossfs why.html/

Andrey Mikheyev holds an
M.Sc. degree in mechanics
and automated control re-
ceived from French Gradu-
ate School of Mechanics and
Microtechniques (Besanon,
France). He also received an
M.Sc. degree in computer science from State Power
Engineering University (Ivanovo, Russia). He is an
OOTI trainee since September 2001.

At this moment, apart from other professional inter-
ests, he is particularly interested in all products and
technologies offered by Microsoft since he thinks
that this passion will help him answer the ultimate
question - “What does an IT-company and its em-
ployees need, to develop great products and thus
survive and flourish on the today’s hi-tech market?”

After a nine-month research
project in Philips Research on
a software architecture for the
domain of emergency medi-
cal care,Laurens Vrijnsen
received his Masters degree
in Computer Science from
the Eindhoven University of
Technology in August 2001.

Shortly afterwards he joined theOOTIprogram. His
current fields of interest are software architecture
methodologies and autonomous systems.

Laurens’ experience with UNIX and free software
dates from 1997, when he was introduced with the
FreeBSD operating system. Ever since he has been
a devoted worshiper of daemons and the UNIX de-
sign philosophy: creating small, reliable solutions.

June 2002 9


