The Strike of OO

Ernest Micklei

ELC Information Technology

Smalltalk was designed to
enforce an object-oriented
approach, in which programs
are divided into self-
contained packages of data
and behavior. Every bit of
code must be defined as the
responsibility of a particular
class, and every class inherits
properties from those above it
in the hierarchy. Smalltalk is a
pure object-oriented, untyped
programming language that
provides single inheritance,
polymorphism and dynamic
binding for implementing any
object. Learning the syntax of
the language takes an
afternoon, but learning the
way around the Smalltalk
class library can be a
daunting task.

Everything is an
object within Smalltalk

In Smalltalk, everything is an object [1]. There is no way to create,
within the language, an entity that is not an object. All actions in a
Smalltalk system are produced by passing messages. A message is a
request for an object to perform some operation. A message can con-
tain argument values for executing the requested operation. For in-
stance, the expression "1 + 2" should be read as "object 1 receives the
message named + with argument the object 2". Normally, it responds
with an integer object 3. Every expression or statement can be ex-
plained by a sequence of message-sends to objects. The C statement

if (x<0)

doLessX();
else

doNotLessX();

translates in Smalltalk to

x<0
ifTrue: [self doLessX]
ifFalse: [self doNotLessX].

Ignoring the syntax differences, the Smalltalk version conforms to
the message passing principle and should be read as follows. Send
the object referenced by x the message < with argument object 0. This
message responds with a boolean object (true or false). Next, the
boolean object is send the message <ifIrue:ifFalse:> which has two
block arguments (the expressions which are enclosed by squared
brackets [...]). The behavior of the boolean objects provide definitions
for this message. For instance, the object true, which is the sole in-
stance of class True, implements <ifTrue:ifFalse:> in which only the
first block argument will be evaluated. False, which is the class of the
object false, implements the same message but evaluates the second
block argument. Booleans also implement messages such as <and:>,
<or:>, and <whileTrue:>.

As mentioned before, in Smalltalk everything is, or rather behaves
like, an object. As a result, you even find objects for the most trivial
constants such as booleans (true, false), the undefined object nil, in-
tegers, and characters. For any object in the system, there exist a class
that specifies its state and defines its behavior. For instance, class
Float defines the behavior of floating point numbers, class Process
for creating lightweight Smalltalk processes and class Signal for part
of the exception handling mechanism. Classes are objects too; they
are responsible for creating new instances and keep a dictionary of
compiled methods for every implemented message.

Readability

The Smalltalk language is said to be self-documenting which is part-
ly due to the infix notation of message expressions. Instead of sepa-

December 1997

rating the arguments from the message selector, the
message selector may be composed by a sequence of
keywords (postfixed by a colon) and arguments.

anAgenda schedule: aMeeting

on: Date today
at: Time now + (2 hours)
with: aPerson

Cube new frontFace leftEdge center x
aText find: pattern startingAt: index ifAbsent: absentBlock

aCollection removeAllSuchThat: satisfactionBlock

By convention, variables names (instance-, tempo-
ral- and argument-) are chosen with semantic hints
rather than referring to their class. When two or
more words are combined to form a name, second
and later initials are capitalized to improve reada-
bility. This convention applies to all names in the
Smalltalk system such as object, variables, and
methods.

Bloc ks

One of the things that makes Smalltalk more elegant
and powerful than other OO languages are block
closure objects. Blocks are unnamed methods. They
encapsulate a sequence of actions to perform those
actions at a later time, perhaps even in a different
context. Blocks are created by enclosing an expres-
sion or statements by squared brackets, e.g. [index
:=index + 1]. Blocks may require arguments which
are specified by argument names, e.g.,

[:costs :eachEmployee | costs + eachEmployee salary]

Blocks are evaluated by sending it the message
<value> or one of its variants <value:>, <value:val-
ue:> and <valueWithArguments:>, depending on
the number of arguments it is expecting. Since
blocks are self-contained objects, they can be as-
signed to variables and be passed as arguments
with messages. This kind of pluggable behavior al-
lows for very compact and generic code. It is not just
passing a pointer to a function; blocks typically
have a private context determined at runtime only.
In that context, references to other objects, which are
known at runtime, may exist. The following exam-
ple uses a block to compute 100 factorial.

| fac |
fac := [(n]n=1

ifTrue: [1]

ifFalse: [(fac value: n
-1)*n]

]

fac value: 100

Control structures in Smalltalk are invoked by
sending messages to various objects. The boolean
objects true and false provide the if-then-else ma-
chinery as mentioned before. Numbers, collections,

XOOTIC MAGAZINE

and blocks provide the looping methods and are
quite natural and consistent with the underlying
object model. A more elaborate sort of for-loop
comes in the form of the <to:do:by:> method. For
example, to compute some CPU-consuming factori-
als:

1 to: 10000 by: 100 do: [:each | each factorial]

According to the message-passing paradigm, this
statement should be read as follows. To integer ob-
ject 1, the message <to:by:do:> is send which takes
two numbers and a block for its arguments. The im-
plementation computes integer values for a tempo-
rary variable and evaluates the block by passing
each such value as its argument.

The basic method <do:> evaluates its one-argument
block for each member of the collection that receives
the message. It is the most polymorphic message for
the collection class hierarchy which includes classes
such as Array, String, OrderedCollection, Set, and
Dictionary.

Reflection

Reflection is essential to the development environ-
ment because it allows for object introspection and
code simulation which are part of a Smalltalk de-
bugger. Also many advanced programming tech-
niques make use of reflexive behavior such as
distributed computing, object databases, and user-
interfaces. Basic messages defined in Object (root of
the world) are the following.

class - Answer the class of the receiver
superclass - Answer the (direct) superclass of
the receiver

instVarAt: anIndex - Answer the value of
instance variable listed at <anIndex>

basicAt: anIndex - Answer the value of indexed
variable numbered <anIndex>

perform: aSymbol - Send the receiver the unary
message with selector <aSymbol>
instVarNames - Answer the collection of
instance variable names of the receiver
classVarNames - Answer the collection of class
variable names of the receivers class

become: otherObject - exchange the references
of the owners of the receiver with that of <oth-
erObject>

Note that these messages access private information
of an object and even allow for modification with-
out respecting the public interface of that object. In
normal cases, developers do not need this kind of
meta-level programming. However, there are
frameworks which are difficult to implement with-
out this reflexive behavior. The following elaborates
on an example that makes use of the <perform:>
message.

Perform reflection

In the expression "Date today’, the message <to-
day> is send to the class Date and returns a new
Date. This mechanism is privately executed by the
virtual machine (VM) of Smalltalk (see also next
Section). In Smalltalk, sending a message can also
be specified explicitly using the <perform:> mes-
sage. The message <perform:> requires its argu-
ment to be a Symbol (a constant literal prefixed by
#). The given example can be re-written to "Date
perform: #today" which instructs the VM to send
the message named <today> to the receiver Date. In
the example, this symbol is specified by its constant
or literal form. However, since the argument is yet
another object, it is also allowed to use variables or
other expressions that reference or evaluate to sym-
bols. Following examples are illustrative ways to re-
write the expression using the <perform:> message.

"variable selector"

| selectorToGetToday |
selectorToGetToday := #today
Date perform: selectorToGetToday.

"selector composition"
Date perform: (to, day) asSymbol.

"keyword selector"
Date today perform: #addDays: with: 1.

The last example illustrates how to write an expres-
sion with <perform:with:> when arguments are re-
quired. This construct has proven to be a powerful
property of the Smalltalk language. It allows for cre-
ating objects whose behavior can be parameterized
using message selectors. A typical example is the
implementation of an interface adapting object. An
adaptor provides an object with an interface trans-
formation without changing the behavior of the ob-
ject or its referencee. In one commercial Smalltalk,
GUI objects require model objects to have the value-
holder interface. For instance, an input field gets its
display string by sending the object <value> and
sets the (changed) string by sending the message
<value:>. In order to connect this input field to the
attribute <name> of a Person object, an AspectA-
daptor can be used which is an object that imple-
ments a value-holder protocol and forwards those
messages by using message selectors from the inter-
face of the Person object.

AspectAdaptor >> value

"Answer the value by dispatching the request
to the receivers object using the get-selector”
~self object perform: self getSelector

AspectAdaptor >> value: anObject

"Set the value by dispatching the request

to the receivers object using the set-selector"

self object perform: self setSelector with: anObject

The expression below creates a new AspectAdaptor
on aPerson object and passes arguments to store the

message selector for getting and setting the value
(aString) of an attribute (name) of the target object
(aPerson). The semi-colons are used for cascading
messages send to the same receiver (an AspectA-
daptor).

(AspectAdaptor new) object: aPerson

; getSelector: #name
; setSelector: #name.

Virtual Mac hine

A system designed using Smalltalk consists of three
parts: the virtual machine, the standard class library
and the application-specific classes and class-exten-
sions. The virtual machine is available as a plat-
form-dependent executable whereas the class
libraries are stored as compiled classes in a plat-
form-independent image file. Compiled classes are
presented by class objects having method objects. A
method contains a bytecode sequence which is a
platform independent compiled representation of
Smalltalk source code. Besides classes and methods,
an image file typically contain many other objects
that represent constant values which are initialized
during development. In some way, they are static
variables but their scope may be limited to a single
class or class hierarchy.

Bytecode e xecution

Since the early implementations of Smalltalk [1],
such as developed by ParcPlace (ObjectWorks) and
Digitalk (Smalltalk/V), there has been a tremen-
dous improvement of both the class libraries and
the virtual machine technology. One of the first and
most important improvement has been the intro-
duction of compiled cache. Current virtual ma-
chines no longer interpret bytecodes to execute a
method definition. Instead, the virtual machine
compiles the bytecode language to native machine
language and then executes it. To prevent compila-
tion of frequently send messages, the native defini-
tions are cached using a particular caching policy
thus trading memory for speed. Early versions of
ObjectWorks were the first examples that made use
of this Deutsch-Schiffman-style dynamic transla-
tion or "JIT" virtual machines. Dynamic translation
avoids the overhead of byte code dispatch by trans-
lating methods into native instructions kept in a
configurable cache.

Object memor y

The Smalltalk environment provides its own mem-
ory management for allocating space for objects and
garbage collection, i.e., reclaiming space used by
unreferenced objects. Current implementations di-
vide the OS allocated memory into several regions
for storing objects that differ for their life-cycle time
or size and complexity. Together with sophisticated
scavenging techniques and customizable memory
policies, the background garbage collection process

December 1997

is able to run effectively requiring minimal CPU
time.

| do not under stand the messa ge

When a message is sent to an object, the method dic-
tionaries associated with that object’s class and its
superclasses are searched at runtime. If none of the
classes implement a method for the given message,
the VM sends the object the message <doesNo-
tUnderstand:> passing the original message (a Mes-
sage) as its argument. Again, the VM must search
for an implementation of a message and will find it
in Object, which is the common superclass to most
objects. The default behavior is to invoke a Small-
talk debugger since this event is considered to be a
program error (note that in Smalltalk, there is no
such thing as a core dump!). However, objects that
override <doesNotUnderstand:> can intercept un-
implemented messages at runtime, and process
them differently. A typical use of this mechanism
can be found in Proxies and Forwarders where mes-
sages must be delegated transparently to and from
other (remote) client objects [2].

Interactive De velopment En viron-

ment

From its birth somewhere in 1972, the development
environment has been based on a graphical user-in-
terface (GUI). Because operating systems where not
yet equipped with window systems, those Small-
talk implementations provided their own window-
ing system. Classes such as Window, Menu, Cursor,
Controller, and Sensor represent basic objects for
constructing a Window system which can still be
found in the standard class library, although nowa-
days they are implemented as wrappers to OS-spe-
cific constructs.

The designers wanted to provide a system in which
objects could live, be manipulated and defined. Al-
though the language can be used without it, the real
power is due to the combination of the language,
the GUI, and an object space in which objects live,
can be changed, and die. Opposed to most other ap-
plication building environment, a Smalltalk appli-
cation is built by extending the standard
environment and finally stripping everything (ob-
jects, classes, and methods) that is superfluous. This
means that applications being build can be run
within the same development environment. A
Smalltalk debugger can be started in any context to
see what messages are send to what objects or to in-
spect the complete stack of the current or other run-
ning Smalltalk processes. Because the development
environment itself is build using Smalltalk, it can be
extended and enhanced to meet any requirements
of the developer. Even the Smalltalk compiler, con-
sisting of a scanner, parser, and code generator, is
part of the system and can be reused or even

XOOTIC MAGAZINE

changed.

Do It Your self

Iinvite the reader to get a Smalltalk system and start
having fun with objects. Several implementations of
Smalltalk are available both on the commercial mar-
ket and from public domain. One particular public
domain implementation of Smalltalk is called
Squeak [3] which was originally developed by Ap-
ple. An interesting aspect to mention is that it in-
cludes a Smalltalk implementation of its own
virtual machine. In order to create a new VM, a ded-
icated C-translator is used to generate source files
for compiling a new native executable virtual ma-
chine. Since the availability of Squeak to the public,
many devoted Smalltalkers have compiled virtual
machines for many different platforms. Other de-
velopers are using Squeak to experiment with new
technologies such as morphing, hyper-literate pro-
gramming, and the Internet; squeaklets are coming
soon now. For commercial purposes, more mature
Smalltalk implementations are used that include
frameworks for object persistency, distributed com-
puting (CORBA), interfaces to legacy systems, and
full-featured graphical user-interfaces.

References

[1] A. Goldberg, Smalltalk-80; The language and its implementa-
tion, 1983

[2] K. Beck, Smalltalk Best-Practice Coding Patterns, 1996
[3] Back to the Future, The Squeak-team, OOPSLA 1997

Pasfoto
Micklei

Ernest Micklei completed his OOTI-programme in
1995. His passion for object technology and the
Smalltalk language in particular, started in 1992
while studying modelling and simulation techniques
using a Smalltalk-based application. In 1996, he co-
founded ELC Object Technology, a division of ELC
Information Technology. As an OO-consultant, he
participates in large 1S-projects and provides sup-
port in analysis, design and implementation of
Smalltalk systems.

