Software Ar chitecture

A ComponentAr chitecture for Simulator
Development

MarcoBras&

The SIMULTAAN Simulator Architecture (SSA) is a distributed simulator com-
ponent architecture, developed in a joint project of Dutch Simulation Industry
and Research Institutes. SSA-compliant simulators are composed of a set of
distributed Components (e.g., sensors, dynamics model, visual system) in or-
der to increase the potential for reuse. The interfaces and capabilities of simula-
tor components are described by formal object model templates, based on the
HLA (High Level Architecture) interoperability standard. Simulator components
that comply to the formal interface descriptions, and a number of rules, can
be reused in another simulator built on the same architecture. A component
repository further facilitates the exchange of well described simulator compo-
nents that are developed by different partners. The SSA also promotes the use
of code-generator tools and middleware for component based simulator devel-
opment. The architecture has been successfully demonstrated last year and
will be further developed by TNO-FEL.

Intr oduction Creating a researchervironment for Simulation
Based Acquisition and design is merely cost-
effective if the simulatorsarehighly reconfigurable
and can be usedthroughoutmary projects. This
suggestghat a simulator should be composedof
simulator componentghat can be integratedin a
uniform manner In general,a simulatoris com-
posedof functional modelsin which eachmodel
canbe mappedonto a separat&aomponentfor ex-
amplea flight simulatormay be basedon a visual
componenta dynamicscomponenta radarcom-
ponent,anda human-simulatomteractioncompo-
nent. It shouldbe possibleto simply replacea sim-
ulator componenby anotherfunctional equivalent
onewhile maintainingthe samesimulatorbehaior.

Simulatorcomponentechnologyinherentlyallows
the participationof differentspecializedccompanies
in the developmentprocessof a simulator Each
participatingcompary focuseson therealizationof
a specificcomponenthatfits bestwith the techno-

Distributed simulationshave becomean indispens-
abletool in mary researclanddevelopmentareas,
both in the military andthe civil domain. A rela-
tive new applicationareais the acquisitionof prod-
uctsthroughthe evaluationof computergenerated
prototypesn avirtual reality environment. This ap-
plicationareais oftentermedSimulationBasedAc-
quisition (SBA). Multiple simulatorsarenetworked
to provide for a specificsimulationenvironmentin
which therequirementsindthe designcanbe eval-
uatedbeforean actualprototypeor productis man-
ufactured. In this way, functionaland operational
constraintsanbeidentifiedin anearly stageof the
developmeniprocessA well-knowvn examplein the
military domainis the developmentof a reconnais-
sancevehicle that must be equippedwith a to-be-
determinedsetof sensorsuitedto performcertain
tasksin acomplex warfareervironment.

Mar ch, 2000

logical backgroundof thatcompan. For example,
apartnerthatis specializedn mechanicaéngineer

ing coulddevelopamotion-baseglatformwherasa

partnerthatis specializedn aeronauticaéngineer

ing coulddevelopaflight dynamicsmodel. Thisap-

proachhasalsobeenrecognizedoy the dutchsim-

ulationindustry representeth SIMNED. This has
led to the SIMULTAAN projectin which the con-

cept of a componentbasedsimulator architecture
hasbeendeveloped,calledthe SIMULTAAN Sim-

ulator Architecture[1, 2].

TheSIMULTAAN SimulatorArchitecture(SSA)is
the main subjectof this article. After providing
somebackgroundnthe SIMULTAAN project,the
SSAcomponenbasedsimulatorarchitecturds un-
folded.

SIMULTAAN

SIMULTAAN wasa 2.5yearsprojectwhich started
early 1997andendedwith a successfutlemonstra-
tion of the componenbasedsimulatorarchitecture
conceptin thesummerof 1999. The SIMULTAAN
projectbroughttogetherknowledgeandexperience
in the areaof simulatorsanddistributed simulation
from universities,researchnstitutesandthe simu-
lation industry in The Netherlands. It was partly
fundedby theDutchinitiative for High Performance
ComputingandNetworking (HPCN).Thesix mem-
bersof theconsortiumare:

e TNO PhysicsandElectronicsLaboratory;
NationalAerospacd_aboratoryNLR;
Delft University of Technology;
SiemendNetherlandd\V;

Fokker SpaceBV;

HydraudyneSystems& EngineeringBV.

Two main results of the project can be distin-
guished:

1. SIMULTAAN Simulator Architectue (SSA) A
genericframenork applicablefor a wide range
of simulators,including mannedmock-upsof
vehicles,high-fidelity flight simulatorsandun-
mannedsimulators.

2. Permanentintellectual Infrastructue. The SI-
MULTAAN consortiumstrengthenedvorking

XOOTIC MAGAZINE

relationshipgetweernits partners.

The SSA definesa simulatorcomponentarchitec-
ture that addresseshe identified needsfor a suc-
cessfufederatedevelopmentprocesandmalesef-

fective useof simulatorcomponentechnology The
SSAis intendedio maximizethere-usepotentialof

componentdy defininga standardnterfacefor the
developmentof simulatorcomponentsin this way
simulator developmenttime will be reduced. By

making sure that componentcomply to the stan-
dard interface, and comply to a numberof rules,
they canbere-usedn othersimulatorghatarebuilt

on the samearchitecture.The SSAis usedin are-

searchand developmentervironmentthat requires
rapidre-configurabilityof simulatorsput it canalso
beusedin anindustrialenvironment.

The successfulresultsof SIMULTAAN have led
to a further developmentof the SSA framework
by TNO Physicsand ElectronicsLaboratory the
projectleaderand primary developer of the SSA.
TheSSAis alsoin theproces®f beingintegratedin
TNO-FELs ElectronicBattlespacd-acility (EBF),
which is a researchacility for distributed simula-
tions and virtual reality technologyin the military
domain[3]. More informationon the EBF canbe
foundonthe EBF web-site[4].

SIMULTAAN Simulator Ar chitec-
ture

Simulator componentechnologyis basedon dis-

tributed simulationtechnology A distributed sim-

ulationtraditionally consistsof multiple networked

applicationsthat are executedon possiblyvarious
computerplatforms [5]. This approachrequires
aninteroperabilitystandardhatallows applications
to communicatenith oneanothemo matterwhere
they arelocatedor who hasdesignedthem. Sev-

eralinteroperabilitystandard$iave beendeveloped
independentlyby several organizationsn industry
andgovernment.

A well-known interoperability standard is the
CORBA standard, developed by several indus-
trial partnersorganizedin the ObjectManagement
Group|[6]. Anotherinteroperabilitystandards ini-
tiated by the United StatesDepartmenbf Defense

in 1995, which is namedthe High Level Architec-
ture (HLA) [7].

The HLA standards aimedat distributed simula-
tions and promotesthe re-useof simulationmod-
els. HLA attemptsto specifythe generalstructure
of the interfacesbetweensimulation applications
withoutmakingspecificdemand®ntheimplemen-
tation of eachsimulation. HLA is developedin a
co-operatie, consensus-basdarum of developers,
organizedin the Simulation Interoperability Stan-
dardsOrganization(SISO)[8], andis currentlyin
the processof becomingan IEEE standard(IEEE
1516). For a change,the steeringcommitteesof
CORBA andHLA actually do work together and
thetwo standardso-existin theworld of distributed
programmingln fact,thereferencémplementation
of the HLA software actuallyrelieson a real-time
CORBA implementatiorfor providing application
interoperability

Sincethe SIMULTAAN SimulatorArchitectureis
basedon the HLA standardsomeHLA terminol-
ogy is inevitably usedin the next sections.There-
fore,wegiveaquick HLA mini-survival guidehere.
Seethe Xootic Magazineon Simulationfor a more
completeintroduction[9]. A federtion consistof
simulationapplicationscalledfedeates Federates
may be simulation models, datacollectors, simu-
lators, or other tools that interactwith other fed-
erates. A simulationsession,in which a number
of federategarticipate,is calleda fedeation exe-
cution Simulatedentitiesare calledHLA objects
Simulationeventsare calledHLA interactions All
possibleexchangeof data-typedetweerthe feder
atesof afederationis definedby the Fedeation Ob-
jectModel(FOM). Thecapabilitiesof afederatejn
termsof theobjectsandinteractionst canexchange
with otherfederatesjs definedby the Simulation
ObjectModel (SOM). The FOM andSOMsmaybe
regardedascontractghatfunctionasinterfacespec-
ificationsfor thefederatedevelopers.

TheHLA is formally definedby threeparts[7].

e The Interface Specificationis a formal, func-
tional descriptionof the interface betweenthe
HLA applicationandthe underlyingRun-Time
Infrastructureseebelow.

e A setof HLA Rulesis definedto which HLA
applicationshave to comply.

e The Object Model Templatesdefine the struc-
tureof the FOM andthe SOM descriptions.

The Run-Tme Infrastructue (HLA-RTI) is theim-

plementationof the HLA Interface Specification
andforms the basicsoftware communicatioriayer
for all HLA federates.The HLA software canbe
comparedo a distributed operatingsystemfor all

communicationdetweenthe federatesn a federa-
tion. Althoughthe HLA standards anopenstan-
dard,RTI implementationsirenot consideredpen
Sourcesoftware. More informationaboutHLA can
befoundontheHLA web-site[7].

Now the SIMULTAAN Simulator Architecture
(SSA) alsofacilitatesinteroperabilitybetweerfed-
eratedn afederation.Onthelevel of federateand
federationsthe SSAis fully compatiblewith HLA.
As anextensionto HLA, the SSAintroducesanewn
level, that of the federateComponent.A SIMUL-
TAAN federateis actually composedof SIMUL-
TAAN ComponentsThis meanghatasinglesimu-
lator is actuallya distributed simulation,composed
of multiple applications,called Componentseach
responsiblefor a specific functional model of the
simulator The SSA facilitatesinteroperabilitybe-
tween Componentsnside a federate,in a similar
mannerasthe HLA-RTI doesbetweerfederates.

As the SSAis an extensionof the HLA, its defi-

nition is alsobasedon threeparts,namelythe SSA
InterfaceSpecificationthe SSARules,andthe SSA
Object Model Templates,which are all extended
versionsof their HLA equialents[7]. The SSA
identifiesthe following key architecturalkelements:
Component Run-time Communicationinfrastruc-
ture (RCI), Fedeate Manager (FM), and Scenario
Manager (SM), (Figurel).

A Components the basicbuilding block for a fed-

erate. All Componentdnteractwith the simula-
tion environmentthrougha standardnterfacethat
is provided by the Run-timeCommunicationinfras-
tructure, andwhichis animplementatiorof the Sl-

MULTAAN InterfaceSpecification.

The Run-timeCommunicatiorinfrastructue (RCI)

is anobject-orientedniddlevarelayerfor exchang-
ing databetweenComponentsaswell asbetween
federates. The RCI provides the Componentde-
velopera high-level abstractionlayer to shieldthe
developer as much as possiblefrom the underly-

Mar ch, 2000

ing communicatiorframework, which is, probably TheFederatédanagepreparests Componentsor
not surprising,the HLA-RTI. For the communica- joining, i.e.,connectingo, thefederation Whenthe
tion betweenthe distributed Componentsprefer federatehasjoined the federation,statetransition
ably adedicatechigh-performancé&iLA-RTI could may be requestedy the ScenarioManager The
beused.Seesection‘Run-timeCommunicationin- FederateManagerreceves thesestatetransitions,
frastructureandCodeGeneration’belav foramore checksthemwith thefederates state,andforwards
elaborataliscussiorof the RCl middlevarelayer themto the Components.lt collectsthe responses
Each federate is composedof a set of dis- fromtheComponentsandsendsareplyto the Sce-
tributed Componentswith one obligatory Compo- harioManagetin return.

nent, called the Fedeate Manager. The Federate
Manageractsasanintermediarybetweerthe Com-
ponentsin the federateand the restof the Feder ,;
ation; it representghe federateto the federation eonTIetRe L \
andit presentgnformationfrom the federationto
its ComponentsThe FederatéManageralsokeeps ¢
track of the stateof its federateandits constituent START CONFIGURE JON ggﬁg% 2?&@5&
Components.
The ScenarioManager is a specialfederatethat GET READY. ..
controlsthebehaior of thefederatesvithin thefed- P
erationby issuingcommandso the Federatévlan- S]
agers(suchas'start scenarioexecution’, ‘stop sce- RESUME ,@
narioexecution’,‘hold scenaricexecution’). Erecuton £,

SAVE

Real-Time
Operation

RESTORE 7 e
RESTO i I%S) RESETS /

STOP}
3 DISCARD

Federate) “‘_,.#SCENARIO
Federate Execution
‘ Component 1 ‘ ‘ ComponentN‘ Manager SIOPPEA €
Federate 1 ERROR
RCI
Federate _— Federate Manager in charge of state transition
‘ Component 1 ‘ ‘ Component N ‘ Manager | | . | Scenario Manager in charge of state transition
Federate M Figure2:
Scenario
Manager . . .
The SSA Interface Specification(SSA-IF) is a for-
- mal, functionaldescriptionof theinterfacebetween
Federation the applicationand the Run-time Communication
: . Infrastructurg(RCI). It describesheinterfacecalls
Figurel:

thataComponentisego exchangedatato andfrom
Although this article should not be too techni- otherComponentsindfederates.
cal, one SSA Rule is especiallyworth mention- The SSAObjectModel Template{SSA-OMT)are
ing, namelythatall Componentsnustadhergo the standardizedormatsto definethe functionality of
StateTransitionDiagram(SSA-STD),whichis de- federatesndcomponentsandtheirrespectie inter
pictedin Figure2. The SSA-STDis usedby the actions.The SSA-OMT s equalto the HLA-OMT
FederateManagerto co-ordinatethe statetransi- [7]. Thedifferentobjectmodelsusedin theSSAare
tions of the federateduring the scenaricexecution. presentedn Section3.

XOOTIC MAGAZINE

Run-time Communication Infras-
tructur e and Code Generation

The Simulator Architecture(SSA) is the SIMUL-
TAAN architecturefor networked simulatorsand
tools. The SSAprovidesservicego boththe Com-
ponentsand federates. All Componentsinteract
with the simulationervironmentthrougha standard
interface,which is provided by the Run-timeCom-
municationinfrastructurgRCI).

TheRCl providesthecomponenteveloperwith the
necessarjunctionalityto developa SSAcompliant
simulatorcomponenthatcanbeintegratedin asim-
ulator The RCI provides a protocol-indepenght
interface to the simulatedervironment. The RCI
implementsall functionality describedcby the SSA
Interface Specification. Componentsio not inter
actdirectly with eachother but only via callsto the
RCI softwarelibrary thatis linked with the compo-
nents application.

Thedesignof theabstractionayerandthe Applica-
tion Programmes Interface (API) arediscussedn
full detailin anotherpaper[1], andis briefly sum-
marizedbelow.

The RCI middlevarelayer performsthe following
tasks:

e exchangeof databetweenComponents;

¢ handleobjectandinteractionbookleeping;

e procesauserdefinedevent callbackfunctional-
ity;

e presenbbijectattribute updatesandinteractions
to the Component;

e maintain synchronization between Compo-
nents.

The RCI consistsof two separatesoftware sub-
layers,oneis calledthe Ervironmentandthe other
is calledthe CommunicatiorsServer(seeFigure3).

The Environmentlayer provides componentswith

an overviev of both the federateand the federa-
tion. The Environmentreflectsthe currentstateof

thefederatej.e., the stateof all its components|t

allowstherun-timecreationanddeletionof compo-
nents. It alsomaintainsdataexchangeinterestsof

Components.

a Component

| ——————————— 1 user-defined
} | Application ' application
i | Environment i
i | Communication Server : RCI
| (CY i
e — |
HLA-RTI High-performance
based CS SCRAMNET based CS

network

Figure3:

For example,the Visual Componenbf a simulator
needsthe position of the simulatedvehiclein the
simulatedworld, whichis calculatedby the Dynam-
ics Component.Now the Visual Componenimust
subscribeto the objectthat representshe stateof

the simulator; this is donethrough an invocation
of the method Ervironment::subscridloObjed()

without knowledge of which other Componentac-
tually updateghe simulators state.In casethe Dy-

namicsComponentalculateghenew position,this
componenmustpublishthesimulators stateobject
of which the positionis an attribute throughinvo-

cationof themethodErnvironment::publishObjet().

Corversely the DynamicsComponentapplication
doesnot needto know to which otherfederateghe
new simulatorstatemustbe sent. This is actually
doneby the CommunicationServersub-layerthat
matcheghe publishand subscribeinterestusinga
distributedcomputation A similarapproachs used
to distribute eventsbetweenComponents.

TheCommunicatiorSenerrepresentthelayerthat
takescareof theactualcommunicationlts function
canbe comparedo thatof the HLA-RTI. In away
it represents distributed operatingsystem. The
interface betweenthe Ernvironmentand the Com-
municationSener is basedon the HLA Interface
Specification[7]. A CommunicationSener com-
municatesvith otherCommunicatiorSenersto ex-
changebasicobjectand event informationto pro-
vide the Environment with the most recentdata

Mar ch, 2000

updates. Currently the CommunicationSener is

basedon the HLA RTI (seeFigure 3). Dedicated
versionsof the CommunicatiorSener canbe used
for the supportof specificsimulationstandardsor

network layer protocols. The middlevarelayer ap-
proachnow requiresonly minimal changesn the

application-specifisourcecodeas the application
sourcecodemerelyinteractswith the Ervironment
layer

The innovative approachof SSA is that the RCI
middlevarelayerextendsthefederatenteroperabil-
ity conceptsof HLA by providing data-e&change
betweenComponentsn a similar way. Compo-
nentsuseequialentsof specificHLA capabilities,
such as federationmanagemenservices,declara-

tion managemenservicesand object management

servicesin a similar way [7]. In this way, the
RCI abstractscomponentdrom the interoperabil-

ity protocolsandnetwork hardware,andestablishes

a clearseparatiorbetweencommunicatioraspects
and application-specifioor domain-dependenas-
pects.Thisenablesa Componenteveloperto focus
ontherequiredapplicationfunctionalityratherthan
thetechnicaldetailsof the communicatioraspects.

To further facilitate the developerwith an abstrac-
tion of thecommunicatiorit is notedthatthe simu-
lation objectsandthesimulationeventsareformally
describedthrough its ComponentObject Model
(SSA-COM),whichis anextensionto theHLA Ob-
jectModel Templateandis similarto the SOM (see
Section3). This enableghe useof automaticcode
generatorgo constructobject-orientecclassegfor
instanceC++ or Java) for eachuserdefinedsimula-
tion objectandsimulationeventin the SSA-COM.
Theautomaticcodegeneratiorapproacthasproven
to be highly successfulnot only in SIMULTAAN
but alsoin otherprojects(for examplethe ‘Laguna
Beach:HLA onbaywatch’project,in whichtheau-
tomatically generatectodeis linked with ‘legag/’
simulationcode[10]).

The generatedcode shields the application pro-
grammerfrom doing elaboratebookkeeping con-
cerningattribute updateswhile makinguseof the
encoding and decoding facilities offered by the
RCI to communicatettribute andparameteralues
alongthe physicalnetwork.

For example,the SSA-COM may describea sub-

XOOTIC MAGAZINE

classcalled ‘AggregateEntity’ with ‘EntitylD’ as
oneof its integer attributes, statedin the following
SSA-COMdescription:

Class (ID 10) (

(Name "AggregateEntity")

(Attribute (Name "EntitylD")
(DataType ‘integer")
(Cardinality "1

)

(Attribute

)
(SuperClass 2

)

The RCI Code Generatowill producethe follow-
ing pieceof object-orientedsourcecode(in terms
of a pieceof a C++ headerfile). The component
developeris now ableto provide EntitylD with a
value,whosenew valueis subsequentlylistributed
to otherinterestedComponentdy the RCI middle-
ware layer, basedon the publishand subscribean-

terestsf the Components.
class AggregateEntity
public BaseEntity{
public:
AggregateEntity();
virtual “AggregateEntity();

int

void
private:

int m

getEntitylD();
setEntityID(int);

k

The useof codegeneratordave alreadyproven to

be usefulin mary other computingsciencedisci-

plineswhereformal languagesreintroduced. As

moreandmore(partsof) specificationanddesigns
arewrittenin aformal (meta-)languagesodegener

atorswill beusedmorefrequentlyto minimize pro-

gramminganddehuggingtime.

SIMULTAAN Simulator
ment

Develop-

SIMULTAAN FederatdDevelopmentdescribeghe
way partnersshould manugcturefederates. New
componentsnay have to be developedor existing

componentsnay needto be adapted. During the
designprocess,such needswill be identified and
translatedo componentequirements.The Feder

ate Developmentprocesswill resultin a validated
simulatoror tool. A federationcan be createdby

manufcturingits federatesand definingthe inter-

actionsbetweenthemin a SIMULTAAN Federa-
tion Object Model (FOM), which is equivalentto

theHLA-FOM.

Userrequirementdor the federateare specifiedin

cooperatiorwith the end-useandcanberegarded
as a starting point for the development. From
the userrequirementsthe systemrequirementsre
identified. The systemrequirementsnitiate the de-
signprocesof the SIMULTAAN Federate.

EachComponentasa ComponentObject Model
(SSA-COM).This objectmodelformally specifies
the object attributes and interactionsa component
publishesto other components. It also specifies
the object attributes and interactionsa component
will subscribeto during run-time. Eachfederate
is built up from a set of interoperabledistributed
ComponentsTheinteractionsandobjectattributes
thatareexchangedetweenall Component®f one
federate,and including the datathat is exchanged
with other federatesjs formally describedin the
SIMULTAAN SimulatorComponentbjectModel
(SSA-SCOM).The differencebetweenthe SCOM
andthe SOM is thatthe latter merelydescribeghe
interfacebetweenSSA federatesandnot the intra-
Federateommunicatiorbetweerthe Components.

The SSA-COM and the SSA-SCOMobject mod-

els have similar roleson the componentevel com-

paredwith the SOM andthe FOM on the federa-
tion level. Both the SSA-COM and SSA-SCOM
descriptionsareexpressedn the standardize 6SA
ObjectModel TemplatesThe SIMULTAAN object
modelsenableclearspecificationdor the capabili-
tiesof federatesndcomponentskFederatandfed-

erationdevelopmentin SIMULTAAN arecompara-
ble to the HLA FederationrDevelopmentand Exe-

cutionProcesgFEDEP)[11].

A federatewill be designedwith optimal use of
existing components. Thereforeaccesss needed
to the descriptionsof object modelsand compo-
nentsthatareavailablein the SIMULTAAN Object
Repository(SOR).The SORwill containSSAcom-

pliant simulators componentsmodelsandtools. It
may also contain configuration,initialization, and
validation data. In traditional software engineer
ing, asoftwareproductis validatedagainsits well-
definedfunctional requirementswhich should re-
flect the sponsors needs. In the simulationfield,
however, theissueof validationis muchmorecom-
plex, especiallyif somereal-world phenomenare
to be simulated.It is often unclearwhat aspectof
therealworld have to be modeledto obtaina sim-
ulationthatis usefulfor its intendedpurpose Ver
ification and validation proceduresare commonly
usedto identify andsolve problemsin a particular
product,but they canalsobeusedto merelyassess,
anddocumentthe quality of a product. This doc-
umentationis actuallythekey to the succes®f the
‘re-use’ of simulationcomponents:it is often the
primary sourceof information on which the deci-
sionis basedvhetherthecomponentanbere-used
aspartof someotherproduct. A well-definedver
ification andvalidation policy, in conjunctionwith
anup-to-dateRepositoryis themostprominentpre-
conditionfor the succes®f simulationcomponent
re-usability[12,13].

SIMUL TAAN Simulator Demonstra-
tion

A functional proof of conceptof the SSA com-
ponentbasedsimulatorarchitecturehasbeenpre-
sentedat a large demonstratiorn the 241 of June,
1999at TNO-FEL in which all SIMULTAAN part-
nersparticipated.The demousedthe referenceRTl|
(version 1.3.5) as the underlying communication
layerfor the RCI CommunicatiorSener.

A rescueand evacuationscenariowas conceved
that comprisedtwo human controlled fire-truck
simulators(federates)ocatedat TNO-FEL, in the
Hague, and a rescuehelicoptersimulator located
and controlled at Delft University of Technology
Togethemwith instructorssupportatrainingsimula-
tion exercisewaspresentedo theaudienceTheau-
diencewas presentedvith real-timevisualimages
of thevirtual terrainfrom within the helicopterand
themainfire truck.

?7?7? presenta schematioview of the federateghat

Mar ch, 2000

were developedfor the demonstration.In this fig-
ure, VH1, VH2 and VH3 representmannedfire
truck simulators,HC1 is the helicopterfederateat
TUD, CCL1is acontrolcenterwith traininginstruc-
tion andmonitoringtools,andSM1 depictsthe Sce-
nario Manager The boxes (vertical) representhe
variousComponentshatwerepresenin eachsim-
ulator (federate).

>
[

z

Iv -Ic -Ig il» I< I>
2l1&]|2||5]|]5

Av

S

E

F M

E

VHL VH2 VH3

Figure4:

Examplesof the several typesof componentsare
the FederateManager(FM), a Dynamics Model
(DM), a Visual System(VS), a Mock-up Sener
(MS), a Motion Platform (MO), an Audio System
(AS), and a performanceassessmenComponent
(PA). Eachcomponentvas executedon a separate
computer The computerhardware consistedof a
mixture of high-performancgraphicswvorkstations
(SGIl)andWindows NT machinesBothlow fidelity
andmediumfidelity mock-upsor human-simulator
interactionwereprovided.

Themostimportantresultof thedemonstrationvas
thereductionin testandintegrationtime. Theinte-

grationphasetook lessthantwo weeks,whichis a

remarkableachiazementfor the developmentof so
mary new componentsvith mary differenttypesof

hardware and software,andthe involvementof six

partnerdn aresearchelatedproject. To alarge ex-

tent,thismaybe contrikutedto theuseof formalin-

terfacedescriptiongor simulatorcomponentsand
theuseof amiddlevarelayerapproacHor abstract-
ing theapplicationdrom the compleities of thein-

teroperabilitystandard.Componentdevelopersre-

ally focusedon the componens functionality as
well asall non-functionalrequirementsinsteadof

dealingwith all intricate communicationand net-
work issues.

XOOTIC MAGAZINE

Concluding remarks

In thispaperthe SIMULTAAN architecturdor sim-
ulatordevelopment(SSA) hasbeendiscussedThe
SIMULTAAN SimulatorArchitectureis intendedo
maximizethe re-usepotentialof simulatorcompo-
nentsby defininga standardnterface.Components
thatcomplyto thestandardnterface,andcomplyto
a numberof rules,canbere-usedn anothersimu-
lator built onthesamearchitecture.

The global designof the SIMULTAAN Simulator
Architecturewas presentedfollowed by the Run-
time Communicatiorinfrastructureandthe middle-
ware layer approach. Although the conceptsare
basedon HLA, someimportantdifferencescanbe
identified. The maindifferencedetweerHLA and
the SIMULTAAN approachcanbe summarizedas
follows:

e The SSAidentifiesnetworked Componentand
necessargommunicatiormechanismbgetween
componenténsideadistributedfederate.

e The SSA provides the Componentdeveloper
with an abstractiorlayer (or middle-ware) and
acodegeneratoto hidethe compleities of the
underlyinginteroperabilitystandard.

e The SSA shieldsthe interoperability standard
from the developer to enable migration to a
future interoperability standardwhile keeping
changesn theapplicationcodeto a minimum.

The first implementatiorof the RCI hasbeenbuilt
ontopof theHLA-RTI. Currently thelessondearnt
arebeingimplementedandthe SSAwill beusedby
the SIMULTAAN partnershis yearin a follow-up
project.

References

[1] Nico Kuijpers, Paul van Gool, Hans Jense,"A
ComponentArchitecturefor Simulator Develop-
ment”, Proc1998SpringSimulationinteroperabil-
ity Workshop,Orlando,Florida,March1998

[2] Marco Bras€, Wim Huiskamp, Olaf Stroosma,

“A Componenfrchitecturefor Federatéevelop-

ment”, Proc.1999Fall Simulationinteroperability

Workshop,Orlando,Florida, Septembef 999.

(3]

N.H.L. Kuijpers, R.J.D. Elias, R.G.W
Gouweleeuw Electonic Battlefield Facility
in Battlefield Systemdnternational96 ‘Integrated
Battlefield Management’, Volume 2, 4-6 June

9]

Marco Bras€ and Nico Kuijpers, “Standardising
DistributedSimulations:TheHigh Level Architec-

ture”, Xootic Magazine Volume7 Numberl, July

1999.

1996,Chertsg, UK.

[10] Leo Breebaart,Marco Bras&, Wim Huiskamp,
[4] TNO-FELs Electronic Battlespace Facility, HansJense ,LagunaBeach:HLA onBaywatch?”,
http://www.tno.nl/instit/fel/ebf/en/. Proc.1999Fall SimulationinteroperabilityWork-
shop,Orlando,Florida, Septembel 999.
[5] DIS SteeringCommittee,“The DIS Vision, Map
to the Futureof Distributed Simulation”, Version [11] Defense Modeling and Simulation Office
1, Institutefor Simulation& Training, May 1994, (DMSO), “Federation Developmentand Execu-
Orlando,Florida,IST-SP-94-01. tion ProcesgFEDEP)Model".
[6] CORBA standardhttp://www.omg.og/corba. [12] J.Rumbaugtetal, “Object-Orientedviodelingand
Design”,Prentice-Hall1991.
[7] HLA TechnicalReportshttp://hla.dmso.mil
[13] E. Gammaet al, “Design Patterns— Elements

(8]

Simulation Interoperability StandardsOrganiza-
tion, http://www.sisostds.aJ.

of ReusableObject-Orientedsoftware”, Addison-
Wesley, 1995.

Author Biography

Marco Bras€ is a memberof the scientific staf in the Command& Control
and Simulation Division at TNO Physicsand ElectronicsLaboratory(TNO-
FEL). He is a software architectfor several projectsin the areaof distributed
simulation bothnationallyandinternationallywith partnersn thearmedforces
andsimulationindustry His presentactvities arefocusedon HLA-compliant
componenbasedsimulatordevelopmentstratgiesfor real-timesimulators He
holdsa M.Sc. in ComputingScienceanda Masterof TechnologicaDesignin
Software Technologyboth from Eindhoven University of Technology He can
bereachedy E-mail at ‘brasse @fel.tno.nl’.

Mar ch, 2000

