
Software Ar chitecture

A ComponentAr chitecture for Simulator
Development

MarcoBrasśe

The SIMULTAAN Simulator Architecture (SSA) is a distributed simulator com-
ponent architecture, developed in a joint project of Dutch Simulation Industry
and Research Institutes. SSA-compliant simulators are composed of a set of
distributed Components (e.g., sensors, dynamics model, visual system) in or-
der to increase the potential for reuse. The interfaces and capabilities of simula-
tor components are described by formal object model templates, based on the
HLA (High Level Architecture) interoperability standard. Simulator components
that comply to the formal interface descriptions, and a number of rules, can
be reused in another simulator built on the same architecture. A component
repository further facilitates the exchange of well described simulator compo-
nents that are developed by different partners. The SSA also promotes the use
of code-generator tools and middleware for component based simulator devel-
opment. The architecture has been successfully demonstrated last year and
will be further developed by TNO-FEL.

Intr oduction

Distributedsimulationshave becomean indispens-
abletool in many researchanddevelopmentareas,
both in the military and the civil domain. A rela-
tive new applicationareais theacquisitionof prod-
ucts throughthe evaluationof computergenerated
prototypesin avirtual realityenvironment.Thisap-
plicationareais oftentermedSimulationBasedAc-
quisition(SBA). Multiple simulatorsarenetworked
to provide for a specificsimulationenvironmentin
which therequirementsandthedesigncanbeeval-
uatedbeforeanactualprototypeor productis man-
ufactured. In this way, functionalandoperational
constraintscanbeidentifiedin anearlystageof the
developmentprocess.A well-known examplein the
military domainis thedevelopmentof a reconnais-
sancevehicle that mustbe equippedwith a to-be-
determinedsetof sensorssuitedto performcertain
tasksin acomplex warfareenvironment.

Creating a researchenvironment for Simulation
Based Acquisition and design is merely cost-
effective if thesimulatorsarehighly reconfigurable
and can be usedthroughoutmany projects. This
suggeststhat a simulator should be composedof
simulator componentsthat can be integratedin a
uniform manner. In general,a simulator is com-
posedof functional modelsin which eachmodel
canbemappedontoa separatecomponent,for ex-
amplea flight simulatormay be basedon a visual
component,a dynamicscomponent,a radarcom-
ponent,anda human-simulatorinteractioncompo-
nent. It shouldbepossibleto simply replacea sim-
ulator componentby anotherfunctionalequivalent
onewhile maintainingthesamesimulatorbehavior.

Simulatorcomponenttechnologyinherentlyallows
theparticipationof differentspecializedcompanies
in the developmentprocessof a simulator. Each
participatingcompany focuseson therealizationof
a specificcomponentthatfits bestwith thetechno-

March, 2000 27



logical backgroundof thatcompany. For example,
apartnerthatis specializedin mechanicalengineer-
ing coulddevelopamotion-basedplatformwherasa
partnerthat is specializedin aeronauticalengineer-
ing coulddevelopaflight dynamicsmodel.Thisap-
proachhasalsobeenrecognizedby thedutchsim-
ulation industry, representedin SIMNED. This has
led to the SIMULTAAN project in which the con-
cept of a componentbasedsimulatorarchitecture
hasbeendeveloped,calledtheSIMULTAAN Sim-
ulatorArchitecture[1, 2].

TheSIMULTAAN SimulatorArchitecture(SSA)is
the main subjectof this article. After providing
somebackgroundon theSIMULTAAN project,the
SSAcomponentbasedsimulatorarchitectureis un-
folded.

SIMULTAAN

SIMULTAAN wasa2.5yearsprojectwhichstarted
early1997andendedwith a successfuldemonstra-
tion of thecomponentbasedsimulatorarchitecture
conceptin thesummerof 1999.TheSIMULTAAN
projectbroughttogetherknowledgeandexperience
in theareaof simulatorsanddistributedsimulation
from universities,researchinstitutesandthe simu-
lation industry in The Netherlands. It was partly
fundedby theDutchinitiativefor High Performance
ComputingandNetworking(HPCN).Thesix mem-
bersof theconsortiumare:

� TNO PhysicsandElectronicsLaboratory;
� NationalAerospaceLaboratoryNLR;
� Delft Universityof Technology;
� SiemensNetherlandsNV;
� Fokker SpaceBV;
� HydraudyneSystems& EngineeringBV.

Two main results of the project can be distin-
guished:

1. SIMULTAAN SimulatorArchitecture (SSA). A
genericframework applicablefor a wide range
of simulators,including mannedmock-upsof
vehicles,high-fidelity flight simulatorsandun-
mannedsimulators.

2. PermanentIntellectual Infrastructure. The SI-
MULTAAN consortiumstrengthenedworking

relationshipsbetweenits partners.

The SSA definesa simulatorcomponentarchitec-
ture that addressesthe identified needsfor a suc-
cessfulfederatedevelopmentprocessandmakesef-
fectiveuseof simulatorcomponenttechnology. The
SSAis intendedto maximizethere-usepotentialof
componentsby definingastandardinterfacefor the
developmentof simulatorcomponents.In this way
simulatordevelopmenttime will be reduced. By
making surethat componentscomply to the stan-
dard interface, and comply to a numberof rules,
they canbere-usedin othersimulatorsthatarebuilt
on thesamearchitecture.TheSSA is usedin a re-
searchanddevelopmentenvironmentthat requires
rapidre-configurabilityof simulators,but it canalso
beusedin anindustrialenvironment.

The successfulresultsof SIMULTAAN have led
to a further developmentof the SSA framework
by TNO Physicsand ElectronicsLaboratory, the
project leaderand primary developerof the SSA.
TheSSAis alsoin theprocessof beingintegratedin
TNO-FEL’s ElectronicBattlespaceFacility (EBF),
which is a researchfacility for distributed simula-
tions andvirtual reality technologyin the military
domain[3]. More informationon the EBF canbe
foundon theEBF web-site[4].

SIMULTAAN Simulator Ar chitec-
tur e

Simulatorcomponenttechnologyis basedon dis-
tributedsimulationtechnology. A distributedsim-
ulationtraditionallyconsistsof multiple networked
applicationsthat are executedon possiblyvarious
computerplatforms [5]. This approachrequires
aninteroperabilitystandardthatallows applications
to communicatewith oneanotherno matterwhere
they are locatedor who hasdesignedthem. Sev-
eral interoperabilitystandardshave beendeveloped
independentlyby several organizationsin industry
andgovernment.

A well-known interoperability standard is the
CORBA standard, developed by several indus-
trial partnersorganizedin the ObjectManagement
Group[6]. Anotherinteroperabilitystandardis ini-
tiatedby the United StatesDepartmentof Defense

28 XOOTIC MAGAZINE



in 1995,which is namedthe High Level Architec-
ture(HLA) [7].

The HLA standardis aimedat distributed simula-
tions and promotesthe re-useof simulationmod-
els. HLA attemptsto specifythe generalstructure
of the interfacesbetweensimulation applications
withoutmakingspecificdemandsontheimplemen-
tation of eachsimulation. HLA is developedin a
co-operative,consensus-basedforumof developers,
organizedin the SimulationInteroperabilityStan-
dardsOrganization(SISO) [8], and is currently in
the processof becomingan IEEE standard(IEEE
1516). For a change,the steeringcommitteesof
CORBA andHLA actually do work together, and
thetwostandardsco-exist in theworldof distributed
programming.In fact,thereferenceimplementation
of the HLA softwareactuallyrelieson a real-time
CORBA implementationfor providing application
interoperability.

Sincethe SIMULTAAN SimulatorArchitectureis
basedon the HLA standard,someHLA terminol-
ogy is inevitably usedin the next sections.There-
fore,wegiveaquickHLA mini-survival guidehere.
SeetheXootic Magazineon Simulationfor a more
completeintroduction[9]. A federation consistsof
simulationapplications,calledfederates. Federates
may be simulationmodels,datacollectors,simu-
lators, or other tools that interactwith other fed-
erates. A simulationsession,in which a number
of federatesparticipate,is calleda federation exe-
cution. SimulatedentitiesarecalledHLA objects.
SimulationeventsarecalledHLA interactions. All
possibleexchangeof data-typesbetweenthefeder-
atesof afederationis definedby theFederationOb-
jectModel(FOM). Thecapabilitiesof a federate,in
termsof theobjectsandinteractionsit canexchange
with other federates,is definedby the Simulation
ObjectModel(SOM).TheFOM andSOMsmaybe
regardedascontractsthatfunctionasinterfacespec-
ificationsfor thefederatedevelopers.

TheHLA is formally definedby threeparts[7].
� The Interface Specificationis a formal, func-

tional descriptionof the interfacebetweenthe
HLA applicationandtheunderlyingRun-Time
Infrastructure,seebelow.

� A set of HLA Rulesis definedto which HLA
applicationshave to comply.

� The Object Model Templatesdefinethe struc-
tureof theFOM andtheSOM descriptions.

TheRun-TimeInfrastructure (HLA-RTI) is theim-
plementationof the HLA Interface Specification
andforms thebasicsoftwarecommunicationlayer
for all HLA federates.The HLA softwarecanbe
comparedto a distributed operatingsystemfor all
communicationsbetweenthefederatesin a federa-
tion. Although the HLA standardis an openstan-
dard,RTI implementationsarenotconsideredOpen
Sourcesoftware.More informationaboutHLA can
befoundon theHLA web-site[7].

Now the SIMULTAAN Simulator Architecture
(SSA)alsofacilitatesinteroperabilitybetweenfed-
eratesin a federation.On thelevel of federatesand
federations,theSSAis fully compatiblewith HLA.
As anextensionto HLA, theSSAintroducesa new
level, that of the federateComponent.A SIMUL-
TAAN federateis actually composedof SIMUL-
TAAN Components.Thismeansthatasinglesimu-
lator is actuallya distributedsimulation,composed
of multiple applications,calledComponents, each
responsiblefor a specific functional model of the
simulator. The SSA facilitatesinteroperabilitybe-
tweenComponentsinside a federate,in a similar
mannerastheHLA-RTI doesbetweenfederates.

As the SSA is an extensionof the HLA, its defi-
nition is alsobasedon threeparts,namelytheSSA
InterfaceSpecification,theSSARules,andtheSSA
Object Model Templates,which are all extended
versionsof their HLA equivalents[7]. The SSA
identifiesthe following key architecturalelements:
Component, Run-timeCommunicationInfrastruc-
ture (RCI), Federate Manager (FM), andScenario
Manager (SM), (Figure1).

A Componentis thebasicbuilding block for a fed-
erate. All Componentsinteract with the simula-
tion environmentthrougha standardinterfacethat
is providedby theRun-timeCommunicationInfras-
tructure, andwhich is animplementationof theSI-
MULTAAN InterfaceSpecification.

TheRun-timeCommunicationInfrastructure (RCI)
is anobject-orientedmiddlewarelayerfor exchang-
ing databetweenComponentsas well as between
federates. The RCI provides the Componentde-
velopera high-level abstractionlayer to shield the
developer as much as possiblefrom the underly-

March, 2000 29



ing communicationframework, which is, probably
not surprising,the HLA-RTI. For the communica-
tion betweenthe distributed Components,prefer-
ablya dedicatedhigh-performanceHLA-RTI could
beused.Seesection“Run-timeCommunicationIn-
frastructureandCodeGeneration”below for amore
elaboratediscussionof theRCI middlewarelayer.

Each federate is composed of a set of dis-
tributed Componentswith oneobligatory Compo-
nent, called the Federate Manager. The Federate
ManageractsasanintermediarybetweentheCom-
ponentsin the federateand the rest of the Feder-
ation; it representsthe federateto the federation
and it presentsinformation from the federationto
its Components.TheFederateManageralsokeeps
track of the stateof its federateandits constituent
Components.

The ScenarioManager is a special federatethat
controlsthebehavior of thefederateswithin thefed-
erationby issuingcommandsto theFederateMan-
agers(suchas‘start scenarioexecution’, ‘stop sce-
narioexecution’,‘hold scenarioexecution’).

�Component 1 Component N

Scenario
Manager

�

Component 1 Component N
Federate
Manager�

...

Federate 1

Federate M

Federate
Manager

Federation

RCI

Figure1:

Although this article should not be too techni-
cal, one SSA Rule is especiallyworth mention-
ing, namelythatall Componentsmustadhereto the
StateTransitionDiagram(SSA-STD),which is de-
picted in Figure 2. The SSA-STDis usedby the
FederateManagerto co-ordinatethe statetransi-
tionsof the federateduring thescenarioexecution.

TheFederateManagerpreparesits Components,for
joining, i.e.,connectingto, thefederation.Whenthe
federatehas joined the federation,statetransition
may be requestedby the ScenarioManager. The
FederateManagerreceives thesestatetransitions,
checksthemwith thefederate’s state,andforwards
themto the Components.It collectsthe responses
from theComponents,andsendsareply to theSce-
narioManagerin return.

Federate
Received

Scenario Data

Locally
Unconfigured

Locally
Configured

Hold
Federate
Execution

Federate Joined
Federation

Federate
Error

Real−Time
Operation

Federate 
Execution 
Stopped

QUIT

START CONFIGURE

UNCONFIGURE

JOIN

LEAVE

DISCARD
SCENARIO

INITIALIZE
SCENARIO

GET READY

PAUSE

RESET

DISCARD
SCENARIO

GO

STOP

ERROR

SAVE

RESUME

RESTORE

Scenario Manager in charge of state transition

Federate Manager in charge of state transition

Figure2:

TheSSAInterfaceSpecification(SSA-IF) is a for-
mal, functionaldescriptionof theinterfacebetween
the applicationand the Run-timeCommunication
Infrastructure(RCI). It describesthe interfacecalls
thataComponentusesto exchangedatato andfrom
otherComponentsandfederates.

TheSSAObjectModelTemplates(SSA-OMT)are
standardizedformatsto definethe functionality of
federatesandcomponentsandtheirrespective inter-
actions.TheSSA-OMTis equalto theHLA-OMT
[7]. Thedifferentobjectmodelsusedin theSSAare
presentedin Section3.

30 XOOTIC MAGAZINE



Run-time Communication Infras-
tructur eand CodeGeneration

The SimulatorArchitecture(SSA) is the SIMUL-
TAAN architecturefor networked simulatorsand
tools. TheSSAprovidesservicesto boththeCom-
ponentsand federates. All Componentsinteract
with thesimulationenvironmentthroughastandard
interface,which is providedby theRun-timeCom-
municationInfrastructure(RCI).

TheRCIprovidesthecomponentdeveloperwith the
necessaryfunctionalityto developaSSAcompliant
simulatorcomponentthatcanbeintegratedin asim-
ulator. The RCI provides a protocol-independent
interface to the simulatedenvironment. The RCI
implementsall functionality describedby the SSA
InterfaceSpecification. Componentsdo not inter-
actdirectlywith eachother, but only via callsto the
RCI softwarelibrary that is linkedwith thecompo-
nent’s application.

Thedesignof theabstractionlayerandtheApplica-
tion Programmer’s Interface(API) arediscussedin
full detail in anotherpaper[1], andis briefly sum-
marizedbelow.

The RCI middlewarelayer performsthe following
tasks:

� exchangeof databetweenComponents;
� handleobjectandinteractionbookkeeping;
� processuser-definedevent callbackfunctional-

ity;
� presentobjectattributeupdatesandinteractions

to theComponent;
� maintain synchronization between Compo-

nents.

The RCI consistsof two separatesoftware sub-
layers,oneis calledtheEnvironmentandtheother
is calledtheCommunicationServer(seeFigure3).

The Environmentlayer provides componentswith
an overview of both the federateand the federa-
tion. The Environmentreflectsthe currentstateof
the federate,i.e., thestateof all its components.It
allowstherun-timecreationanddeletionof compo-
nents. It alsomaintainsdataexchangeinterestsof
Components.

Application

Environment

Communication Server
(CS)

RCI

user−defined
application

a Component

HLA−RT I
based CS

H igh−per formance
SCRAMNET based CS

network

Figure3:

For example,theVisualComponentof a simulator
needsthe position of the simulatedvehicle in the
simulatedworld,whichis calculatedby theDynam-
ics Component.Now the Visual Componentmust
subscribeto the object that representsthe stateof
the simulator; this is done through an invocation
of the method Environment::subscribeToObject()
without knowledgeof which otherComponentac-
tually updatesthesimulator’s state.In casetheDy-
namicsComponentcalculatesthenew position,this
componentmustpublishthesimulator’s stateobject
of which the position is an attribute throughinvo-
cationof themethodEnvironment::publishObject().
Conversely, the DynamicsComponentapplication
doesnot needto know to which otherfederatesthe
new simulatorstatemustbe sent. This is actually
doneby the CommunicationServersub-layerthat
matchesthe publishandsubscribeinterestusinga
distributedcomputation.A similarapproachis used
to distributeeventsbetweenComponents.

TheCommunicationServerrepresentsthelayerthat
takescareof theactualcommunication.Its function
canbecomparedto thatof theHLA-RTI. In a way
it representsa distributed operatingsystem. The
interfacebetweenthe Environmentand the Com-
municationServer is basedon the HLA Interface
Specification[7]. A CommunicationServer com-
municateswith otherCommunicationServersto ex-
changebasicobjectandevent information to pro-
vide the Environment with the most recent data

March, 2000 31



updates. Currently, the CommunicationServer is
basedon the HLA RTI (seeFigure3). Dedicated
versionsof theCommunicationServer canbeused
for the supportof specificsimulationstandardsor
network layerprotocols.Themiddlewarelayerap-
proachnow requiresonly minimal changesin the
application-specificsourcecodeas the application
sourcecodemerelyinteractswith theEnvironment
layer.

The innovative approachof SSA is that the RCI
middlewarelayerextendsthefederateinteroperabil-
ity conceptsof HLA by providing data-exchange
betweenComponentsin a similar way. Compo-
nentsuseequivalentsof specificHLA capabilities,
suchas federationmanagementservices,declara-
tion managementservicesandobjectmanagement
servicesin a similar way [7]. In this way, the
RCI abstractscomponentsfrom the interoperabil-
ity protocolsandnetwork hardware,andestablishes
a clearseparationbetweencommunicationaspects
and application-specificor domain-dependentas-
pects.ThisenablesaComponentdeveloperto focus
ontherequiredapplicationfunctionalityratherthan
thetechnicaldetailsof thecommunicationaspects.

To further facilitatethe developerwith an abstrac-
tion of thecommunicationit is notedthatthesimu-
lationobjectsandthesimulationeventsareformally
describedthrough its ComponentObject Model
(SSA-COM),whichis anextensionto theHLA Ob-
jectModelTemplate,andis similarto theSOM(see
Section3). This enablestheuseof automaticcode
generatorsto constructobject-orientedclasses(for
instanceC++ or Java) for eachuser-definedsimula-
tion objectandsimulationevent in theSSA-COM.
Theautomaticcodegenerationapproachhasproven
to be highly successful,not only in SIMULTAAN
but alsoin otherprojects(for examplethe ‘Laguna
Beach:HLA onbaywatch’project,in whichtheau-
tomaticallygeneratedcodeis linked with ‘legacy’
simulationcode[10]).

The generatedcode shields the application pro-
grammerfrom doing elaboratebookkeepingcon-
cerningattribute updates,while makinguseof the
encoding and decoding facilities offered by the
RCI to communicateattributeandparametervalues
alongthephysicalnetwork.

For example,the SSA-COM may describea sub-

classcalled ‘AggregateEntity’ with ‘EntityID’ as
oneof its integer attributes,statedin the following
SSA-COMdescription:

Class (ID 10) (
(Name "AggregateEntity")
(Attribute (Name "EntityID")

(DataType "integer")
(Cardinality "1")

)
(Attribute ...
)
(SuperClass 2)

)

The RCI CodeGeneratorwill producethe follow-
ing pieceof object-orientedsourcecode(in terms
of a pieceof a C++ headerfile). The component
developer is now able to provide EntityID with a
value,whosenew valueis subsequentlydistributed
to otherinterestedComponentsby theRCI middle-
warelayer, basedon the publishandsubscribein-
terestsof theComponents.

class AggregateEntity
: public BaseEntity{

public:
AggregateEntity();
virtual ˜AggregateEntity();

int getEntityID();
void setEntityID(int);

private:
int m_

};

The useof codegeneratorshave alreadyproven to
be useful in many other computingsciencedisci-
plineswhereformal languagesare introduced.As
moreandmore(partsof) specificationsanddesigns
arewrittenin aformal(meta-)language,codegener-
atorswill beusedmorefrequentlyto minimizepro-
gramminganddebuggingtime.

SIMULTAAN Simulator Develop-
ment

SIMULTAAN FederateDevelopmentdescribesthe
way partnersshouldmanufacturefederates. New
componentsmay have to be developedor existing

32 XOOTIC MAGAZINE



componentsmay needto be adapted. During the
designprocess,suchneedswill be identified and
translatedto componentrequirements.The Feder-
ateDevelopmentprocesswill result in a validated
simulatoror tool. A federationcanbe createdby
manufacturingits federatesanddefining the inter-
actionsbetweenthem in a SIMULTAAN Federa-
tion Object Model (FOM), which is equivalent to
theHLA-FOM.

Userrequirementsfor the federatearespecifiedin
cooperationwith theend-userandcanberegarded
as a starting point for the development. From
theuserrequirements,thesystemrequirementsare
identified.Thesystemrequirementsinitiate thede-
signprocessof theSIMULTAAN Federate.

EachComponenthasa ComponentObjectModel
(SSA-COM).This objectmodelformally specifies
the object attributesand interactionsa component
publishesto other components. It also specifies
the object attributesand interactionsa component
will subscribeto during run-time. Each federate
is built up from a set of interoperabledistributed
Components.Theinteractionsandobjectattributes
thatareexchangedbetweenall Componentsof one
federate,and including the datathat is exchanged
with other federates,is formally describedin the
SIMULTAAN SimulatorComponentObjectModel
(SSA-SCOM).The differencebetweenthe SCOM
andtheSOM is that the lattermerelydescribesthe
interfacebetweenSSA federatesandnot the intra-
FederatecommunicationbetweentheComponents.

The SSA-COM and the SSA-SCOMobject mod-
elshave similar roleson thecomponentlevel com-
paredwith the SOM and the FOM on the federa-
tion level. Both the SSA-COM and SSA-SCOM
descriptionsareexpressedin thestandardizedSSA
ObjectModelTemplates.TheSIMULTAAN object
modelsenableclearspecificationsfor thecapabili-
tiesof federatesandcomponents.Federateandfed-
erationdevelopmentin SIMULTAAN arecompara-
ble to the HLA FederationDevelopmentandExe-
cutionProcess(FEDEP)[11].

A federatewill be designedwith optimal use of
existing components.Thereforeaccessis needed
to the descriptionsof object modelsand compo-
nentsthatareavailablein theSIMULTAAN Object
Repository(SOR).TheSORwill containSSAcom-

pliant simulators,components,modelsandtools. It
may also containconfiguration,initialization, and
validation data. In traditional software engineer-
ing, asoftwareproductis validatedagainstits well-
definedfunctional requirementswhich should re-
flect the sponsor’s needs. In the simulationfield,
however, theissueof validationis muchmorecom-
plex, especiallyif somereal-world phenomenaare
to besimulated.It is oftenunclearwhataspectsof
the realworld have to bemodeledto obtaina sim-
ulation that is usefulfor its intendedpurpose. Ver-
ification and validation proceduresare commonly
usedto identify andsolve problemsin a particular
product,but they canalsobeusedto merelyassess,
anddocument,the quality of a product. This doc-
umentationis actuallythekey to thesuccessof the
‘re-use’ of simulationcomponents:it is often the
primary sourceof information on which the deci-
sionis basedwhetherthecomponentcanbere-used
aspartof someotherproduct. A well-definedver-
ification andvalidationpolicy, in conjunctionwith
anup-to-dateRepository, is themostprominentpre-
conditionfor the successof simulationcomponent
re-usability[12,13].

SIMULTAAN Simulator Demonstra-
tion

A functional proof of conceptof the SSA com-
ponentbasedsimulatorarchitecturehasbeenpre-
sentedat a largedemonstrationon the24th of June,
1999at TNO-FEL in which all SIMULTAAN part-
nersparticipated.ThedemousedthereferenceRTI
(version 1.3.5) as the underlying communication
layerfor theRCI CommunicationServer.

A rescueand evacuationscenariowas conceived
that comprised two human controlled fire-truck
simulators(federates)locatedat TNO-FEL, in the
Hague,and a rescuehelicoptersimulator located
and controlledat Delft University of Technology.
Togetherwith instructorssupport,atrainingsimula-
tion exercisewaspresentedto theaudience.Theau-
diencewaspresentedwith real-timevisual images
of thevirtual terrainfrom within thehelicopterand
themainfire truck.

??? presentsa schematicview of thefederatesthat

March, 2000 33



weredevelopedfor the demonstration.In this fig-
ure, VH1, VH2 and VH3 representmannedfire
truck simulators,HC1 is the helicopterfederateat
TUD, CC1is a controlcenterwith traininginstruc-
tion andmonitoringtools,andSM1depictstheSce-
nario Manager. The boxes (vertical) representthe
variousComponentsthatwerepresentin eachsim-
ulator(federate).

DM

FM

AV

VS

AS

MS

VH3

PA

FM

AS

CC1

SM

SM1

FM

DM

VS

AV

MS

AS

VH2 HC1

FM

MS

VS

AS

DM

DM

PA

SV

FM

MO

AV

VS

MS

VH1

AS

Figure4:

Examplesof the several typesof componentsare
the FederateManager(FM), a Dynamics Model
(DM), a Visual System(VS), a Mock-up Server
(MS), a Motion Platform(MO), an Audio System
(AS), and a performanceassessmentComponent
(PA). Eachcomponentwasexecutedon a separate
computer. The computerhardware consistedof a
mixtureof high-performancegraphicsworkstations
(SGI)andWindowsNT machines.Bothlow fidelity
andmediumfidelity mock-upsfor human-simulator
interactionwereprovided.

Themostimportantresultof thedemonstrationwas
thereductionin testandintegrationtime. Theinte-
grationphasetook lessthantwo weeks,which is a
remarkableachievementfor thedevelopmentof so
many new componentswith many differenttypesof
hardwareandsoftware,andthe involvementof six
partnersin a researchrelatedproject.To a largeex-
tent,thismaybecontributedto theuseof formal in-
terfacedescriptionsfor simulatorcomponents,and
theuseof amiddlewarelayerapproachfor abstract-
ing theapplicationsfrom thecomplexitiesof thein-
teroperabilitystandard.Componentdevelopersre-
ally focusedon the component’s functionality, as
well asall non-functionalrequirements,insteadof
dealingwith all intricate communicationand net-
work issues.

Concluding remarks

In thispapertheSIMULTAAN architecturefor sim-
ulatordevelopment(SSA)hasbeendiscussed.The
SIMULTAAN SimulatorArchitectureis intendedto
maximizethe re-usepotentialof simulatorcompo-
nentsby definingastandardinterface.Components
thatcomplyto thestandardinterface,andcomplyto
a numberof rules,canbere-usedin anothersimu-
latorbuilt on thesamearchitecture.

The global designof the SIMULTAAN Simulator
Architecturewas presented,followed by the Run-
timeCommunicationInfrastructureandthemiddle-
ware layer approach. Although the conceptsare
basedon HLA, someimportantdifferencescanbe
identified.ThemaindifferencesbetweenHLA and
the SIMULTAAN approachcanbe summarizedas
follows:

� TheSSAidentifiesnetworkedComponentsand
necessarycommunicationmechanismsbetween
componentsinsideadistributedfederate.

� The SSA provides the Componentdeveloper
with an abstractionlayer (or middle-ware)and
a codegeneratorto hidethecomplexities of the
underlyinginteroperabilitystandard.

� The SSA shieldsthe interoperabilitystandard
from the developer to enablemigration to a
future interoperabilitystandardwhile keeping
changesin theapplicationcodeto aminimum.

Thefirst implementationof theRCI hasbeenbuilt
ontopof theHLA-RTI. Currently, thelessonslearnt
arebeingimplementedandtheSSAwill beusedby
theSIMULTAAN partnersthis yearin a follow-up
project.

References

[1] Nico Kuijpers, Paul van Gool, Hans Jense,“A
ComponentArchitecturefor Simulator Develop-
ment”,Proc1998SpringSimulationInteroperabil-
ity Workshop,Orlando,Florida,March1998

[2] Marco Brasśe, Wim Huiskamp, Olaf Stroosma,
“A ComponentArchitecturefor FederateDevelop-
ment”,Proc.1999Fall SimulationInteroperability
Workshop,Orlando,Florida,September1999.

34 XOOTIC MAGAZINE



[3] N.H.L. Kuijpers, R.J.D. Elias, R.G.W.
Gouweleeuw, Electronic Battlefield Facility
in BattlefieldSystemsInternational96 ‘Integrated
Battlefield Management’,Volume 2, 4–6 June
1996,Chertsey, UK.

[4] TNO-FEL’s Electronic Battlespace Facility,
http://www.tno.nl/instit/fel/ebf/en/.

[5] DIS SteeringCommittee,“The DIS Vision, Map
to the Futureof DistributedSimulation”, Version
1, Institutefor Simulation& Training,May 1994,
Orlando,Florida,IST-SP-94-01.

[6] CORBA standard,http://www.omg.org/corba.

[7] HLA TechnicalReports,http://hla.dmso.mil

[8] Simulation Interoperability StandardsOrganiza-
tion, http://www.sisostds.org.

[9] Marco Brasśe and Nico Kuijpers, “Standardising
DistributedSimulations:TheHighLevelArchitec-
ture”,Xootic Magazine,Volume7 Number1,July
1999.

[10] Leo Breebaart,Marco Brasśe, Wim Huiskamp,
HansJense,“LagunaBeach:HLA onBaywatch?”,
Proc.1999Fall SimulationInteroperabilityWork-
shop,Orlando,Florida,September1999.

[11] Defense Modeling and Simulation Office
(DMSO), “FederationDevelopmentand Execu-
tion Process(FEDEP)Model”.

[12] J.Rumbaughetal, “Object-OrientedModelingand
Design”,Prentice-Hall,1991.

[13] E. Gammaet al, “Design Patterns— Elements
of ReusableObject-OrientedSoftware”, Addison-
Wesley, 1995.

Author Biography

Marco Brasśe is a memberof the scientificstaff in the Command& Control
and SimulationDivision at TNO Physicsand ElectronicsLaboratory(TNO-
FEL). He is a softwarearchitectfor several projectsin the areaof distributed
simulation,bothnationallyandinternationallywith partnersin thearmedforces
andsimulationindustry. His presentactivities arefocusedon HLA-compliant
componentbasedsimulatordevelopmentstrategiesfor real-timesimulators.He
holdsa M.Sc. in ComputingScienceanda Masterof TechnologicalDesignin
SoftwareTechnology, bothfrom EindhovenUniversityof Technology. He can
bereachedby E-mail at ‘brasse@fel.tno.nl’.

March, 2000 35


