
POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

X00TIC
June 2001-Volume 9-Number 1

magazine

Programming
Languages Perl

Python

Embedded Java

Xootic Survey 2000

Contents

Programming Languages

Editorial Preface 3

XOOTIC Survey 2000

Gertjan Schouten (on behalf of the survey
committee) 5

Perl

Ed Knapen 11

Java in Embedded Systems

Menno Lindwer 15

Python

Victor Bos 27

Overview Latest OOTI Reports

. 34

Advertorials

AAS . 4

Philips Nederland. 10

XOOTIC
magazine

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

Colofon

XOOTIC MAGAZINE

Volume 9, Number 1
June 2001

Editors
V. Bos
N.H.L. Kuijpers
Y. Mazuryk

Address
XOOTIC andXOOTIC MAGAZINE

P.O. Box 6122
5600 MB Eindhoven
The Netherlands
xootic@win.tue.nl
http://www.win.tue.nl/xootic/

SecretariatOOTI

Mrs. C.I.T. Kolk-Koenraat
Post-masters Programme Software Technology
Eindhoven University of Technology, HG 6.57
P.O. Box 513
5600 MB Eindhoven
The Netherlands
tel. +31 40 2474334
fax. +31 40 2475895
ooti@win.tue.nl
http://wwwooti.win.tue.nl/

Printer
Offsetdrukkerij De Witte, Veldhoven

Reuse of articles contained in this magazine is al-
lowed only after informing the editors and with ref-
erence to “Xootic Magazine.”

2 XOOTIC MAGAZINE

Programming Languages
Editorial Preface

An important choice to be made for every software project is the choice for a suitable programming lan-
guage. This choice is often made implicitly as a project is usually the follow-up of an earlier one, or is
part of a larger development programme. If a project team has a choice at all, this choice is often deter-
mined by experience within the team, processing power and memory consumption, or available libraries.
Sometimes a project team explicitly decides to learn a new language and even migrates existing software
to that new language. In this way object-orientation is introduced in many organisations to obtain more
flexible, reusable and extendable code. Such a migration path is a large investment which often only pays
off in future projects.

In this issue of the Xootic Magazine three programming languages are subject of discussion. You will
learn why a scripting language like Perl should not only be used by system administrators, how Java can
be applied to program embedded systems, and how Python is not only used for prototyping but can be used
to build the final product as well. Besides all ins and outs of Perl, Embedded Java and Python, you will
also learn about the results of the Xootic Survey that was filled in by almost half of the Xootic members
last Fall.

Before diving into the contents of this magazine, we would like to take the opportunity to introduce a new
editor and say good-bye to another. For several years, Eibert Engelsman has been one of the editors of
this magazine. We would like to thank him for his inspiring ideas, his contributions to the editorials and
cover arts, and of course for the hard labour of reviewing and editing a large number of articles. We are
also happy to introduce to you our new editor Yarema Mazuryk. He has just recently started the OOTI
programme and is already willing to be active for Xootic as an editor of the Xootic Magazine.

The magazine blasts off with the results of the Xootic Survey 2000 drawn up by Gertjan Schouten, on
behalf of the Xootic Survey Committee. Next, Ed Knapen describes the post modern philosophy behind
Perl. He not only briefs us on the language itself, but also explains the link between Perl, Apostle Paul
and perlmonks.com. Menno Lindwer advocates that although Java is certainly not the most obvious
language for embedded systems, recent developments in both hardware and software make that Java will
become a more logical choice for future, perhaps interconnected, embedded systems. Finally, Victor Bos
leads us through something completely different: the Python scripting language, or, rather, programming
environment.

Enjoy!

Nico Kuijpers
Editor

June 2001 3

Advertorial: AAS
Page 4 (should be even)

XOOTIC Survey 2000
Gertjan Schouten (on behalf of the survey committee)

In September 2000, the bi-annual Xootic questionnaire was sent out again to
all Xootic members to ask them about their current and future work, and about
their opinion of OOTI and Xootic. In the past months, the returned question-
naires were analysed and the results were presented to the Xootic members in
March 2001. This article presents the survey results.

Introduction

The Xootic survey has become a two-yearly tra-
dition. It provides valuable feedback to both the
OOTI and the Xootic board on their program and
their activities. Previous surveys were held in 1993,
1994, 1996 and 1998 (see Xootic magazine Septem-
ber 1993, September 1994, April 1996 and October
1999, respectively). In the beginning of 2000, Rian
Wouters, Dietwig Lowet, Harold Weffers, Bernard
Venemans and myself set out to organise the survey
for 2000. The first thing we did, was to take the
previous questionnaire and modify it according to
suggestions for improvement that resulted from the
previous survey.

The major changes as compared to the previous
questionnaire are:

• The language: this was the first questionnaire in
English.

• The OOTI questions: these were formulated by
OOTI to ask for specific information needed to
improve the OOTI program. In this survey, only
the younger generations were asked to answer
these questions.

• More predefined options were added: some ex-
tra answers, provided to us in the ’other’ option-
field of the questions from the previous survey,
were added in the answer-lists.

Furthermore, the questions about current and fu-
ture function/working environment have been com-
bined, and the split in generations has been ex-
tended in the sense that the older generations did

not have to fill in the OOTI questions: the OOTI
program has changed a lot since those generations
followed the program, a.o. as a result of their an-
swers to previous surveys!

You have to be careful not to change too much
in a questionnaire, otherwise the results are diffi-
cult/impossible to compare with previous surveys.
That is why the remainder of the questions were left
(more or less) unchanged. The questionnaire, to-
gether with a memo from OOTI about the new Soft-
ware Technology Training Program, was sent to ev-
ery Xootic member early September 2000. Table 1
shows the number of surveys that were sent out and
the number of surveys that were returned this year
as well as previous years.

Survey Nr sent Nr received Percentage
1993 22 17 77%
1994 41 24 59%
1996 88 43 49%
1988 155 69 45%
2000 189 88 47%
Table 1: History of returned questionnaires

Table 2 shows the returned questionnaires per gen-
eration. We see a large increase of returned forms
for the generation ”September 1996 - April 1998”.
The probable explanation for this is that this gener-
ation has a lot of non-Dutch members, who had dif-
ficulties filling in the Dutch questionnaire of 1998.

June 2001 5

Generation 1998 2000
1988 - Dec 1991 16 15

Sep 1992 - Jan 1994 18 19
Sep 1994 - Mar 1996 26 25
Sep 1996 - Apr 1998 9 15
Aug 1998 - Aug 2000 12

Unknown 2
Table 2: Number of returned questionnaires per

generation

The questionnaire was returned this year by 76 ex-
OOTIs and 12 OOTIs. In the results concerning
professional career the answers from the 12 OOTIs
have been excluded. Hence in these results, about
every 1.3% is one person.

Employer

The questions about the current employer are in-
tended to get an impression of the employers where
Xootic members are working. Figure 1 shows
the major branches where ex-OOTIs are currently
working. Compared to the result of the previous
survey, there are few changes. The most striking
changes are: Automation consultancy has increased
from 2% to 11% and Electrical industry has dropped
from 15% to 7%.

Figure 1: Branch distribution

It seems that switching jobs after 4 to 6 years is be-
coming a trend! If you compare the numbers be-
tween 1998 and 2000 (Table 3), you see that af-
ter 4 to 6 years, the majority of ex-OOTIs has left
their first employer. Note that the percentage of per-
sons at their first employer in the generation ”1988

- December 1991” has increased from 25% to 27%,
however both percentages represent four persons.

The main reason why the current employer was cho-
sen isnature of the work(rated 7.9 on a scale from
0 to 10) followed bycareer perspective(6.2),com-
pany culture(6.1) andsalary (5.8).

Figure 2 shows that the final project of OOTI and
(nowadays) a direct approach by the company or
a person working for the company are the most
successful strategies for recruiting ex-OOTIs. The
”open application” dropped from 47% in 1996, via
25% in 1998 to 14% in 2000!

Figure 2: How did we get our current job?

Function

The results of the questions concerning current &
future function and working environment tell us
something about our daily work and our expec-
tations. If you look at Figure 3, you will no-
tice that the Xootic members currently still have
very technical jobs: 73% are software/system engi-
neer/architect or researcher, compared to 64% two
years ago.

6 XOOTIC MAGAZINE

1st employer 2nd employer 3rd employer 4th employer
Generation 1998 2000 1998 2000 1998 2000 1998 2000

1988 - Dec 1991 25% 27% 69% 40% 6% 13% 20%
Sep 1992 - Jan 1994 61% 32% 28% 47% 11% 16% 5%
Sep 1994 - Mar 1996 96% 76% 4% 20% 4%
Sep 1996 - Apr 1998 87% 13%

Table 3: Number of employers

Figure 3: Current functions1

The ’future’ situation (i.e. the desired function
within 5 to 10 years) is shown in Figure 4. Just
as two years ago, nobody plans to be (or become)
a software engineer5 to 10 years from now. Ap-
proximately 44% wants to advance in technical
functions. The managerial functions (team/project
leader, other managerial and miscellaneous) have
grown from 18% now to 42% within 5 to 10 years.

Figure 4: Future functions

Ex-OOTIs are working in a less multi-disciplinary
environment! All areas of expertise showed a drop
in percentages (Logisticsdropped most from 18%

to 10%). The top-three of disciplines that ex-OOTIs
come into contact with in their daily work (not in-
cluding Computing science) is as follows:Electri-
cal engineering(43%), Telecommunication(31%)
andInformation technology(28%).

Skills

There were several questions concerning the tools
and methods that are used in the workplace of ex-
OOTIs. One positive side to OOTI: formal meth-
ods are now being used! 16% of the returned ques-
tionnaires indicated that Chi, (Process) Algebra,
Spin/Promela, State machines, START, Petrinets in
Expect/Cosa, MSCs, IDL, OCL or process Net-
works were used in the direct working environment.

Object-oriented techniques are used more often:
UML is used by 64% (was: 32%) and OMT is
used by 33% (was: 37%). Design Patterns are
used by more than 50% of the Xootic population.
C++, C and Java are still the main implementa-
tion languages being used (63%, 57% and 50% re-
spectively, versus 65%, 58% and 43%, two years
ago). One third indicated to work with scripting lan-
guages such as VB Script, Perl, Python or Tcl/Tk.

Windows NT is used most frequently as a host plat-
form. The dominant target platforms are: Windows
NT (56%), Unix (43%), Java platform (34%) and
pSOS (27%). Linux is being used as a target plat-
form by 22%.

Distributed - and Component technologies are very
popular amongst ex-OOTIs: around 40% uses these
technologies and the same percentage of Xootic
members are interested, and around 10% has taken
courses in these technologies. 74% uses HTML,
35% is interested in XML.

The waterfall model is still the most widely used
process model (34%), followed by RUP (30%).

June 2001 7

Xootics are most interested in Extreme Program-
ming (32%) (hype?) and RUP (30%). Xootic mem-
bers want to know more about the following skills:
Coaching, Creativity (both 23%), PSP/TSP (19%)
and Project Management (18%).

Working conditions

This section gives us an indication of the conditions
of employment. Table 4 shows the current salaries
of the 72 ex-OOTIs that filled in the question.

In this survey, we added questions about part-time
work and RSI. Currently, 6 ex-OOTIs (equals ap-
proximately to 8%) are working part-time (32, 36
and 38 hours a week answered by 3, 2 and 1 per-
sons, respectively) and 22 ex-OOTIs (29%) would
like to work part-time (24, 32, 34 and 36 hours
a week reported by 1, 15, 1 and 5 persons, re-
spectively). 47% of the ex-OOTIs reported to have
no signs of RSI, 42% responded ”sometimes”, 3%
”quite often” and 8% ”very often”.

OOTI training program

The questions about the current Software Technol-
ogy program had a completely new form. The cur-
rent courses were listed and the trainees of OOTI
that started their program after August 1994 were
asked to indicate the value/usefulness of the indi-
vidual courses and whether they have applied the
knowledge gained from the courses in their work.
Finally, one was asked to indicate the amount of
time OOTI should allocate to each course.

The top 5 ofmost usefulcourses:

1. Industrial Design and Development Project
2. Workshop Software Engineering
3. Object-Oriented Analysis and Modeling
4. Technical Writing and Editing
5. System and Software Architecture

The top 5 ofleast usefulcourses:

1. Workshop on Declarative Method (PVS)
2. Workshop on Constructive Method (SPIN)
3. Formal Methods in the Software Life Cycle
4. Seminars with Industry (FM)
5. Control and System Theory

According to the ex-OOTIs, the program should al-
locatemore timeto:

1. Design Basics (+202%)
2. Development Environments (+56%)
3. Requirements Engineering (+41%)
4. Personal Software Process (PSP) Basics (+41%)
5. Software Process Improvement (SPI) Basics

(+37%)

The results of the survey indicate that the OOTI pro-
gram should allocateless timeto:

1. Workshop on Constructive Method (SPIN) (-
46%)

2. Workshop on Declarative Method (PVS) (-46%)
3. Formal Methods in the Software Life Cycle (-

41%)
4. Seminars with Industry (FM) (-27%)
5. Modeling Performance of Computer Systems (-

26%)

Xootic

Just like last time, the main reason to be a member
of Xootic is to stay in touch with other Xootic mem-
bers. To stay informed about the TU/e and/or OOTI
is the second reason. Lectures are the most appreci-
ated Xootic activity. Suggestions for possible topics
are about emerging technologies, such as .Net, C#,
XML and Embedded Linux. Xootic should organ-
ise lectures more often, or organise ”X4X” lectures
(Xootic-4-Xootic, like CMG’s ”Pro-4-Pro”).

Suggestions for activities are:

• Company visits/excursions (e.g.: nuclear plant,
logistics centre, mobile phone centre)

• Trips (one weekend/one week to Italy, Spain,
. . .)

• Short courses
• Golf clinic
• ’Wadlopen’
• Visit museums/theatre
• Regular dinner/drinks to keep in touch
• A (yearly) meeting for the ”older” generations
• Panel discussions/discussion groups

Other suggestions are:

• Easy access to OOTI/Xootic publications

8 XOOTIC MAGAZINE

Generation ≤ 60 ≤ 70 ≤ 80 ≤ 90 ≤ 100 ≤ 110 ≤ 120 ≤ 150 > 150
1988 - Dec 1991 5 3 1 2 4

Sep 1992 - Jan 1994 3 5 8 3
Sep 1994 - Mar 1996 1 4 12 6
Sep 1996 - Apr 1998 4 6 3 1 1

Table 4: Salary distribution in HFL 1000 (absolute numbers of ex-OOTIs)

• Organise activities on a more central location in
the Netherlands

Conclusion

The results of this survey are very valuable for
OOTI and Xootic. It allows them to measure the
quality of the program, steer the program and ver-
ify whether changes to the curriculum have the de-
sired effect. The results can also be used to iden-
tify trends and interests of Xootic members and
to take advantage of this information. This report
only gives a summary of the survey results. More
detailed information has been given to the OOTI
and Xootic boards. The survey committee received
some questions to correlate e.g. function with salary
and signs of RSI and function. However, due to the
small number of Xootics, these correlations do not
present any reliable or significant information. For
instance, one person with a managerial function, in-
dicating to have signs of RSI very often, could lead
to the ’conclusion’ that 10% of people with man-

agerial functions frequently have signs of RSI.

The survey committee also received some recom-
mendations:

• The questions about the OOTI program were
difficult to answer by ex-OOTIs who did not fol-
low the courses, or could not remember the con-
tent of a course by name only (the course ID did
not help much!)

• Use the web to do the survey

We would like to pass on these recommendations to
the Xootic Survey 2002 Committee.

We would like to thank all Xootic members who
returned the questionnaire for their co-operation.
Without their effort, we could not have presented
these results! Also, we would like to thank the
Xootic Survey 1998 Committee for their support
and useful input. One word of special thanks goes
to Lettie Werkman, who helped us to improve the
quality of the English language of the survey.

The Xootic Survey 2000 Committee: Rian Wouters,
Dietwig Lowet and Gertjan Schouten.

June 2001 9

Advertorial: Philips Nederland
Page 10 (should be even)

Perl
Ed Knapen

”Practical Extraction and Report Language or Pathologically Eclectic Rubbish
Lister? Perl has devoted fans and fierce enemies. This paper describes Perl’s
post modern philosophy, shows some of its exotic operators and explains the
link between Perl, Apostle Paul and perlmonks.com.”

What is Perl?

Perl is a high-level scripting and programming lan-
guage originally created by Larry Wall. It derives
from the C programming language and to a lesser
extent from sed, awk, Unix shells, and at least a
dozen other tools and languages. Perl provides
few but very powerful sets of data types (numbers,
strings, and references) and structures (hashes and
lists). Hashes (associative arrays) use strings as in-
dices. Lists are numerically indexable and can also
act as stacks, queues, or even double-ended queues.
Perl emphasizes support for common application-
oriented tasks: important features include built-in
regular expressions, “text munging”, file I/O, and
report generation.

Here are two command line Perl scripts that should
give you an impression:

ls | perl -pe
’$i=$.;s//\e[3@{[$i++%7+1]};1m/g;
END{print "\033[0m"}’

perl -pe "@ph=map {ucfirst(lc)}
split(/[\s.,-]+/);
print qq(@ph)" foo.txt

Officially, Perl is an acronym forPractical Ex-
traction and Report Language, but the alternative
Pathologically Eclectic Rubbish Listeris often used
as well. Its roots are in UNIX but today you will
find Perl on a wide range of computing platforms,
including Mac, Windows and EPOC.

Not surprising given its origins, Perl is almost the
perfect tool for system administrators: it allows the
easy manipulation of files and process information,
and easy automation of all kinds of tasks.

But Perl’s process, file, and text manipulation fa-
cilities make it also particularly well-suited for
tasks involving quick prototyping, system utili-
ties, software tools, system management tasks,
database access, networking, and world wide web
programming. Besides system administrators, these
strengths make it especially popular with CGI script
authors (most CGI programs are written in Perl), but
mathematicians, geneticists, journalists, and even
managers also use Perl. Maybe you should use it as
well.

Who is Larry Wall?

What Linus is to Linux, Larry is to Perl. Son of a
pastor in Los Angeles, Larry Wall started off as a
programmer and system administrator with a rich
heritage of ideas and skills. Among these was the
notion that everybody can change the world. He
majored in Natural and Artificial Languages and
attended grad school in linguistics. After the ad-
vent of Perl and the Perl book, which became a best
seller, came royalties and a position with the pub-
lisher, O’Reilly & Associates. Today, O’Reilly pays
Larry to do whatever he likes, as long as it helps
Perl. And he generally eats breakfast at lunchtime.

June 2001 11

In the beginning

On October 18, 1987, Perl 1.0 was posted to the
Usenet group comp.sources. In Larry’s own words:

“The beginnings of Perl were directly inspired by
running into a problem I couldn’t solve with the
tools I had. Or rather, that I couldn’t easily solve.
As the Apostle Paul so succinctly put it, “All things
are possible, but not all things are expedient.” I
could have solved my problem with awk and shell
eventually, but I possess a fortuitous surplus of the
three chief virtues of a programmer: Laziness, Im-
patience and Hubris. I was too lazy to do it in awk
because it would have been hard to get awk to jump
through the hoops I was wanting it to jump through.
I was too impatient to wait for awk to finish because
it was so slow. And finally, I had the hubris to think
I could do better.”

Perl was created and has been evolving by combin-
ing all cool features from C, sh, csh, grep, sed, awk,
Fortran, COBOL, PL/I, BASIC-PLUS, SNOBOL,
Lisp, Ada, C++, Python, etc. Or, turning it around,
by leaving out all the unwanted features of all these
languages.

As for the name, Larry wanted a short name with
positive connotations, looked at every three and
four-letter word in the dictionary and rejected them
all. Eventually he came up with the name “pearl”,
with the glossPractical Extraction and Report Lan-
guage. The “a” was dropped because of the exis-
tence of some obscure graphics language with the
same name.

Post modern

Perl is unique in its aim to be post modern, as op-
posed to being based on modernism. Post modern
is, according to Larry, what the American culture
has become, not just in music and literature, but also
in fashion, architecture and in overall multi cultural
awareness.

To Larry, modernism was based on a kind of ar-
rogance that elevated originality above all else, and

led designers to believe that if they thought of some-
thing cool, it must be considered universally cool.
That is, if something is worth doing, it is worth
driving into the ground to the exclusion of all other
approaches. Look at the use of parentheses in Lisp
or the use of white space as syntax in Python. Or
at the mandatory use of objects in many languages,
including Java.

In contrast, post modernism allows for cultural and
personal context in the interpretation of any work of
art. It’s the origin of the Perl slogan: “There’s More
Than One Way To Do It!” The reason Perl gives
you more than one way to do anything is a belief
that computer programmers want to be creative, and
they may have many different reasons for wanting
to write code a particular way. What you choose to
optimize for is your concern, not Perl’s. Perl sup-
plies the paint (be it strings, associative arrays or
objects), but the programmer paints the picture.

A second Perl philosophy is its aim for “No Limits”.
Maximum string or array lengths or similar bound-
aries are not or hard to find. Usually the only limit
is the amount of free memory in your computer: the
whole Linux kernel can be read into one (binary)
string, patched and written back again using Perl.

Exotica

Perl contains over 50 special variables, most of
them a combination of the $-sign (indicating a
scalar variable) and a single character, for often
used information. So is $the default input and
pattern-searching space, while $. is the current in-
put line number, $> the effective uid of the process,
$+ the last bracket matched by the last search pat-
tern, etc.

In addition, there are over 50 operators, like the
usual +, ++, +=, etc., but also more unusual ones,
like <> to read from a filehandle,<=> for numer-
ical comparison (returning -1, 0, or 1) and=∼ for
search, substitute or translate.

Example:

open (SRC, $_[0]) ||

12 XOOTIC MAGAZINE

die "Can’t find source file";
while (<SRC>) {

match ’type’ keyword
if (/type\s*=\s*"(\w*)"/)

{ print $1."\n"; }
}
close SRC;

Many syntactic elements can be omitted, like paren-
theses around function arguments. The following
two statements are equally valid:

print "Hello world";
print("Hello world");

Even semantic elements can sometimes be omitted.
To read input from a file,

while ($_ = <STDIN>) { print $_; }

can be abbreviated to

while (<>) { print }

Perl allows execution of statements to depend on
modifiers (if, unless, while, until). The following
statements are all equivalent:

if ($energy < 0) { $nLives--; }
$nLives-- if ($energy < 0);
$nLives-- unless ($energy >= 0);
unless ($energy >= 0) { $nLives--; }
($energy < 0) && $nLives--;
($energy >= 0) || $nLives--;

In Perl, you can use the form that fits best with your
ideas about what highlights the most important part
of the statement.

As many other string based scripting languages,
Perl interprets variables either as numbers or as
strings depending on the context. A similar context
dependency holds for scalars and arrays. If, for ex-
ample, an array is assigned to a scalar variable, the
length of the array will be assigned.

Passing arguments to a subroutine can only be done
by resorting to list-context functions to retrieve the
values, like:

do processFile($fileName);

sub processFile {
print "Reading " . $_[0] ." file\n";
open (SRC, $_[0]) ||

die "Can’t find source file";
...

}

Applications

Another Perl anecdote from Larry:

“A couple of years ago, I ran into someone at a
trade show who was representing the National Se-
curity Agency. He mentioned to someone else in
passing that he’d written a filter program in Perl, so
without telling him who I was, I asked him if I could
tell people that the NSA uses Perl. His response
was, “Doesn’t everyone?” So now I don’t tell peo-
ple the NSA uses Perl. I merely tell people the NSA
thinks everyone uses Perl. They should know, after
all.”

Perl is used on Wall Street, in CGI scripts, in the
robots and spiders that navigate the Web and build
much of the various on-line databases. If you’ve
ever been spammed, your e-mail address was al-
most certainly gleaned from the Net using a Perl
script. The spam itself was likely sent via a Perl
script.

Personally, my first Perl script was a 15-liner called
“bgr”, which changed the background picture on
my OOTI machine every five minutes or so.

There are 800 or so reusable extension modules in
the Comprehensive Perl Archive Network (CPAN).
Glancing through those modules will give the im-
pression that Perl has interfaces to almost every-
thing in the world.

Comparison

Perl can be compared with other scripting languages
like Tcl, Javascript and Python. Of these three, Tcl
is the closest relation. Compared to Perl, Tcl’s syn-
tax is clean and simple, consisting of only a few
building blocks. This makes it easier to teach non-

June 2001 13

programmers Tcl. On the other hand, Perl gives you
more power of expression. While you can certainly
write awful and unreadable Perl programs, Perl’s
syntax and vocabulary also allow programmers to
express exactly what they think, without having to
resort to unnecessary constructions.

One advantage of Tcl over Perl is the availability of
the graphical toolkit (Tk). This extension of Tcl is
so tightly integrated that Tcl is normally referred to
as Tcl/Tk. With Tk, three or four lines of code is
all it takes to create a window with a clickable but-
ton or an editable input field. Since Tcl/Tk is also
an interpreted language, you can play around with
fonts, colours and dimensions until your interface is
just right, without the need for recompilation. It is
possible to use graphical extensions in combination
with Perl (even the combination Perl/Tk is possi-
ble), but these are more awkward to use than the
integrated Tcl/Tk pair.

Both Perl and Tcl are implemented in C and can be
embedded into your own application code, to ex-
tend it with the power to interpret scripts.

Objects were only introduced in version 5 of Perl,
which made a seamless integration impossible. If
you are an object wizard who wants to write system
administration scripts using objects, then maybe a
language like Python is a better option for you.

Perl has the largest user base of all scripting lan-
guages. For whatever you need, chances are there
is a package at CPAN available that does it. This is
especially true in the field of CGI scripts. So if you
need a quick start for a script that requires database
connectivity or XML parsing, then Perl is a good
choice.

Future

Last summer, Larry Wall announced the start of the
development of Perl 6. In contrast to the first five
versions, which followed an evolutionary develop-
ment, a more organised approached with commu-
nity input has been set up. If you have a desire to
help in the crusade to make Perl a better place then
peruse the Perl 6 developers page and get involved.
The first alpha is expected by Summer 2001.

Links

For more information on Perl, try the following
links:

www.perl.com
www.cpan.org
www.perldoc.com
www.perlmonks.com
www.perl.org/perl6

Biography Born in Elsloo (Limburg), The
Netherlands, in 1970, Ed Knapen graduated in
computing science from the Eindhoven Univer-
sity of Technology, The Netherlands. In 1995, he
graduated in the postgraduate programme on soft-
ware technology at the Stan Ackermans Institute in
Eindhoven. This programme was concluded with a
project carried out at the National Aerospace Lab-
oratory (NLR) in Amsterdam, The Netherlands.
Since then he has been employed by NLR to work
on research and development in the field of applica-
tion of information and communication technology
in airport operations, air transport and air traffic
control. His Perl programs are in use at NLR, in
European aerospace companies and institutes and
by an international chess organisation.

14 XOOTIC MAGAZINE

Java in Embedded Systems
Menno Lindwer

For several reasons, Java is not the most obvious language for embedded sys-
tems. It requires much more memory than most other languages and even
with JIT compilers, it runs a lot slower. Therefore, systems running Java appli-
cations are more expensive than systems with the same functionality running
natively. In many embedded systems industries (consumer electronics, net-
working, etc.), each additional cost is a market barrier. Besides that, Java is an
inherently non-real-time language. However, some recent developments have
turned Java into an obvious choice for those software tasks that do not require
hard real-time operation, such as user interfaces. From the onset, Java was
intended to reduce software development cost, software distribution cost, and
lead time, which, in embedded systems, are rapidly becoming the dominant fac-
tors. Besides that, digital devices are increasingly required to interoperate with
other devices and network servers. These new features require platform inde-
pendent software, meaning that networked devices do not need to be aware of
the internal architectures of their peers. Java comes with an extensive network-
ing library and is compiled into a standardised platform independent distribution
format, making ideal for such products. This leaves the reduction of Java exe-
cution cost in embedded systems as an interesting field for Research and and
a challenge for Development...

Introduction

Java [1] is not the most obvious language for em-
bedded systems. The reasons are manyfold. How-
ever, some recent developments have turned the ta-
bles.

Compared to conventional programming languages,
such as C or C++, Java execution is expensive in
terms of memory use, processor cycles, and power
consumption. Until recently, the increased cost has
proven to be a market barrier in embedded sys-
tems industries, such as consumer electronics and
networking. To the users of many embedded sys-
tems, the increased functionality does not justify
the increased cost. Besides that, the Java lan-
guage is inherently ’real-time-unfriendly’ [15]. It
does not offer adequate constructs for specifying
timing behaviour. The garbage collection and dy-

namic loading/linking features inhibit determinis-
tic behaviour [15]. The programmer is shielded
off from the underlying machine, giving him/her no
handles to circumvent the problems.

However, recently system requirements (e.g. dy-
namic upgrade, networking, interoperability [6])
and business requirements (e.g. short time-to-
market) have emerged that match quite perfectly
with the mix of features offered by Java. This re-
newed interest has breathed new life into a num-
ber of optimisation efforts. It should be pointed out
that none of the research topics are really specific
to Java or invented specially for Java. But many
have gained interest, funding, and momentum be-
cause of the possible application in Java. Some of
those efforts, such as research into garbage collec-
tion algorithms goes back a long time [14]. Other
developments, such as Just-In-Time (JIT) compila-
tion [8], are quite recent. These optimisation ef-

June 2001 15

forts in turn have brought the application of Java
in cost-constrained embedded systems very near to
commercial viability. In fact, at this moment several
companies are introducing Java-enabled devices in
one of the most cost-constrained industries: smart-
cards.

Figure 1: Markets for networked Java-enabled devices

Besides re-iterating the much-publicised software
engingeering advantages of Java in an embedded
context, this article aims to convey a deeper un-
derstanding of the performance and cost issues at
play. I hope to show that Java’s high execution and
memory cost are not caused by singular features or
failures in the Java system, but rather can be at-
tributed to a multitude of deliberate considerations.
This means that the law of ’retained misery’ (Wet
van behoud van ellende) almost always applies for
attempts at optimisations. Therefore, good under-
standing of the issues is necessary, in order to pre-
vent system designers from choosing solutions that
exactly do not quite solve the problem or that are far
more expensive than necessary.

This article is organised as follows: The next sec-
tion discusses the business reasons, as related to the
software development productivity gap, for apply-
ing Java. The second section investigates the impact
of Java’s feature set on execution cost. The third
section takes us to the beef of the matter, namely the
technical solutions for decreasing Java’s execution
cost. As dessert, the fourth section describes some
hardware approaches for accelerating Java execu-
tion. The fifth section is the proverbial CFA (Con-
clusions, Future work, and Acknowledgements).

How is Java supposed to help in-
crease software development pro-
ductivity?

Java is an object oriented language [1]. Typical con-
structs from object oriented languages, such as in-
heritance, are usually considered beneficial for soft-
ware development productivity. However, this sec-
tion is concerned with the features that are more
specific to Java. Most of what is discussed below is
not really new. But Java is the first widely used lan-
guage that wraps them all in a nice, well-marketed
package.

The following aspects of Java were included to im-
prove software development productivity:

• Language simplicity: The language is easy to
learn, i.e. the syntax is kept very close to that of
C (C++). However, many of the constructs for
which C++ is regarded as complex, have been
left out. Apparantly, this has not made the lan-
guage less useful. A good example is the use
of interfaces, instead of multiple inheritance (al-
though some people question the use of either).
Giving classes multiple interfaces is almost as
powerful as multiple inheritance. However, it
avoids problems such as classes inheriting the
same class more than once.
Because Java is easy to learn, it quickly gained
a large developer base. This means that it will
be more easy to find qualified software develop-
ment personnel. Besides that, Java’s simplicity
allows other professionals than software devel-
opers to understand Java code. Therefore, other
stakeholders can more easily participate in qual-
ity assurance of software projects.

• Strong typing: The Java language is strongly
typed. This means that the compiler can stat-
ically check many commonly made mistakes,
such as passing wrongly typed arguments, in-
advertently losing or adding sign extensions at
assingments, pointer arithmetic problems, etc.
In fact, some researchers claim that, because
of Java’s strong typing, compilers have more
knowledge about the way the code will execute
and can therefore apply more aggressive opti-
misations. This means that, in theory, Java code
could run faster than C code...

• Exception handling: The software designer

16 XOOTIC MAGAZINE

can define the application level at which excep-
tions should be caught. The language offers
constructs such that, at the levels below that one,
developers can treat them transparantly (i.e. just
pass them on). Of course the language also of-
fers constructs for easy handling of exceptions
at the level defined for that purpose. As an ex-
tra (and obvious) safety precaution, exceptions
that do slip through that level will eventually be
caught by the run-time environment.

• Array boundary checking: The code is guar-
anteed not to violate array boundaries. Software
developers should still check for array bound-
aries. But if this fails, at least the state of
the system does not get corrupted. The ex-
ception mechanism offers a standardised con-
struction for handling those situations. Also,
array boundaries are part of the language and
can therefore be taken into account when writ-
ing loops. In fact, the exception catching mech-
anism can be legally used to end array handling
loops (which is not to say that this is good pro-
gramming practise :-)!

• Automatic memory management: Java does
not have explicit memory allocation, nor can the
programmer explicitly return memory. Memory
is implicitly allocated during creation of objects.
The language assumes that the operating envi-
ronment contains a garbage collector that should
appropriately reclaim memory. Many languages
(including C) actually do not have constructs for
memory allocation and de-allocation; they are
part of the library structure. In Java and C++,
implicit memory allocation is part of the lan-
guage. In Java, garbage collection is part of the
language, in the sense that an explicit construct
has been (purposely) omitted.

• Platform independence: This is achieved by
compiling Java to an intermediary language
(Java virtual machine language or Java byte-
code, JBC). It is not a language feature. In fact,
Java can very well be compiled directly into na-
tive code of any processor [5]. In principle, it
is not possible to compile languages such as C
and C++ to JBC, a.o. because Java does not
require JBC to offer direct memory manipula-
tion. Java Virtual Machine language interpreters
(JVMs) are available for most (embedded) plat-
forms. Combined with the next item, platform
independence can result in enormous savings of

development cost, because one does not need to
maintain different software versions for differ-
ent platforms.

• Rich standardised set of APIs: This set, in-
cluding implementations (mostly in Java) was
released together with the language. Software
developers can safely assume implementations
of these libraries to be available on any plat-
form that runs the targeted flavour of Java. This
means that developers can concentrate on solv-
ing the real problems. They do not have to
spend effort studying APIs for many different
platforms or implementing code for such basic
operations, as set handling, sorting, hash tables,
graphics primitives, etc.

The combination of these features is rumoured to
result in a productivity increase per developer of a
factor of 2.

Impact of Java’s feature set on sys-
tem cost

As far as the production cost of embedded devices
is concerned, features such as language simplicity,
strong typing, and exception handling come more
or less for free. The other features come at a high
cost.

Cost of performance penalty

The language specifies that every array access has
to be checked against array boundaries. During
an experiment on a real-life software system (a
15 KLoC simulation module, written in C), array
bounds checking code could be switched off, in-
creasing performance by 10%. Take into account
that this module was only part of the complete sim-
ulator, which also contained a simulation kernel
and several other simulation modules, together em-
ulating a silicon system. Software, instrumented
with Purify (a memory consistency checking tool),
runs factors slower than production code. Several
projects [20] report overhead, caused by garbage
collection, to be in the range of 5% to 35%. In-
terpretation overhead (when using a regular JBC in-
terpreter, not a JIT compiler) is usually reported to
account for about a factor 5 to 10. Together, these
features result in a slow-down of a factor 20 to 40

June 2001 17

over the same functionality, implemented in C. This
performance penalty translates into higher system
cost. The processing elements inside an embedded
system are usually dimensioned very carefully to
exactly match the requirements of the software. Ev-
ery unnecessary resource causes the eventual prod-
uct to be more expensive and thereby lose market
share. An exact factor for the increased system cost
is difficult to give. It is usually not necessary to
actually dimension the system 40 times larger than
otherwise would be required. On the other hand,
just scaling up the clock speed of the system is not
enough. In order for a processor to actually benefit
from higher clock speed, it should also have big-
ger caches, wider memory lanes, faster on-board
buses, more complex board designs, etc. A com-
mon way of increasing the Java performance is the
application of a Just In Time (JIT) compiler, which
reduces interpretation overhead (associated with ex-
ecuting JBC, Java’s intermediary virtual machine
language). However, even if a JIT compiler were
to remove all interpretation overhead, Java is still
about a factor 4 slower than native code (because of
the other performance costs, such as array bounds
checking and garbage collection).

Cost of increased memory requirements

The increased memory requirements are due to four
factors:

• The JVM is a relatively large piece of soft-
ware. The smallest full implementations have
footprints of about 100KB. Because of opti-
misations, fancier threading mechanisms, and
fancier user interface layers, this can increase to
about 500KB. Since, in many cases, the JVM
will be part of the firmware of a system, it
will reside in ROM. ROM is much cheaper than
RAM. Therefore, one would be tempted to dis-
card this cost. However, RAM is faster than
ROM, so that many embedded systems copy
firmware to RAM, upon startup...

• Next to the JVM, a full Java system requires
about 9MB of Java run-time libraries. For sev-
eral reasons, it makes sense to place this code
in rewritable memory. In a networked envi-
ronment, this code definitely is eligible for up-

dates. Besides that, for performance reasons,
most JVMs modify the instructions as they exe-
cute them (turning dynamically linked code into
semi-statically linked code). This requires the
libraries to be placed in RAM.

• Java memory management is relatively expen-
sive (in terms of memory utilisation). This is
partly due to programming practises, partly it is
inherent to the use of a garbage collector. Cur-
rent programming practise results in the con-
stant generation of many short-lived objects.
For example, function results, as used in expres-
sions often are objects, even though they could
just as well be scalar types (integers, booleans).
Returning an object causes that object to be cre-
ated on the heap. However, immediately after
evaluation of the surrounding expression, the re-
turned function results become redundant.

• The garbage collector requires that the sys-
tem contains more heap memory than strictly
required by the application. Otherwise, the
garbage collector would have to be activated
whenever an object becomes redundant. To-
gether, memory allocation and de-allocation re-
quire about 2MB of RAM, in order to run mean-
ingful user-interface oriented applications.
Specially mobile applications, provided by NTT
DoCoMo’s iMode (a Japanese mobile phone
operator), show that careful design of Java soft-
ware can result in useful applications that re-
quire only a few 10s of KB for dynamic memory
allocations.

All-in-all, the minimum requirement for a full Java
system is about 10MB of ROM and 2 MB of RAM.
This comes on top of storage for the actual Java ap-
plication code (which is assumed to be about the
same as for the same application in native code1)
and the requirements of the underlying operating
system (which is still required when running Java).

It should be noted that most embedded systems will
not contain the full set of Java libraries. Part of
the confusion around Java technology stems from
the plethora of application domain specific subsets
and extensions to the full Java API set. Experi-
ments have shown that the full set can be brought
back to about 500KB for mobile applications, by re-
moving user interface and character conversion rou-

1On the one hand, JBC is about a factor 2 more compact than RISC code. On the other hand, JBC is packaged in Java class
files, which contain a lot more data than just the JBC. Only some of that data gets discarded during loading.

18 XOOTIC MAGAZINE

tines. When disregarding the performance penalty
of ROM, and when using specially designed ap-
plications, the minimal footprint for a Java system
ends up at about 1MB ROM and 100 KB RAM.
Again, these costs come on top of the requirements
for the actual (Java) applications and OS.

It is up to the system designer to choose the appro-
priate API set and live with the consequence of not
being able to support all Java applications.

Figure 2: The complexity of the Java technology chart
stems from the fact that it consists of many API sets,
most of which are not precisely subsets of each other.
The left column lists the functionality of the APIs. The
rightmost box gives a number of product dependent API
extensions

Cost of increased system complexity

These costs are difficult to quantify in a generic
sense. But we can give an indication of the issues at
play. What is meant here are the costs associated
with having to design and maintain software and
hardware components that are more complex than
would be strictly required for native operation.

The simplest scenario is where efficient execution
(i.e. interpreter performance) and graphics (user in-
terface) are not required. There are few examples
of such systems, because devices without user inter-
faces usually constitute high-volume, low cost mar-
kets. Anyway, in that scenario, the only engineer-
ing cost is associated with porting a bare-bones Java
interpreter to the target system. An experienced
software engineer spends about half a man-year on
porting, testing, and verifying a software stack like
Sun’s KVM. Given frequent updates, both in Java
interpreter software technology and hardware plat-
forms, the same cost will probably recur for main-
tenance on a yearly basis.

A more complex and realistic scenario would be
the higher-end hand-held and mobile devices, in

wich Java execution is added for user interface pur-
poses and simple applications. Because of the kinds
of applications, it is not required to have high-
performance execution. And because of the market
positioning, it is feasible to incorporate extra pro-
cessing power. In this scenario, assuming that the
platform already provides some degree of graphics
support, the software development cost is increased
by another 2 man-years for porting and verifying
the native parts of the Java user interface toolkit
(e.g. Sun’s Abstract Windowing Toolkit, AWT).
The maintenance cost will remain at about half a
man-year, annually.

Figure 3: Applications spend 20% (large apps, right
bar) to 40% (small apps, left bar) of execution time on
native code. Consequently, 60% to 80% of time is spent
on bytecode interpreting.

The next scenario are the medium to high-end con-
sumer devices, such as set-top boxes. In the near
future, they will adhere to standards such as Mul-
timedia Home Platform (MHP [3]), Home Audio
Video Interoperability (HAVi [6]), and Jini, which
apply Java for complex tasks, combining system
control and advanced user interface technology. De-
spite the market positioning (medium to high-end),
the consumer price for such systems does not al-
low for the inclusion of PC-class hardware. In the
first versions of these devices, the processor speed
is limited to about 300MHz. Internal memory is
in the range of 16MB to 32MB. Harddisks are not

June 2001 19

yet part of the package. The heavy use of Java
in advanced user interfaces requires an optimised
Java interpreter, sophisticated graphics stack, and
native multithreading support. Several companies
deliver speed-optimised interpreters, often in com-
bination with JIT compilers. Because of their com-
plexity, these systems require significant up-front
and running licensing fees. Therefore, a choice
for any package requires an extensive selection pro-
cess. Usually, this selection process involves exper-
imental ports of several rival software stacks onto
simulators of the projected hardware system (dur-
ing those preliminary experiments, the actual hard-
ware is often still in the design phase). This selec-
tion phase may already involve several man-years
work...

This paragraph dealt with some of the issues, sur-
rounding the complexity of adding Java suppport to
several types of embedded systems. Even though
the list of issues per scenario and the set of scenar-
ios are not complete, I hope this paragraph gives an
idea of what to expect.

What Technologies are used to de-
crease Java’s execution cost?

Obviously, the choice of technologies depends on
the actual costs of the bottlenecks, as discussed in
previous sections. For example, it makes no sense
to optimise thread synchronisation for small embed-
ded devices that are not expected to perform much
multi-threading. However, in most cases, it does
make sense to write the main interpreter loop in as-
sembly, since this is where most JVMs spend about
80% of their time [20].

When analyzing technologies, we can make several
more or less orthogonal categories: hardware versus
software, memory versus speed, and domain spe-
cific versus generic. Conveniently, this set of cat-
egories can be represented as a cube with more or
less orthogonal sides, see Figure 4. For example,
JIT compilers are generic software enhancements,
which impact the speed of the interpreter, at the cost
of increased memory utilisation.

In the following sections, we will categorize and
discuss a number of common optimisations to Java
execution mechanisms. What we will see is that,
as is usually the case, most optimisations involve

trade-offs, where an improvement on one axis of the
cube means a degradation on another axis.

Performance

System
 cost

G
en

er
ic

ity

KVM

pJava

JIT

BC.Accel

Best

Worst

Figure 4: Cube of execution enhancing technologies,
indicating some postitions, relative to Sun’s standard
interpreter (pJava).

JIT Compilers

JIT compilers [8] were already categorized as
generic software solutions for increasing Java ex-
ecution speed, at the cost of increased memory util-
isation. It is therefore questionable whether they ac-
tuallly decrease execution cost. If memory is more
expensive than processor silicon, this may not be
the case.

Paradoxically, the pure JIT (Just In Time) compiler
systems can also be called ”Just Too Late”, because
they start compiling a (Java byte) code sequence at
the exact moment the user/system (first) needs that
particular function. Especially on embedded sys-
tems with relatively light processors, this initial call
may take a long time. Also, this behaviour is partic-
ularly disruptive to real-time operation.

In order to prevent the Just Too Late behaviour and
decrease memory cost of pure JIT compilers, profil-
ing JIT compilers were introduced [HotSpot, 21].
Besides a compiler, such a system also contains
a conventional interpreter-based execution mech-
anism. Initially, all code is executed by the in-
terpreter. For every distinct code block (usu-
ally method), the frequency of its invocations is
measured. When this frequency exceeds a cer-
tain threshold, the code block gets JIT-compiled.
This approach generally decreases memory require-
ments, because no memory is waisted on the trans-
lation of blocks that are executed infrequently.

20 XOOTIC MAGAZINE

However, we do have to take into account that the
JVM has grown larger, because of the extra inter-
preter and profiling software. It also remains to be
seen whether this approach performs as well as a
JIT-only solution, since initial interpretation runs
and profiling efforts may decrease overall perfor-
mance.

Subset interpreters

These are domain specific software optimisations
for reducing memory utilisation, usually at the ex-
pense of performance.

JavaSoft’s KVM [21] and JavaCard [21] are exam-
ples of interpreters that do not support the full set of
Java bytecodes.

The same goes for JVMs and library implemen-
tations that support only a subset of the standard
Java APIs. Usually, those subsets are restricted in
terms of user interface capabilities. For example,
the Truffle [21] user interface library can only han-
dle one application window at any time. It is im-
plemented almost fully in Java, thereby reducing
the required native functionality to a minimum (ba-
sically just pixel drawing). However, because al-
most all functionality is implemented in Java and
supplied as Java bytecodes, Truffle is also relatively
slow.

Specialised processors

These are generic hardware solutions for accelerat-
ing bytecode execution. Depending on (non-Java)
legacy code requirements, the inclusion of a general
purpose processor might still be necessary. In that
case, the solution will come at the cost of increased
silicon area and increased system complexity, both
in terms of hardware and software system design.

Examples of specialised processors are Pico-
Java [16], Moon (Vulcan ASIC), and Shboom (Pa-
triot Sciences). These are all processors that run
the complete Java bytecode set natively. Keep in
mind that the Java Virtual Machine language repre-
sents a Complex Instruction Set Computer (CISC).
In fact, some Java bytecodes are extremely com-
plex, involving memory allocation, initialisation,
string table searches, and/or bytecode loading. On
a regular software interpreter, this requires thou-
sands of cycles. Normally, CISCs contain mi-

crocode, splitting complex operations in sequences
of more basic operations. Microcode can be seen as
a kind of processor-internal ’software’. Specialised
Java processors can implement most bytecodes us-
ing microcode. However, the really complex byte-
codes can not be implemented using such an ex-
tremely low-level language. Therefore, in spite of
the promise of generic Java programmability, heavy
investments in software development environments
for those processors do have to be made.

And even if C/C++ software development environ-
ments are available for those specialised Java pro-
cessors, they usually still do not run all the required
legacy software. For example, because the legacy
software was programmed in assembly or requires
the support of an operating system that is not avail-
able for the Java processor. This would mean that a
general purpose CPU needs to be added to the hard-
ware system. If the project can afford to develop
its own ICs, the additional direct cost is limited to
a few euros worth of silicon per product. However,
if the project has to rely on off-the-shelf hardware,
extra ICs and increased circuit board size have to be
added to the bill of material and product form fac-
tor. In terms of system design, going from a single-
CPU to a multiprocessor solution adds a whole new
set of problems, such as communication protocols,
cache coherency protocols, and resource access ar-
bitration. This gets aggravated in the case of hetero-
geneous multiprocessor designs, consisting of dif-
ferent types of processors.

Of course, a specialised Java processor (even a
heterogeneous multiprocessor, incorporating a Java
processor) probably contains less silicon than a sin-
gle general purpose processor, offering the same
Java performance. However, the question is, can’t
we find a more optimal approach, especially regard-
ing the system design issues?

Bytecode accelerator hardware

Like specialised processors, these are hardware so-
lutions for accelerating bytecode execution [11, 13].
However, they assist a general purpose processor in
executing Java. Therefore, the complete solution
always consists of a processor and an accelerator.
Since this processor is relieved of many of the Java
execution tasks, it can be relatively small. Besides
that, the accelerator module itself should be signifi-

June 2001 21

cantly smaller than the Java processors in the afore-
mentioned heterogeneous designs.

In its simplest form [2], the accelerator is actually
a translator from Java bytecodes to CPU native in-
structions. It can be seen as an instruction-level JIT
compiler, implemented in hardware. Because it is
implemented in hardware, it can perform its tasks in
parallel to the processor doing the execution of the
generated code. Because the translation takes place
at instruction level, the system requires very little
storage for intermediate results (a matter of several
bytes, rather than several megabytes for a software
JIT compiler).

One instance of such an accelerator will be dis-
cussed in more detail in the next section.

Graphics accelerators

Measurements have shown that, for meaningful
Java applications, 2D graphics processing takes
10% to 20% of all processing time [20]. The rea-
son is that most Java applications are user-interface
intensive. After optimising Java bytecode process-
ing, the relative impact of this factor will increase to
20% to 50% of all processing time. This means that
graphics acceleration only becomes an issue after
bytecode acceleration.

Graphics acceleration is a domain specific optimi-
sation. It only has use in environments that require
media processing or have graphical user interfaces
and large screens with some degree of color depth.

Obviously, adding a graphics accelerator means
higher hardware costs.

Multi-level and hardware garbage collectors

As was mentioned before, garbage collection also
accounts for a significant amount of performance
loss. As with graphics, this is very application de-
pendent. Garbage collection seems to be a good
candidate for acceleration through hardware. Some
attempts have been made, including in the author’s
own projects [12]. In fact, it is not very difficult to
implement certain garbage collection algorithms in
hardware [14].

However, garbage collection algorithms themselves
require substantial and variable amounts of mem-
ory. This can only be efficiently achieved by inte-
grating the garbage collection logic with the mem-

ory devices. But the memory device business in
very a cost-sensitive commodity market. Specially
designed garbage collected memory chips can not
be produced in sufficient numbers to make them
commercially viable.

Another approach to at least alleviate the garbage
collection bottleneck is to implement several types
of software algorithms. Some algorithms are par-
ticularly good at quickly finding a large number of
short-lived objects. Other algorithms are more thor-
ough, but also more time consuming. Therefore,
the heap is divided in a space for short-lived ob-
jects and a space for older objects. The former ones
are scanned quickly. Objects that have survived a
number of those scans are moved to the latter space,
which is scanned with the thorough procedure. The
performance benefit results from the expensive pro-
cedure having to scan only part of the heap.

Optimised thread synchronisation

Java is a multithreaded language, heavily oriented
towards re-use. This means that designers of Java
classes alsways have to take into account that mul-
tiple threads may wish to concurrently access the
internal data structures of those classes. Every ob-
ject that may be accessed concurrently has to be
protected against multiple threads interfering with
each other’s changes. Therefore, Java objects are
synchronised very conservatively. The synchronisa-
tion operations involve threads performing operat-
ing system calls for claiming exclusive access, get-
ting blocked as long as the claim can not be re-
warded, and relinquising the claims when the oper-
ations have finished. These operating system calls
are very expensive. A lot of time can be saved if one
can utilise the fact that actual interference is very
rare.

A Hardware approach to accelerat-
ing Java execution

At Philips Research, we’ve been working since the
end of 1996 on hardware for Java acceleration in
embedded systems. The work started from the fol-
lowing constraints:

• chip area increase should be minimal (e.g. much
less than size of low-end 32-bit RISC CPUs),

22 XOOTIC MAGAZINE

• memory utilisation should not increase, com-
pared to software interpreter,

• solution should be compatible with modern
RISC CPUs (since general purpose CPUs re-
main necessary),

• solution should be modular (i.e. have minimal
impact on other components in an embedded
system), in order to facilitate re-use,

• performance increase should be at least a factor
5 over a regular software interpreter.

We found a solution in the form of a translator mod-
ule, which assists general purpose CPUs in exe-
cuting Java bytecodes. We called the module Vir-
tual Machine Translator (VMI). Later, we found [2],
which gives a good description of many of the con-
cepts. VMI is very small. Essentially, it consists of
tables that direct the translation. These tables can
be implemented in a very compact way. VMI needs
very little computational logic, since most compu-
tations take place on the general purpose CPU.

Figure 5: From a software point of view, the bytecode
interpreter module is simply replaced by hardware (as
the garbage collector module might be)

Since part of the Java interpretation task is now im-
plemented in hardware, the memory utilisation ac-
tually decreases slightly (we need less code to im-
plement the Java interpretation software). Since the
actual operations take place on the general purpose
CPU (remember that VMI is only a translator), there
are no problems with data coherency between the
two processing elements. Contrary to most other
accelerators, VMI has been developed completely
separately from the CPU. CPU and VMI only com-
municate through the on-chip system bus. Cur-
rently, most integrated microcontroller devices con-
tain standardised on-chip buses. Therefore, build-
ing VMI for a specific on-chip system bus, means
it is compatible with all CPUs that can be attached
to that bus. The fact that VMI communicates only

through a standardised bus also means no other
parts of the hardware system need to be modified.

Figure 6: From an abstract hardware point of view,
VMi is placed between the memory and the CPU
pipeline, feeding the pipeline with translated bytecodes

After having indicated how the solution is intended
to solve the problem, while keeping within the con-
straints, it is now time for some more technical de-
tail.

Most computer systems contain at least a CPU
(Central Processing Unit) and a memory. The CPU
can be seen as a robot, which is able to execute se-
quences of instructions. For example, a car con-
struction robot repeatedly executes instructions that
tell it to move, pick up components, attach compo-
nents, measure parts of the construction, etc. In or-
der to assemble a complete car, such a robot exe-
cutes thousands of those instructions. In the same
way, CPUs execute billions of instructions for a
simple task, such as drawing an image on a screen
or printing a document. The CPU reads those in-
structions from the aforementioned memory. Thus
we find the instructions for the Java applications in
the memory and require the CPU to fetch and sub-
sequently execute them. However, general purpose
CPUs do not understand the Java instructions (also
called ’bytecodes’). This is where the Java Vir-
tual Machine software comes in. It translates the
bytecodes into instructions that the CPU does un-
derstand. This means that next to the functional-
ity of the bytecodes themselves, the CPU needs to
spend time on the interpretation task. A very sim-
ple interpreter for some of the bytecodes could be
programmed as follows:

1.unsigned interpreter(char *pc) {
2. /* ’pc’ points at bytecodes */
3. unsigned sp[STACK_SIZE];
4. /* ’sp’ compute result stack */
5. while(TRUE) {
6. switch(*(pc++)) {

June 2001 23

7. case push_const :
8. *(sp++) = *(pc++);
9. break;
10. case pop :
11. sp--;
12. break;
13. case add :
14. *(sp-2)=*(sp-2)+*(sp-1);
15. sp--;
16. break;
17. case ret :
18. return *(sp-1);
19. break;
20. }
21. }
22.}

The above code does not need to check stack un-
der/overflow or code overrun conditions, because in
Java this is done statically.

Notice that the above instructions (pushconst, pop,
add, ret) are about as powerful as regular CPU in-
structions. However, the while-switch-case-break
construction (lines 5, 6, 7, 9, etc., in the code above)
usually requires between 10 and 40 CPU instruc-
tions per iteration. The actual functionality of the
bytecodes (lines 8, 11, 14, 15, and 18 in the code
above) requires between 5 and 10 CPU instructions.
The reason is that the stack pointer-relative address-
ing introduces an extra indirection and because the
stack pointer itself needs to be updated. This means
that a CPU needs to execute 15 to 50 instructions for
operations for which it would normally require 1 or
2 instructions. This means a 7x to 50x interpretation
and execution overhead per bytecode.

Going back to the accelerator concepts:

In order to reduce the interpretation overhead, the
program counter is moved from the CPU into the ac-
celerator. The accelerator now reads the bytecodes
from the memory and determines the location in its
translation tables of the corresponding sequence of
CPU instructions. It performs this task within the
time the CPU needs to execute the previous transla-
tion. Thereby, the while-switch-case-break bottle-
neck is completely removed.

In order to reduce the time needed for the actual
functionality (remember that push, pop, add, and
ret require 5 to 10 CPU instructions), the stack
pointer is also moved from the CPU into the transla-
tor. Now, instead of just providing the correspond-
ing sequence of translated instructions, including

stack pointer indirections, the translator simplifies
the translation by substituting the stack values in
the instruction sequences (inspired by [4]) and do-
ing the stack pointer updates internally. The result-
ing translation sequences have an average length of
about 2 CPU instructions. All-in-all, the translator
provides a speed-up on the above bytecodes of at
least a factor 15.

Conclusions, Future Work, and Ac-
knowledgements

Java is becoming an important language for embed-
ded systems programming. However, before Java-
based products can become a success, the cost of
the Java execution mechansism has to be reduced.

Most companies providing Java execution mecha-
nisms advertise their solutions citing a single bench-
mark (e.g. [17]). In this article, I hope to have made
it clear that performance is not the only factor at
stake and that JVMs are such complex systems that
a single-point measurement of performance can not
give an accurate indication of relative qualities.

The interest in incorporating Java in embedded sys-
tems is still increasing. Despite Moore’s law (pre-
scribing that compute power will steadily increase),
there is a continuous need to taylor Java implemen-
tations to the strict requirements of embedded sys-
tems. Java acceleration technologies seem to offer
interesting advantages, but their commercial viabil-
ity still needs to be proven. On the short term (dur-
ing 2001), JIT compilers will find their way into
systems with little real-time and memory restric-
tions. On the somewhat longer term (before 2003),
we will see bytecode accelerators opening up ex-
tremely constrained devices to the Java language.
2D graphics accelerators are already used in embed-
ded systems with heavy user interfaces. The sophis-
tication of garbage collection systems is constantly
increasing, but much work remains to be done here.
It is questionable whether garbage collection hard-
ware will ever become viable.

I would like to thank the members of the Java
Hardware Accelerator project at Philips Research
for their enthousiasm, in particular Otto Stein-
busch (currently at Philips Semiconductors), Nar-
cisse Duarte (currently at Canal+), and Selim Ben-
Yedder. I’ve also had many valuable discussions

24 XOOTIC MAGAZINE

with Pieter Kunst, Nick Thorne, Harald van Woer-
kom, and Paul Stravers.

References

[1] K. Arnold, J. Gosling, D. Holmes,The Java
Language Specification, Addison-Wesley
2000, ISBN 0-201-70433-1

[2] E.H. Debaere, J.M. van Campenhout,Inter-
pretation and Instruction Path Coprocessing,
The MIT Press, 1990, Cambridge MA, USA

[3] Digital Video Broadcast Mul-
timedia Home Platform,
http://www.mhp.org/htmlindex.html

[4] M.A. Ertl, Implementation of Stack-Based
Languages on Register Machines, PhD thesis
Technische Universitaet Wien, Vienna 1996

[5] The Free Software Foundation,The GNU
Compiler for the Java Programming Lan-
guage, http://www.gnu.org/software/gcc/java

[6] HAVi, http://www.havi.org

[7] J. Hoogerbrugge, L. Augusteijn,Pipelined
Java Virtual Machine Interpreters,9th Inter-
national Conference on Compiler Construc-
tion, April 2000, Berlin, Germany

[8] A. Krall, R. Grafl, CACAO - A 64 bit JavaVM
Just-in-Time Compiler,Institut fuer Comput-
ersprachen, Technische Universitaet Wien, Vi-
enna, 1998

[9] M. Levy, Java to Go: Part 1; Accelerators
Process Byte Codes for Portable and Em-
bedded Applications,Cahners Microprocessor
Report, February 2001

[10] T. Lindholm, F. Yellin,The Java Virtual Ma-
chine Specification,Addison-Wesley, 1996-09

[11] M. Lindwer, Versatile Java Acceleration
Hardware,2001, to appear...

[12] X. Miet, Hardware for (Java) garbage collec-
tion, ENST, Paris, France, October 2000

[13] Nazomi, Nazomi Communications; High
Performance Java Technology for Mo-
bile Wireless and Internet Appliances,
http://www.nazomi.com

[14] K. Nilsen, Progress in Hardware-
Assisted Real-Time Garbage Collec-
tion, Iowa State University, 1995,
http://www.newmonics.com/dat/iwmm95.pdf

[15] K. Nilsen, Issues in the Design
and Implementation of Real-Time
Java, NewMonics, Inc., April 1996,
http://www.newmonics.com/dat/rtji.pdf

[16] J.M. O’Connor, M. Tremblay,PicoJava-I: The
Java Virtual Machine in Hardware,pages 45-
57, IEEE Micro, 1997-03/04

[17] Pendragon Software, Caffeine-
Mark 3, http://www.pendragon-
software.com/pendragon/cm3/info.html

[18] Philips Research,Mobile phones, set-top
boxes, ten times faster with new Philips
accelerator for Java, January 2001,
http://www.research.philips.com/press-
media/010101.html

[19] Philips Semiconductors, Java hardware
accelerator for embedded platforms, Philips
Semiconductors World News,November 2000,
http://www.semiconductors.philips.com/pub-
lications/content/file680.html

[20] O.L. Steinbusch,Designing Hardware to In-
terpret Virtual Machine Instructions; Con-
cept and partial implementation for Java
Byte Code,Master’s thesis, Eindhoven Uni-
versity of Technology, February 1998, TUE-
ID363006

[21] Sun Microelectronics,JavaSoft; The Source
for Java Technology,http://www.javasoft.com

Biography. Menno Lindwer is a Senior Scien-
tist at Philips Research in Eindhoven (The Nether-
lands). He has been involved in hardware de-
sign (methodology) since 1991, graphics accelera-
tion since 1995, and Java acceleration since 1996.
Menno holds a Master’s Degree in computing sci-
ence from Twente University of Technology (1991)
and a post master’s degree in software technology
from Eindhoven University of Technology (1993).

June 2001 25

Other interests include object oriented design, sim-
ulator technology, and system-on-silicon architec-
ture. Menno joined Philips Research in 1995. Cur-
rently, he is in charge of the Platform Indepen-
dent Processing and Java Hardware Acceleration
projects at Philips Research in Limeil-Brevannes

(France) and Eindhoven (The Netherlands). Previ-
ous work experience includes a.o. artificial intelli-
gence systems, research in delay insensitive asyn-
chronous circuits, and performance analysis of 3D
graphics accelerators.

26 XOOTIC MAGAZINE

Python
Victor Bos

“And now for something completely different...” Python is a scripting language
with clear syntax and semantics, support for object orientation, and an exten-
sive standard library. In contrast with many other scripting languages Python
code is readable and, therefore, reusable. This makes Pyhton a useful tool for
software development, since it can be used to implement prototypes as well as
production versions of applications.

Introduction

Python is ascripting or extensionlanguage similar
to Perl [12], Tcl/Tk [8]. In his foreword toPro-
gramming Python[6] Python’s creator Guido van
Rossum wrote (See [11]):“I decided to write an
interpreter for the new scripting language I had
been thinking about lately: a descendant of ABC
that would appeal to Unix/C hackers.”The ABC
language, [5], has never become popular, which is
partly caused by its peculiar syntax, but it was well
designed. In addition to ABC, Python was influ-
enced by Modula-3, an object oriented descendant
of Pascal meant for system programming, see[7].
This resulted in a scripting language with clear syn-
tax (which is not common for scripting languages)
and powerful language constructs.

Furthermore, Python comes with an extensive stan-
dard library that provides the programmer access to
a huge set of routines. Therefore, a Python pro-
grammer usually does not have to spend much time
to implementation details of standard routines like
matching a regular expression on a string, or ac-
cessing operating system functionality to create pro-
cesses, pipes, etc. Instead, a Python programmer
can just look up the relevant Pythonmodulesin the
standard library and use them to solve her/his prob-
lem.

The language

The syntax of Python is quite standard, as will be
shown in examples throughout this article. How-
ever, there are some controversial aspects.Inden-
tation of groups of statements is one of them. If a
group starts on a new line, all its statements should
be indented by the same number of columns. For
example, a while loop is written as:

while i<n and f(i)<f(n):
a[i] = f(i)
i = i + 1

The statementsa[i] = f(i) and i = i + 1
form a group. Since indentation is used to indi-
cate groups, no group delimiters like{ and } or
begin –end are needed. Programmers unfamil-
iar with Python might find this irritating, however,
it is not a drawback. Experienced programmers
(in no matter what language) have usually adopted
their own style of indentation for groups of state-
ments. Since Python does not prescribe the number
of columns of indentation, these people can keep on
using their own style in Python. Furthermore, the
code does not get messed up with group delimiters.

Build-in data structures Python has the follow-
ing data structures build-in: integers, floats, strings,
tuples, lists, dictionaries, and functions. There are
no booleans, which is a shortcoming not only of
Python but of most scripting languages. Integers,
floats, and strings are standard data structures which
we will not discuss here. A tuple is animmutable

June 2001 27

sequence of elements, that is, it is a sequence of
which the elements cannot change once the tuple
is created. Lists are mutable sequences of elements;
elements can be added to and removed from lists.
A very powerful build-in data structure is thedic-
tionary. A dictionary is a look-up table or associa-
tive array containing key-value pairs. Hashing is
used to look up a key in a dictionary which means
dictionaries have fast access times. Finally, func-
tions are first-class objects in Python. Therefore,
Python programs can be a mix of functional and im-
perative programs. Alambda-syntax, known from
many functional programming languages, is used
to denote anonymous function. For example, the
function that adds two elements could be written in
Python aslambda x, y : x + y . Since this is
a normal object, it can be assigned to variables, as
will be shown later.

Universal object model Python has auniversal
object model, which means that every piece of data
in a Python program is an object. As usual in object
oriented programming languages, an object has at-
tributes that define the state of the object and meth-
ods to allow other objects to perform operations on
the object. For example, the following Python code
defines a classPoint of objects with anx and ay
coordinate and a methoddist to compute the dis-
tance between two objects.

class Point:

def __init__(self, x=0, y=0):
self.x = x
self.y = y

def dist(self, other):
dx = self.x - other.x
dy = self.y - other.y
return (dx**2 + dy**2) ** .5

In the definition ofdist , the two argument** op-
erator is used;x ** y raisesx to the powery .
The example shows at least two syntactic peculiari-
ties. First of all, Python has special syntax for spe-
cial methods like the__init__ method. The spe-
cial syntax, which in my opinion is quite ugly, is
an identifier that starts and ends with two under-
scores. The__init__ method is special, since
it is a constructor of thePoint class and will be
called whenever a point is created, for example,
the point(1, 2) is created by callingPoint(1,2) .
Note that the coordinate arguments of__init__
have default values,x=0 and y=0 , so the point

(0, 0) could be created by callingPoint() . Other
special methods are used to overload operators and
build-in functions. For example, the__add__
method can be used to overload the+ operator. By
extending thePoint class with the following defi-
nition of __add__ , we can writep1 + p2 in or-
der to add the pointsp1 andp2 .

def __add__(self, other):
return Point(self.x + other.x,

self.y + other.y)

The other strange part of the examples above is
the self -parameter of__init__ , dist , and
__add__ . This parameter is a self-reference to the
object on which the method is invoked. Whereas
in most object-oriented languages there is usually
no need to make the reference to an object it-
self explicit, in Python it is. Furthermore, the
self-reference is always the first parameter of the
method. By convention it is calledself , but the
programmer is free to choose another identifier.

So, in a constructor (__init__) self refers to
the object that is created and in a normal method
(dist or __add__) self refers to the object on
which the method is invoked. In some program-
ming languages,this is used instead ofself ,
e.g., C++ [9] and Java [1].
Unlike many object-oriented programming lan-
guages, the set of attributes and the set of methods
of an object are not constant during its lifetime. For
example, the following code creates aPoint ob-
ject, changes itsx-coordinate, and adds a color at-
tribute.

p = Point()
p.x = p.x + 4
p.color = "yellow"

Programming styles Python supports three pro-
gramming styles: procedural, object-oriented, and
functional programming. Furthermore, these styles
can be mixed arbitrarily. Of course, an unrestricted
mix of these three styles will not improve read-
ability and maintainability of the program and it is
therefore wise to stick to one style as much as pos-
sible. However, programming styles are meant to
ease programming and not to restrict the freedom
of the programmer. Therefore, if in a given situa-
tion one particular style is not adequate, it should
be possible to switch to another style. Python sup-
ports programming using multiple styles, whereas a

28 XOOTIC MAGAZINE

pure functional language or a pure object oriented
language does not.
The following Python listing is an example show-
ing the three programming styles. First we take the
Point class again and extend it with the special
method__str__ . This method will be called if
a Point object should be represented by a string,
e.g., in order to print it. After the class defini-
tion, two functions are defined:closerToOrig
and findMax . The functions are not part of the
Point class, because their indentation is not the
same as the indentation of the class body. The
functioncloserToOrig takes two points and de-
termines if the first is closer to the origin, i.e.,
Point(0,0) , than the second. ThefindMax
function is a generic function that takes a non-
empty list of elements and a compare function
lessthan . The compare function determines if its
first argument is less than its second argument. Note
thatcloserToOrig is such a compare function.

class Point:

def __init__(self, x=0, y=0):
self.x = x
self.y = y

def dist(self, other):
dx = self.x - other.x
dy = self.y - other.y
return (dx**2 + dy**2) ** .5

def __str__(self):
return ("(" + str(self.x) +

", " + str(self.y) +
")")

def closerToOrig(p0,p1):
return (p0.dist(Point(0,0)) <

p1.dist(Point(0,0)))

def findMax(list, lessthan):
if len(list)>0:

m = list[0]
for i in list[1:]:

if lessthan(m, i):
m = i

return m
else:

print "No max in empty list"

Given a list of elements and a suitable compare
function on the elements,findMax finds a max-
imal element in the list with respect to the com-
pare function. For instance, given a list of points,
findMax can be used to determine a point that is
at least as far from the origin as all other points.

For example, consider the following Python code.
On the first line, a listl of three points is created.
On the second line, this list is printed. Themap
function takes a function and a list and applies the
function on each element in the list. The function
str returns a string representation of its argument.
If applied to aPoint , it calls the special method
__str__ defined above. The third line creates
a list of numbers representing the distance of the
points in list l to the origin. Finally, the fifth line
calls thefindMax function with argumentsl and
closerToOrig in order to find a point inl that
is at least as for from the origin as all other points
in l .

l = [Point(3,4), Point(), Point(2,1)]
print map(str, l)
d = map(lambda x: x.dist(Point()), l)
print map(str, d)
m = findMax(l, closerToOrig)
print m

The output of this Python code is:

[’(3, 4)’, ’(0, 0)’, ’(2, 1)’]
[’5.0’, ’0.0’, ’2.2360679775’]
(3, 4)

Standard library

Python comes with an extensive standard library
organized inmodulesandpackages. Furthermore,
the standard library is mostly platform indepen-
dent. People familiar with Java will recognize
much of the functionality, like network program-
ming, threads, and a standard windowing toolkit. In
addition, it includes modules that define Perl-like
regular expressions and powerful string operations.
In this section, I will discuss some functionality of
Python’s standard library. For more detailed infor-
mation, see [6, 2].

Internet Internet programming is one of the most
important application domains of Python. One
of the reasons for Python’s popularity is that
the standard library provides functionality by
which both server and client side Internet ap-
plications can be written. For example, the
modules urlparse and mimetools pro-
vide functionality to manipulate url strings and
mime encoded messages, respectively. In ad-
dition to these modules, there are modules to
process HTML, XML, and SGML documents,

June 2001 29

modules that provide HTTP servers, and mod-
ules to write CGI scripts. The fact that many
CGI scripts are written in Python and that
there exist full size web-applications, like Zope
(http://www.zope.org/), shows that Python is
popular among internet application program-
mers.

Operating system servicesPython has build in
functionality to read and write files. In ad-
dition, the standard library offers functionality
to handle files and directories, sub-processes,
streams, and pipes. The sub-processes need not
be Python programs, but can be any program
that runs on your system. In this way, Python
can be used to control different applications or
as a communication means between different
applications.

Profiling Python comes with adeterministic pro-
filer. The online Python reference describes de-
terministic profiling as follows:
Deterministic profiling is meant to reflect the
fact that all function call, function return, and
exception events are monitored, and precise tim-
ings are made for the intervals between these
events (during which time the user’s code is ex-
ecuting). In contrast, statistical profiling ran-
domly samples the effective instruction pointer,
and deduces where time is being spent. The
latter technique traditionally involves less over-
head (as the code does not need to be instru-
mented), but provides only relative indications
of where time is being spent.
A profiler is an important tool for an extensi-
ble scripting language, since it enables software
developers to analyze an application thoroughly
and make the right decisions about which rou-
tines are time critical and should be imple-
mented in a system programming language, and
which routines are less time critical and can
therefore be written in the scripting language.
Below, I will explain the possible role of the
Python profiler in a software development pro-
cess.

Serialization Serialization is the transformation of
a (run-time) data structure into a sequence of
bytes such that it is possible to recover the origi-
nal data structure from the sequence of bytes. In
Python’s standard library, several modules exist
to serialize arbitrary objects. Furthermore, seri-

alization is platform independent. Therefore, it
is quite easy to store the current state of an ap-
plication as a sequence of bytes in a file, transfer
it to another computer (which also runs Python),
and to continue with the application in the same
state on that computer. Usually, serialization
is applied not to complete applications, but to
some crucial data structures of the applications
that should be available the next time the appli-
cation is executed.

Threads Python supports multi-threaded applica-
tions. The threading modules resemble to some
extent the threading mechanism of Java. Multi
threading is very useful for writing server appli-
cations. For example, an HTTP server is usu-
ally written using multiple threads. In its main
loop it waits for a client to make a connection.
As soon as a client makes a request, the server
creates a new thread that processes the request.
During the processing of the new thread, the
main loop is ready to accept a new request.

Windowing toolkit A common application do-
main of Python is graphical user interfaces.
Since the standard library has a windowing
toolkit, named bytkinter and derived from
Tcl/Tk’s UI widgets, writing a user interface in
Python has the advantage of being platform in-
dependent.

Python glue

One of the goals of Python is to act as a
glue language that connects different applica-
tions and libraries. To be more precise, Python
was developed to be used in an open environ-
ment in which Python programs could be inte-
grated with non-Python programs. Therefore,
Python was developed to be embed-able as well
as extensible and interfaces of how to embed
and extend Python are well documented, see
http://www.python.org/doc/current/ext/ext.html,
Chapters 14 and 15 of [6], or Appendix B of [2].
As a glue language, Python greatly facilitates reuse
of existing code, for example, see [3].

Embedding Python means integrating the Python
interpreter in another application such that Python
programs can be run from within the other appli-
cation. This effective adds all of Python’s script-
ing power to the hosting application. Extending

30 XOOTIC MAGAZINE

Python means integrating applications or libraries
in the Python interpreter such that its is available
from within Python programs. It is possible to em-
bed and extend Python at the same time. As usual,
such a union based on equality can be very fruitful.

If Python is used to glue applications and libraries
together, care should be taken that it does not re-
place techniques especially designed to act as an in-
terface between software components. In fact, using
Python as a glue language and using a standardized
interface technique should be orthogonal design de-
cisions. For example, if the application is supposed
to be available at someobject market, see [10], its
interface should be defined using a standardized in-
terface technique, e.g., CORBA or XML, instead of
Python.

So, if there are good arguments to use CORBA in
a situation where Python is not used for integra-
tion, then it should still be used if Python is used
for integration. This claim can be turned around as
well: if Python can be used for integration, then us-
ing a standardized interface technique is probably
too much overhead. As is explained below, inte-
grating existing code with Python requires the in-
terface (C/C++ header files) of the code to be avail-
able which can be problematic in a commercial en-
vironment. However, in that case, integration with-
out Python is at least as big a problem.

A prerequisite of extending Python with a given li-
brary is that the interface of the library is defined in
C-header files or that the source code is available in
C or C++. This is a limitation, since there are useful
libraries out there for which no C-header files ex-
ists. However, for almost any subject there exist C
and C++ libraries as well or if the source is available
in, say, Fortran, then writing a C-header file for it is
not too difficult. Furthermore, if Python should be
integrated with Java applications, one should con-
sider usingJython: a Python implementation writ-
ten in Java, see http://www.jython.org. It is said that
Jython-Java integration is better than the conven-
tional Python-C/C++ integration, since no recom-
pilation of Java code is needed due to Java’s reflec-
tion API. However, since I have no experience with
Jython, I will only focus on the Python-C/C++ com-
bination.

Extending Python with an existing library effec-
tively means that a wrapper for the library has to be
created and together with the wrapper, the library

has to be turned in an object file that can be loaded
dynamically e.g., shared libraries or DLLs, or that
is linked statically with the Python interpreter. The
wrapper should take care of the translation between
data structures of Python and the data structures of
the library. The conversion between C/C++ and
Python data structures is documented extensively
and, therefore, after some reading, not difficult.

Tools have been developed that create wrappers au-
tomatically. SWIG is one of such tools and stands
for Simplified Wrapper and Interface Generator,
see http://www.swig.org/. SWIG is not just a tool
to create wrappers and interfaces for Python, it can
also generate interfaces for other languages, e.g.,
Perl and Tcl/Tk. SWIG comes with extensive doc-
umentation and the SWIG user guide (available
on http://www.swig.org/doc.html) has devoted one
chapter to the combination of SWIG and Python.

Example of a Python Extension Since extensi-
bility of Python is one of its most powerful features,
I spend the remainder of this section to describe
my experience with extending Python with an ‘off-
the-shelve’ BDD library. A BDD (binary decision
diagram) is a data structure to store boolean func-
tions [4] space efficiently. For this article, it is not
necessary to explain BDDs, but it suffices to give
some examples of what can be done with BDDs.
First of all, BDDs manipulate boolean function
symbolically. For example, given a BDD for two
boolean functionsf0 andf1, there are BDD opera-
tions to compute a BDD for the functionand(f0, f1)
defined by

and(f0, f1)(b) = f0(b) ∧ f1(b).

There are also operations to compute other com-
mon boolean operations, like∨, →, etc. In addition
to these symbolic operations on boolean functions,
a BDD library provides routines to determine if a
boolean function (represented by a BDD) can return
true for some concrete values of its arguments. That
is, there are routines that determine if a boolean for-
mula can be satisfied. Given that almost any prob-
lem defined formally can be translated into a prob-
lem defined in boolean formulas, BDD libraries can
be used an many areas. Historically, BDDs have
been applied mostly to tasks in digital system de-
sign, verification, and testing.

The BDD library I chose is calledBuDDy and its

June 2001 31

source code is freely available. It can be down-
loaded from http://www.itu.dk/research/buddy/.
There is no good reason why I chose this BDD
package; it just happened to be the first package I
found that was freely available and installed with-
out problems on my machine. BuDDy is written in
C and has some additional definitions to use it in
C++.

Extending Python with BuDDy was not a compli-
cated task, thanks to SWIG. The main difficulties
were in dealing with pointer arguments and func-
tion pointers, since SWIG does not process them
automatically. So, in these cases I had to write some
extra code in a so-called SWIG interface file. After
that, SWIG generates the wrappers which could be
compiled and linked with the original BuDDy code
into a Python module. Note that the BuDDy code is
left unchanged
So, the functionality of BuDDy is now available to
Python programs. However, it is at a somewhat low
level; python programs directly call C functions to
generate and manipulate BDDs. Furthermore, since
garbage collection of objects created by BuDDy is
left to the programmer, the Python code quickly be-
comes a unreadable mess of function calls and tem-
porary variables. Note that this is more a problem of
BuDDy than of Python; the C-examples that come
with BuDDy exhibit the same mess of function calls
and temporary variables. To make it better accessi-
ble, BuDDy has a C++ class that takes care of auto-
matic garbage collection and overloads some oper-
ators such that function calls can be written as op-
erator applications. I did the same in Python and
wrote a class that defines BDDs as normal Python
objects. Also, I overloaded some Python operators
in the same way the C++ class did. As a result, the
Python code is at least as readable as the C++ code.
For example, the following listing shows some lines
of C++ code of an implementation of theN -queens
problem in C++ using BuDDy (here,X is a two di-
mensional array of bdds anda, b, c , andd are bdd
variables):

bdd a=bddtrue,
b=bddtrue,
c=bddtrue,
d=bddtrue;

int k,l;

/* No one in the same column */
for (l=0 ; l<N ; l++)

if (l != j)
a = a & (X[i][j]

>> !X[i][l]);

The corresponding lines of Python code for theN -
queens problem reads:

a = bddtrue
b = bddtrue
c = bddtrue
d = bddtrue

No one in the same column
for l in range(0,N):

if (l != j):
a = a & (X[i][j]

>> -X[i][l])

Software development with Python

Sometimes, scripting languages are said to be good
for prototyping, but not for real application de-
velopment. A prototype bears the associations of
‘quick and dirty’ and ‘to be thrown away.’ However,
Python is more than just a prototype language. Due
to its clear syntax and its universal object model,
reuse of Python programs is a very attractive op-
tion. Therefore, a substantial part of Python code of
a prototype of an application could very well end up
in the code of the final application.

So, what is Python’s role in a software development
process? First of all, it can be used for prototyping;
like any scripting language, it enables programmers
to write quickly a mock up of an application in order
to analyze the feasibility of the project.

A simplified and Python centered, view on software
development could be described as follows. Firstly,
determine user requirements of the application and
build a prototype in Python. Next, a development
cycle is started that consist of assessment of the pro-
totype, estimation of costs of improving the proto-
type, and finally a decision whether to improve the
prototype or to abort the cycle and declare the cur-
rent prototype the final application.

During each cycle, assessment of the prototype can
lead to new or more precise requirements. Analy-
sis of the prototype shows, among others, computa-
tion intensive code, which could be implemented in
a system programming language. The Python pro-
filer is very useful to detect computation intensive
code. If, after some runs of the development cy-
cle, all computation intensive code is implemented
in a system programming language, there is proba-
bly not much more speed to gain. At that time, it

32 XOOTIC MAGAZINE

is a waste of time to translate the remaining Python
code into a system programming language.

Conclusions

In this article I have discussed the Python language.
Python is a scripting language with clear syntax
and an extensive standard library. It supports, but
does not enforce, procedural, functional, and object
oriented programming styles. Unlike many other
scripting languages, Pyhton code is readable and,
therefore, reusable. Reusability is even more sup-
ported by Python’s platform independence. Python
can play an important role in software development,
since it is a powerful tool for prototyping as well
as for implementing the final application. If the
application contains computational intensive code,
which will be too slow if programmed in a script-
ing language like Python, the extension interface of
Python makes it very easy to implement this code in
a system programming language like C/C++. Fur-
thermore, together with its embedding interface, the
extension interface of Python enables efficient inte-
gration with existing applications and libraries.

References

[1] Ken Arnold and James Gosling.The Java Pro-
gramming Language. Addison-Wesley, 2nd
edition, 1997.

[2] David M. Beazley. Python Essential Refer-
ence. New Riders, 2000.

[3] David M. Beazley and Peter S. Lomdahl.
Feeding a large-scale physics application to
python. In Proceedings of the 6th Interna-
tional Python Conference, San Jose, Califor-
nia, October 1997.

[4] Randal E. Bryant. Symbolic boolean ma-
nipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293–
318, 1992.

[5] Leo Geurts, Lambert Meertens, and
Steven Pemberton. The ABC Program-
mer’s Handbook. Prentice-Hall, 1990.
To be republished by the CWI. See also
http://www.cwi.nl/ steven/abc/.

[6] Mark Lutz. Programming Python. O’Reilly &
Associates, first edition, October 1996.

[7] Greg Nelson, editor. System Programming
with Modula-3. Series in Innovative Technol-
ogy. Prentice Hall, 1991.

[8] John K. Ousterhout.Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[9] Bjarne Stroustrup. The C++ Programming
Language. Addison Wesley, special edition,
2000.

[10] Clemens Szyperski. Component Soft-
ware, Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

[11] Guido van Rossum. Foreword
for Programming Python, May
1996. See [6]. Also available on
http://www.python.org/doc/essays/foreword.html.

[12] Larry Wall, Tom Christiansen, and Randal L.
Schwarz.Programming Perl. O’Reilly & As-
sociates, 2nd edition, 1996.

Biography Since January 1998, Victor Bos is a
PhD student at the Eindhoven University of Tech-
nology. He is involved in formal methods re-
search at the computer science department. His cur-
rent interest lies in applying formal method tech-
niques to industrial engineering and therefore he
works closely together with the Systems Engineer-
ing Group at the department of Mechanical Engi-
neering. He was an OOTI from 1996–1998. In
December 1995, he received his masters degree in
computer science at the University of Groningen.

June 2001 33

Overview Latest OOTI Reports
The post-masters programme OOTI is concluded with a design project. The final reports of these projects
are in general publicly available, unless stated otherwise. The following reports have been published
lately.

• Venemans, B.M.
Redesign of a flexible cross-platform communication utility,
Keywords: Embedded software / Host-target communication /
ISBN 90-444-0092-4, 34 p., March 2001

• Garcia, P. and B. Xu
Introduction of Presentation State into EasyVision,
Keywords: Presentation State / EasyVision / OOTI
ISBN 90-444-0-0093-2, 45p., March 2001

• Manolache, C.D. and M.F. Zelina
In-Home Network Simulation Framework II,
Keywords: JINI / In-home Network
ISBN 90-444-0088-6, 78p., March 2001

Copies of these reports are available through the secretariat of the post-masters programme Software
Technology (OOTI), tel +31 40 247 4334.

34 XOOTIC MAGAZINE

