intelligent Networks for Rapid Introduction of Personal Communications 7

Intelligent Networks
for Rapid Introduction of Personal Communications

drs. Hans Bisseling

ir. Erik van der Velden

Four years ago both authors finished the OOTI| programme, after which they
Joined Ericsson ETM in Rijen to start working in the field of Intelligent Networks
(IN). Hans Bisseling is active in the European research programme RACE as
core task leader within the project Mobilise. The objective of Mobilise is to define
a personal communication environment called PSCS (Personal Services Com-
munication Space). Erik van der Velden works at the IN Application Laboratory
of Ericsson ETM, where he is prototyping new IN concepts. This prototyping is
done by using the symbolic programming language Distributed Erlang, specifi-
cally developed for telecommunication applications.

Intelligent Networks (IN) is a concept for rapid
introduction of new telecommunication services
into the public network. IN standardization work
has been started the late 80s and in the coming
years network operators will introduce IN plat-
forms in their network. Then, new services can
be introduced faster as they can be expressed by
scripts that interconnect service independent build-
ing blocks (SIBs). These building blocks are in
fact abstractions from network capabilities. By
standardizing these SIBs, IN services can be spec-
ified independently from the underlying networks
or vendor,

Personal Communications

The RACE project Mobilise (R2003) is a four-year
project (1992-1995) and its objective is to define
a concept for personal communication. In the Mo-
bilise project IN is used as the basic framework
to develop PSCS, a concept for personal commu-
nications. In this concept, service mobility and
the personalization of service conditions are main
concerns of a modern telecommunication environ-
ment. In addition, smooth co-operation among
various services and a simple presentation form
to the end-user are of extraordinary importance as
well. Nowadays, people can communicate in many
ways. They can communicate by using an ordinary
telephone or a more fancy mobile phone, or by us-
ing a fax machine. They can alert someone else by
activating his or her pager, or they can use modern
communication techniques such as electronic mail
and multimedia. But, one big problem remains:
the management of their communications at any

place and at any time.

Figure 1: The personal communications prob-
lem

Nowadays, people can adapt their communications
to their personal needs. For example they want to
do call management in which they can set condi-
tions (e.g., time, caller’s identity, location) in order
to handle incoming calls (resulting in e.g., reach-
able, announcement, forwarding to someone else,
voice mailbox). Important is that people can do
this type of management in an integrated way for
all their communications, this does not mean that
the communications themselves need to be inte-
grated. As people do not care about technology
they care about their communications and how to
manage it.

To fulfill all these requirements in new telecom-
munication systems, a user-defined environment
called Personal Services Communication Space
(PSCS) has been developed. PSCS can be regarded
as a shell around the end-user that is available at
any time and at any place, through which the end-

8 X0OOTIC MAGAZINE

user can manage his communications in an inte-
grated way. The main features of the PSCS are
the following.

e Personal mobility
Personal mobility means that an end-user
can use any network access point and any
terminal while being identified through the
same number and charged to his personal
account. PSCS is considered to be an exten-
sionn of UPT (Universal Personal Telecom-
munication) which is standardized by ETSI
and ITU-T. The main feature of UPT is
registration (similar to login) by which the
end-user associates his personal number to
a terminal address. After registration (PIN
needed) this terminal can be used for in-
coming and ouigoing communications, but
charged to his personal account. UPT offers
mobility across mobile and fixed networks
as users can register themselves on mobile
terminals as well as terminals connected to
the fixed network.

e Personalization

The PSCS concept for personalization is that
end-users have personal working environ-
ments, that can easily be managed by sub-
scribers and configured by end-users. Sub-
scribers (those who are charged, e.g., com-
panies) can control the service delivery to
their end-users (e.g., employees), and define
limitations on the service usage, depending
on the situation the end-user is in at a cer-
tain moment. End-users are then allowed to
configure their personal environments within
these limits.

e Inter-operability
Inter-operability describes the capability of
the system to support effective interworking
between different services, offered on het-
erogeneous networks.

The PSCS conceptual framework is primarily
based on the Intelligent Network Conceptual
Model (INCM) (ITU-T Q.1200) with extensions
taken from Open Distributed Processing (ODP).

A prototype implementation of some
PSCS aspects

In the Intelligent Network Application Laboratory
at Ericsson, we have implemented some of the
ideas from PSCS by using Intelligent Networks.

March 1995

For this we implemented a IN simulator. In the
IN simulator we introduced the concept of Flexi-
ble Service Profile (FSP).

The main idea behind this exercise is to gain some
insights in the effect of PSCS on the network ele-
ments and interfaces.

The Flexible Service Profile

To meet the PSCS requirements of user mobility
and personal services we introduced the concept of
Flexible Service Profile (FSP). Each mobile user
has its own FSP, which not only contains all data
for that user, but can also contain service scripts
for the services to which the user is subscribed.
This means that the user can really have his own
unique services. To facilitate grouping of users
with common service requirements, it is possible
to call upon common FSPs from the FSP of an in-
dividual user.

When an FSP user registers on a telephone in the
network he is reachable on that telephone, all the
(personal) services of the FSP user are available,
for both incoming and outgoing calls. So, the FSP
‘follows’ the user as he moves through the net-
work.

The IN simulator

To be able to experiment with the introduction of
the FSP in an IN network we implemented a com-
plete set of IN nodes in a simulator.

The simulator executes on a network of SUN work-
stations. Each IN node can be started on a sepa-
rate workstation. Furthermore, the simulator con-
trols two hardware switches, which are stripped
versions of a PABX. The switches are controlled
via the serial interface of the workstations. Con-
nected to the swiiches are six feature phones, two
analog telephones, one 2 Mbit link connecting the
two switches, and a DECT Radio Exchange. If no
switching hardware is present the simulator offers
the possibility to make calls using a graphical user
interface. A screendump of the IN simulator in
action is presented in Figure 2.

With the simulator it is possible to create personal-
ized services for one subscriber in the Service Cre-
ation Environment Function (SCEF). Via the man-
agement interface (SMF) the FSP is then down-
loaded to the database (SDF). When this user reg-

Intelligent Networks for Rapid Introduction of Personal Communications 9

Figure 2: Simulating IN networks

isters on a telephone, his personal set of scripts are
moved to a local Service Control Function (SCF)
where they can be interpreted whenever the user
invokes one of his services via a Service Switching
Function (SSF). The new location of the user will
be updated in the SDF.

When another user calls the FSP user, his current
location is fetched from the SDF and the call is
diverted to that location.

Implementation in Distributed Erlang

For the implementation of the IN simulator we
used a concurrent declarative language developed
by Ericsson called DISTRIBUTED ERLANG (see
Example 1).

During the process of implementing the simula-
tor we found that DISTRIBUTED ERLANG is very
suited for this kind of applications. Some of the
features of DISTRIBUTED ERLANG are the fol-
lowing.

e Small but powerful
DISTRIBUTED ERLANG is easy to learn and
a very high level language, which means that
the gap between specification and implemen-
tation is very small.

® Real time
Suited for the so-called soft real-time ap-
plications, with response times in the 5-15
ms range. DISTRIBUTED ERLANG has its

own scheduler. But, when run under uUNIX,
no hard real-time is possible, since Dis-
TRIBUTED ERLANG itself depends on the
operating system.

Light-weight concurrency

Processes communicate with each other by
sending messages. Message sending is asyn-
chronous, a process sending a message does
not wait until it has been received. Processes
can select which messages they are prepared
to receive. Light-weight concurrency allows
you to easily cope with problems which are
most naturally solved with massive paral-
lelism, e.g., in the simulator we have one
process per line in a trunk.

Transparent distribution

Distribution is part of the language. Distri-
bution is transparent, the syntax and message
passing is the same between processes on
the same computer and between processes
on different computers. Special interface
languages for communication between com-
puters are thus not necessary when Dis-
TRIBUTED ERLANG is used, even if the
computers are of a different type.

e Robustness

DisTRIBUTED ERLANG provides three
mechanisms for dealing with errors.

- Monitoring the evaluation of expres-
sions.

10 XOOTIC MAGAZINE

- Monitoring the behaviors of other pro-
cesses.

- Trapping evaluation of undefined func-
tions.

These mechanisms make it possible to de-
sign fault tolerant layered systems, e.g., hav-
ing one layer of processes monitor a lower
layer of processes and restart these processes
when they terminate abnormally. Dis-
TRIBUTED ERLANG’s error handling mech-
anisms work transparently across distributed
networks of processors.

e Memory management
All memory management is done by the im-
plementation of the language and not by the
programmer.

e Modules
DISTRIBUTED ERLANG has modules with
import and export declarations. This is nec-
essary to be able to structure large program
systems into manageable building blocks.

e Foreign Language interface
DISTRIBUTED ERLANG provides an inter-
face for interacting with programs written in
other programming languages.

e Code changes in a running system

Many systems, like telecommunication sys-
tems, can not be stopped to install software
corrections or amendments. DISTRIBUTED
ERrRLANG provides mechanisms for loading
or replacing modules in running systems,
Code in modules being replaced can be
phased out. Two version for a module can
be present.

As an example the module of the prompt SIB is
shown. The function of the building block is to
display a text on the user’s telephone and wait for
digits. When these digits are received successfully,
the result of this SIB is ‘ok” and the entered digits
are stored.

-module (prompt10) .
-export([initial/2]).

initial(LogicData, Runlist) ->
[Prompt, TermCond, Put] =
bbsupport10:
get log prms ([prompt,termcond,put, [outputl),
get (handler) !
operation, self(), [input, Prompt, TermCond],
receive
result, ok,Digits ->

March 1995

datamaniO:put data(Put, Digits)
ok, Runlist;
result, nok ->
failed, Runlist;
Other ->
throw({error,

"rcvd unknown message during prompting'"})
end.

Example 1: A SIB implemented in Distributed
Erlang

Di1sTRIBUTED ERLANG is already implemented
on several machines. One of the architectures
for which DISTRIBUTED ERLANG is available
is the Support Processors in the Telephone Ex-
change. Support processors handle tasks indepen-
dently of the central processor and can be used
for, e.g., communication with hardware. Dis-
TRIBUTED ERLANG demonstrates that it is not
only possible, but profitable to use a higher level
language in embedded real-time systems.

Conclusion

Personal mobility and personalized services will
make their appearance soon. For the future Intel-
ligent Network to handle these requirements some
changes are needed. We think that the Flexible
Service Profile will prove to be an answer. To
make the ideas concrete we implemented this con-
cept in a simulated IN. DISTRIBUTED ERLANG
has proven to be an ideal programming language
for implementing this simulator. O

Drs. Hans Bisseling (left) and ir. Erik van der
Velden (right) completed the post-masters pro-
gramme Software Technology in 1990. They
are currently employed at Ericsson ETM in
Rijen. Hans Bisseling is core task leader in the
RACE project ‘Mobilise’. Erik van der Velden
is researcher at the IN Application Laboratory.
Both authors are members of xooTIC.

