The Challenges of Embedded Systems 23

The Challenges of Embedded Systems

prof.dr.dipl-ing. Dieter Hammer

Embedded systems become increasingly important in aimost all areas of busi-
ness and daily life. It should thus not come as a surprise that we think about
the introduction of an additional module on this subject in the Software Tech-
nology education (OOTI) program of our department. This contribution briefly
addresses the following issues: what are embedded systems, what are the chal-
lenges in this area and how can we tackle this subject within the OOTI course.
The aim of this contribution is not only to introduce the subject, but also to open

the discussion about its realization within the OOT].

What are Embedded Systems?

As suggested by their name, embedded systems
are computer systems that are an integral part of
a larger system like a production cell, a controller
for a home heating system, an audio or television
set, a copying machine, an airplane, a digital tele-
phone exchange, etc. The term embedded system
thus encompasses a broad class of systems, ranging
from simple microcontrollers to large and complex
multi-processor and distributed systems. Their em-
bedding in the environment often hides their exis-
tence completely from the user; in other cases a
dedicated user interface is provided. In general
engineering terms embedded systems are used for
the control of industrial or physical processes. Sen-
sors continuously gather information from the en-
vironment. The service of the embedded system
Is to process of this information and to signal the
actuators in accordance with the mechanisms of
the controlled process. Embedded systems thus al-
ways have to be designed in the context of their
environment. In computer science terms embed-
ded systems are distributed reactive systems.

Of course, distribution is more a practical than a
principal attribute. It reflects the fact that, for ef-
fectivity reasons, more and more businesses take
an end-to-end view on their business processes.
Think for example about a typical production pro-
cess for a car consisting of (1) the production of
the various parts (this is usually done by external
suppliers), (2) the assembly of the parts by the car
manufacturer, (3) the shipping of the finished car,
and finally (4) the hand-over of the product to the
customer. A typical usage process would be the
handling of a television set: starting with (1) con-
sulting a program menu (e.g., via teletext or via the

catalogue of a video-on-demand source), continu-
ing with (2) checking the various selection possi-
bilities via multiple windows, (3) the selection of
a channel, (4) the possible selection of a secondary
information source (like a business news service)
to be displayed in a small window, and finishing
with (5) tuning the display parameters.

Such processes often involve a couple of different
enterprises. This means that the embedded system
is probably large and inhomogeneous, i.e., various
different computer systems are involved which are
possibly connected via various private and/or pub-
lic networks. Note that this view is quite different
from the more classical one. In the conventional
view embedded systems are typically small homo-
geneous systems that comprise only a few proces-
sors that are distributed over a relatively small area,
€.g., a control rack or a production cell. However,
the introduction of broadband networks with small
transmission delays will increasingly blur this dis-
tinction. Examples of such networks are ATM
networks with gigabyte bandwidth and nanosec-
ond cell switching delays.

There is another important difference between
more classical and the currently evolving embed-
ded systems. Conventional embedded systems are
often supposed to operate in a deterministic envi-
ronment. In that case all possible system inputs
are known in advance. In principle (i.c., if for-
mal methods are applied), it is then possible to
verify the correctness of the system during con-
struction. Of course, this is a very desirable prop-
erty, especially for safety-critical systems. Con-
sequently many research projects assume a deter-
ministic environment. For example, in the DE-

24 XOOTIC MAGAZINE

DOS project that is conducted at our department,
the hard real-time part also is deterministic, There
is, however, another class of embedded systems
that have to operate predictably in a dynamic and
unpredictable environment. The larger and more
complex the controlled process is, the larger the
probability that it has to be adapted dynamically,
i.e., during operation. Consequently, the behavior
and the configuration of the embedded system have
to be changed on-line, i.e., by adding new mod-
ules or jobs. An important problem in this area
are on-line scheduling methods that guarantee the

deadlines of all tasks dynamically, once a new task

is accepted by the system. For example, the soft
real-time part of the DEDOS project uses dynamic
on-line scheduling methods. It should be clear that
it is far from trivial to ensure the correctness of the
functional, timing, and failure properties of an em-
bedded system dynamically.

Predictability, whether statically or dynamically
ensured, not only concerns the functionality but
also many other aspects like timeliness (real-time
behavior), reliability, availability, security, etc.
These non-functional aspects are usually captured
by the term dependability. Real-time behavior has
always been an issue for embedded systems. It is,
however, only during the last couple of years that
attention is given to the systematic construction of
embedded systems that have to provide several of
the above mentioned dependability aspects. The
reason is quite obvious. As an increasing num-
ber of increasingly complex processes depend on
the correct operation of embedded systems, there
is an increasing demand to avoid failures that lead
to loss of money or human life. For the design of
embedded systems, and especially of safety-critical
Systems, it is important to note that the controlled
process usually obeys its own dynamics and does
not allow the restoration of a previous state in case
of failures. This means that erroneous transactions
in the environment (e.g., too early or too late fir-
ing of the flash of a copying machine) that are
caused by failures of the embedded system cannot
be undone. Beside being correct, embedded sys-
tems must thus obey a well-defined failure behav-
ior like fail-stop or fail-soft (graceful degradation).

I still need to explain the term reactivity in the
definition of embedded systems that I gave earlier.
There are basically two ways a system can inter-
act with its environment. Transformational sys-
tems repeatedly or continuously transform an in-
put into an output. For each input, they start from

March 1995

a given initial state and end via a finite number
of transitions in a well-defined final state. Re-
active systems, on the other hand, are involved
in an unbounded interaction sequence with their
environment. This interaction is often based on
so-called events that reflect state transitions of the
environment. Obviously, many multi-valued envi-
ronment variables are inferred via the sensors. It is
often required that several stimuli have to be han-
dled (1) concurrently, (2) timely, and (3) reliable.
The first requirement implies that the behavior of
an embedded system cannot simply be described
as a sequence of input - output interactions. The
second requirement implies that the reactions to a
given stimulus have to occur before a given dead-
line. Finally, the last requirement means that the
functionality and timing constraints must also be
guaranteed in the presence of failures. A common
approach is to consider only failures of the execu-
tion platform (hardware and system software) on
top of which the embedded software is built. This
is certainly sufficient for provably correct software
systems like, hopefully, the ones that will be built
by the alumni of our OOTI course. Reality, how-
ever, is nasty. For safety-critical applications it
is thus not unusual to include also certain classes
of software faults in the fault hypothesis and to
try to mask them, e.g., by means of multi-version
programming.

What are the challenges?

The embedded systems field is rapidly growing. A
considerable amount of progress has been achieved
but a number of challenges still lie ahead. Among
the most important ones are the following.

Adaptability versus predictability

As explained above, it is increasingly often the
case that embedded systems have to work depend-
ably in a dynamically changing environment. Pre-
dictability implies correctness. Correctness im-
plies formal methods since exhaustive testing un-
der mission conditions necessitates the construc-
tion of complex testbeds for the injection of faults
and takes prohibitive long time. For static and
predictable environments, formal methods start to
emerge although they usually concentrate on only
one dependability aspect and are only suitable for
small problems like the specification and proof of a
particular algorithm or protocol. For dynamic and
non-predictable environments, no generally appli-
cable methods are yet available.

The Challenges of Embedded Systems

Dependability

The different aspects of dependability are often
contradictory. Reliability, for instance, requires
the use of additional resources, which usually de-
creases the performance of the system. Up to now,
design methods mainly concentrate on functional-
ity. Dependability, however, cannot be added as
an afterthought to a system. As yet, here are no
integrated design methods and tool environments
that support the systematic construction of both the
functional and the non-functional system properties
of an embedded system, including its verification
against the specification. If we look for suitable
formal methods the problem becomes even more
severe.

Requirements engineering

As elaborated in the introduction, embedded sys-
tems have to support a production or usage process.
This asks for a top-down approach that starts from
a, possibly reengineered, business process. In the
past, however, the designers of embedded systems
used to start from a functional break-down of the
environment. This is a static and structure-oriented
view as opposed to a dynamic and process-oriented
one. In addition, the design was was often driven
by technological possibilities and choices and did
not pay enough attention to the requirements of
the process to be supported and to the users. This
is a considerable drawback for the validation of
a system against the requirements of the business
process. In addition, this approach becomes very
problematic if the environment changes or the de-
sign should be reused with different requirements.

Software productivity The number of applica-
tions of embedded systems increases rapidly. The
same holds for the software share in the to-
tal system which increases with about 80% per
year. A modern television set can have more
than 1 Megabyte of software and a modern dig-
ital telephone exchange more than 100 Megabyte.
Also the price/performance ratio of hardware has
sharply decreased in the past: about a factor 1.5 per
year. At the same time, the product-life cycles are
decreased by about 25% per year. On the other
hand, the software productivity has increased by
not more than 20% per year. The construction of
embedded software has thus become a serious bot-
tleneck. Although various approaches have been
advocated to tackle this problem, no real break-
through has been achieved.

A discussion on the reasons behind this develop-

25

ment is beyond the scope of this contribution. Nev-
ertheless, the introduction of (1) object-oriented
methods and (2) software process improvement
models are steps in the right direction. The first
subject, the use of object-oriented techniques, cer-
tainly improves the quality and maintainability of
the product, enables concurrent engineering and is
the basis for software reuse. But there are also
challenging problems like the specification of de-
pendability properties in the realm of inheritance
and reuse. The second topic, software process im-
provement, addresses software productivity, soft-
ware quality, and software configuration manage-
ment by concentrating on the reproducibility, man-
ageability, and efficiency of the construction pro-
cess.

Some preliminary ideas about an op-
tional Embedded Systems block

In my opinion, the block Embedded Systems will
basically have the same structure as the other op-
tional blocks: a small project of about 120 hours,
supported by a number of relevant courses. The
project should preferably be conducted in relation
with a real application of embedded software. Our
department is involved in the construction of two
facilities that can be used to test software solu-
tions for industrial applications: a scaled-down
model of a production facility for printed circuit
boards at the department for Industrial Engineer-
ing and a controllable railway model at our own
premises. It will thus be important to acquire exter-
nally funded projects in which these test facilities
can be used. In addition, there is the possibil-
ity to define interesting industry projects together
with other departments like Physics, Electrical En-
gineering, Mechanical Engineering, and Industrial
Engineering.

Fortunately, the block Formal Specification Meth-
ods and the block Software Engineering already
form a sound basis for the construction of em-
bedded systems. The additional courses will ad-
dress a number of relevant subjects like design
methods for embedded real-time systems, methods
and techniques for the construction of distributed
systems and dependable systems, distributed al-
gorithms, real-time scheduling, etc. Although it
would be nice to engage lecturers from industry
who can transfer practical experience, this will not
be possible in all cases. Another important consid-
eration will be a good balance between contribu-

26 X00TIC MAGAZINE March 1995

tions from other disciplines and a sound treatment
of the computer science aspects.

Although there is no precise planning yet, I pro-
pose to introduce the new block in time for the
people that startin September 1995, i.e., during the
first half of 1996. This should give enough time
to discuss the requirements with both industry and %
students and to evaluate possible realizations. O !

Prof.dr.dipl-ing. Dieter K. Hammer is profes-
sor at the Department of Mathematics and
Computing Science of Eindhoven University

of Technology. He is one of the founders of
OOT!I.

Between pre- and postcondition...
FADS SELL

I must admit, embedded software (or should | say embedded hardware) has dramatically sim-
plified the user interface of my alarm clock, requiring only real adjustments when the power goes
off. Soon there will be more software on my bedside cabinet than | have written for gradua-
tion. I am just waiting for the clock that monitors my sleeping habits and nocturnal peculiarities,
notifying me when | snore (this will alleviate the pain caused by having to sleep with a tennis
ball between my shoulder blades, hindering me from lying on my back), or preventing me from
getting out of bed on the wrong side.

But what is so irresistibly attractive about clogging a device’'s ROM with lines of code and
rendering a product useless? Although direct manipulation is still advocated and proclaimed
as the dominant interaction metaphor, it mostly looks more like negotiating with devices that
have programmed minds on their own. Eliciting the right response from a high-end audio set
by pushing buttons and shoving levers is rather something for the technologically savvy ones.
Dozens and dozens of extraneous features of a ordinary tape recorder have to be repressed,
before | actually can do the job for which | purchased the thing (illegally copying those damn
high-priced CDs from friends). Basic functionality of any consumer product is hidden under an
enormous quantity of add-on features provided by embedded software. Do not startle, when an
elder tries to dry his pet in a micro wave. Users will do the stupidest things, because they are
provided with the actual reasons for doing them.

A wide range of functionality is looming at the horizon fulfilling the needs we were never aware
of even having them. Only very recently, designers have come to the conclusion that user inter-
face design is something more than putting a dressing on a salad. But designers do not work for
us. They work for the companies who pay their salaries and think about selling more products.
A flashy shop-demonstration of a product with countless knick-knacks does much more to the
public’s first impression than a simple box with a single switch. Fads sell. |

Edsger & the Bugs Bunnies

