18 XOOTIC MAGAZINE

ir. Marco Brassé

March 1995

Workshop Software Engineering 1994:
BOOST in a bird’s eye view

ir. Ton van den Berg

One of the highlights of the OOT! programme is the workshop Software Engi-
neering. During spring 1994, two teams have developed software for an em-
bedded copier system from Océ . An overview of the experiences of one of the
teams, called BOOST, are described here.

BoOST had been assigned to work on the speci-
fication, design, and implementation of a complex
control system for an Océ high-volume copier.
Two restrictions were imposed on the BOOST
project, namely the design should be done in an
object-oriented manner, and the implementation
should be done in the object-oriented language
EIFFEL. To emphasize the realistic setting of the
project, Ruud Vermeulen, a project manager from
BSO/Origin, Ruud Vermeulen, played the role of
customer; he was supported by several critical ex-
perts, guided by Peter van der Stok.

Figure 1: Model of the Ock high-volume copier

So, BOOST was facing a number of challenges.
Especially developing software for embedded sys-
tems was a rather unfamiliar field. Several new
aspects related to embedded systems had to be
mastered; the hardware of the copier must be mod-
eled, and the software should satisfy real-time con-
straints. Moreover, although we had followed the
course Object-Oriented Design (OOD), we did not
have much experience with object-oriented tech-
niques, at that time.

Apart from these technical problems, we had to
become a well-organized team, with proper agree-
ments, clear responsibilities for individual persons,

and an efficient way of working. To ensure this,
several team building activities had to be orga-
nized. Furthermore, for customer-driven produc-
tion holds that a satisfying product is good enough.
Hence, the experts needed to be convinced that our
products (and documentation) sufficed. This was
also considered a team effort.

Organizational aspects

The team first chose a project manager from sev-
eral candidates (also team members). Subse-
quently, under his supervision a project plan was
agreed on, describing the different phases of the
project. Each phase required a certain amount of
resources, for which an estimate was given in terms
of number of people, available time, and neces-
sary equipment. Based upon these estimates, it
was decided when a phase started, ended and con-
sequently, which phases had to be done in parallel.
In addition to this information, an estimated bud-
get for each phase was given. Figure 2 shows the
time schedule used in our BOOST project.

For each phase, several sub-teams were working
in parallel at the activities of the phase plan. As it
was our first major project, one team was prepar-
ing a Software Quality Plan (SQP) and a Software
Verification & Validation Plan (SVVP). Since it is
not useful to do this preparation phase with fif-
teen people, the specification-phase took place in
parallel.

Because we did not have an actual copier to test
our copier control system, the development of a
software simulator was included in the project de-
scription as well.

In the design phase, the BOOST team was split
into two teams: one team specified and designed
the copier control system, and the second team

Workshop Software Engineering 1994: BOOST in a bird’s eye view 19

L2

March April : May ; June
14 21 28 4 11 18 25 2 9 16 23 30 6 1

Preparation

Specification

Design

Implementation ee e e

Testing

Deliverance

Figure 2: Planning BOOST project

specified and designed the copier simulator sys-
tem. The team which designed a certain part of the
system, was also responsible for the implementa-
tion and debugging of that part (debugging actually
took place in the testing phase). In general, a team
member that specified and designed a certain part
of the copier, also took care of the implementation.

The planning and deadlines were very useful as an
indication of the progress we made. Several dead-
lines were not met, and werepostponed by one or
two days. Eventually, the project was successfully
completed at June 10th, 1994,

Object-oriented approach

As a principal software engineering tool, we used
Object Modeling Technique (OMT, cf. [1]). This
technique is well-documented and comprises most
stages of the software life cycle. OMT is based
on the well-known entity relationship paradigm,
extended with several concepts to support object-
oriented designs, such as inheritance. Several
(other) arguments in favor of using OMT are listed
below.

e OMT has an object-oriented style, starting
from the specification phase.

e OMT’s design principles and procedures are
clear.

e OMT does not require much training in ap-
plying the method.

e OMT is supported by a software tool, called
OMTool.

Despite all these promising features, a few remarks
are in order. OMT is a general framework for
object-oriented designs, so we only applied those
steps that we considered relevant for our project. A
drawback in our view is the bottom-up approach
in the specification phase to identify all relevant

real-world objects (or entities) of the copier. Fur-
ther, OMT does not provide special facilities to
analyze real-time constraints. This is still a topic
of research. Finally, we would like to mention that
we had merely access to a PC version of OMTool.
Noticing that several members of the design team
should have access to the tool simultaneously, we
decided not to use OMTool.

An alternative to OMT that was presented in the
course OOD was a graphical representation tech-
nique of object-oriented classes (cf. [3]). However,
this technique only covers a part of the design tra-
jectory, and at the time of our workshop, it was
not supported by software.

Principal design decisions

In order to model the complete copier system, we
first split the copier system into five subsystems,
which are briefly mentioned below (Figure 1).

e Original handler: transports originals from
the original tray to the glass plate.

e Process part: flashes the original to generate
an electrical image on the photo conductor
belt. The electrical field is used to hold the
ink (toner) for the copy.

e Paper handler: transports a sheet of paper
from the paper tray to the place where the
ink on the photo conductor belt is transposed
on the sheet.

e Finisher: transports a copy to the output tray;
it also collects and staples sets of copies.

e User interface: handles user interaction and
displays warnings.

Apart from these subsystems, in which the hard-
ware is modeled, we also identify the following
subsystems: originals, sheets (or copies), and a

20 XOOTIC MAGAZINE

subsystem to control the process part of the copier.

A first design decision is to choose which sub-
systems are considered active, and which subsys-
tems are passive. An active subsystem eventually
corresponds to a (software) process; all active sub-
systems together define the dynamic behavior of
the system. A passive subsystem can be seen as a
model of the hardware, which provides services for
the active processes. In principle, two approaches
exist for choosing which subsystems take care of
the dynamic behavior of the system.

1. Structure oriented. In this approach, the ac-
tive subsystems are the original handler, pa-
per handler, etc. The passive subsystems are
the originals, sheets, etc.

2. Process/data oriented. 1In this approach,
the active subsystems are the originals and
sheets (the data objects), whereas the passive
subsystems are the original handler, paper

handler, etc.,
| S _|
| Summiator
| | !
| i i i
\ \ ‘
v i It n
Active ‘ Clock } Control } } Pclznfrsosl- Origmal ||| ‘Sheet-cnpy i
T ‘{ ‘H—H L:—JJ
|
1
- 1 1
Passive User- Mommr—l } Trace-
nterface | mnerator
1
1 | |

Test-
mierprier

Process-
part

Test-
userinteface

Repor- Ongmal- Paper- Fifidte
genenator handler handker

Figure 3: Simulator Architecture

With respect to extendability and reusability prop-
erties of object-oriented designs, we note that a
structure-oriented approach is preferred if the hard-
ware is likely to change a lot over time, whereas
the data-oriented approach is preferred if the way
of making products (viz. the copying process) is
likely to change a lot over time (e.g., adding new
paper sizes to the requirements of the copier). It
will come as no surprise that we have chosen for
the second approach; it is also a very natural way
to model the copier, as the data (originals/sheets)
actually ‘flows’ through the copier, and thereby
determines the behavior of the copier. Figure 3

March 1995

shows the architecture of the simulator, showing
the active and passive systems.

Passive subsystems can be modeled quite well in
OMT. However, active subsystems have to satisfy
real-time constraints. A dynamic behavior should
be described for each active subsystem (as well as
its interaction with other subsystems). For exam-
ple, a sheet subsystem reads sensors and activates
actuators at specific times. This can be written
down in OMT using state charts, but it requires a
detailed schedule of all actions in time. Figure 4
shows a small example of such an OMT state-chart
for a photo-conductor-belt.

l Photo-conductor-belt l

start

starting

tumeout(100)/running

normal-speed

low_speed/error(PP1)

e

J

Figure 4: Example of an OMT state-chart

Constructing such a schedule is done in a rather
pragmatic way. Based on the performance require-
ments of the copier, a schedule is constructed by
determining at which moments in time a process
should perform a certain action in order to meet the
performance requirements of the copier. However,
this does not guarantee that two actions from dif-
ferent processes do not occur at the same time slot
(with a typical duration of 2 ms). Thus, if more
than one action is scheduled in a certain time slot,
it could happen for these actions to consume more
CPU time than the length of the time slot, espe-
cially if the software overhead is large.

Nevertheless, we convinced ourselves and the ex-
perts that the design could be implemented us-
ing only one processor, while all actions could
be scheduled without introducing conflicts (with a
maximum CPU utilization rate of 8.73%, including
user interface polling). Although we did not use a

Workshop Software Engineering 1994: BOOST in a bird’s eye view 21

spreadsheet tool for detecting and solving schedul-
ing conflicts, the competing TORNADO team has
shown its benefits and effectiveness.

After having found a feasible schedule for an ac-
tive subsystem (or process), its detailed dynamic
behavior can be described well in OMT. Apart
from the analysis and design of the subsystems
themselves, the interaction between the subsystems
is often very intricate. Initially, we used several
synchronization messages between the subsystems
(using the message passing paradigm between pro-
cesses), but eventually we have replaced most of
these messages by a single synchronization point
for all subsystems in time, namely the time-siot in
which the control system detects a special physical
hole in the photo conductor belt,

Other design aspects

The previous section was devoted to several prin-
cipal approaches to cope with problems regarding
embedded systems. Apart from these problems,
we also came across other serious design issues. A
simulator must be built to test the control system.
Furthermore, parallelism had to be implemented,
or simulated, in the sequential language EIFFEL.
Finally, the problem of error recovery had to be
solved. If, for example, a sheet gets jammed in-
side the copier, the user should be able to remove
the sheet, after which the copying proceeds. These
issues are addressed in the remainder of this sec-
tion.

The simulator system consists of a monitor that
graphically displays the position of all originals
and sheets, and the state of all relevant hardware
components (see Figure 1). In order to determine
the position of a sheet inside the copier, the ac-
tions of the sheet process are monitored by a simi-
lar process controlled by the simulator (a so-called
simulated sheet process). When, for example, a
sheet process reads a sensor or activates an actu-
ator, it is noticed by the corresponding simulated
sheet-process, and thus knows the position of the
real sheet inside the copier. The simulator pro-
cesses also take care of the setting and resetting of
sensors to be read by the control software.

Using this concept, the copier control system did
not have to be changed in order to test it within
the simulator software. The only communication
between the processes of the two systems occurs at
the level of low-level hardware components, whose

actual code is shared in the test environment.

A consequence of this technique is the creation
of a lot of UNIX processes in the test environment.
In fact, an implementation on our UNIX system
would give problems with respect to the memory
and speed of the UNIX machines. To avoid these
UNIX problems, we decided to build a scheduler in
EIFFEL to simulate parallel execution of the pro-
cesses. The scheduler is based on the ideas used in
the programming language SIMULA-67, in which
a similar scheduler is used to simulate parallelism.

In order to use such a scheduler, the processes (i.e.,
active subsystems) had to be encoded in EIFFEL
as state machines. This can be seen as follows. A
process can in this way send a request to the sched-
uler to enter a certain state of its state diagram at a
certain time slot in the future (to perform a certain
action). The scheduler acts on this request by plac-
ing the process in a waiting queue, and avoiding
busy waiting. When the time slot is reached, the
process is awaken and will find itself reactivated
in its predefined state.

By encoding all processes (including the sched-
uler) in EIFFEL, we obtain one UNIX executable
process, apart from a c-program which takes care
of the communication between the simulator test
software, the (test) user interfaces and the graphi-
cal monitor.

The scheduler proved to be very useful, for pro-
cesses could now be easily and efficiently acti-
vated, deactivated, and reactivated. Furthermore,
the scheduler supports rescheduling of processes
in the waiting queue. This last fact appeared to
be crucial for a clear implementation of the error
recovery routines. A drawback of the method was
that the concept of state machines did not make
the EIFFEL code very elegant.

Conclusion

OMT cannot be applied directly to design software
for embedded systems (it also does not support
real-time concepts). As an alternative the method
in [3] can be used, but this method is a technique
rather than a design strategy.

The language EIFFEL is easy to learn and sim-
ple to use. Because EIFFEL has no functionality
to deal with parallelism, state machines were im-
plemented. This combination worked fine and we

22 XOOTIC MAGAZINE

circumvented a lot of rarities and implementation
restrictions of UNIX processes (e.g., the restricted
amount of processes as well as the problem of shar-
ing data between several processes).

Although object-oriented methods are used, ex-
tendibility and reusability properties are not totally
met. May be this is due to the lack of experi-
ence we had with object-oriented methods, but also
the short lead time of the BOOST project must be
taken into account. Being the first OOTI team who
has developed a working copier system with error
recovery for all copying modes, has had some ef-
fects on those quality aspects.

The members of the BOOST team can all look
back at a successfully completed project. Not only
from a technical point of view, a working copier
system has been developed, but also the atmo-
sphere in the team was very good. Everyone par-
ticipated in a very active way, which eventually
resulted in the realization of the copier system. O

References

[1] Rumbaugh et al., Object-Oriented Modeling and De-
sign, Prentice Hall International Editions, 1991

[2] BOOST team, BOOST project documentation,
OOTIL, Eindhoven University of Technology, 1994

[3] O.S. van Roosmalen, A Hierarchical Diagrammatic
Representation of Class Structure, Department of
Computing Science, Eindhoven University of Tech-
nology

March 1995

The Workshop Experience

Continuation of page 16

the culmination of the 15 months cursory part. The
utilization of a real-life exampleis important for the
motivation of the students and helps them to place
the course in the context of their later professional
careers. The engagement of a professional consul-
tant for the project management course makes the
students more acutely aware that they are facing
real-life problems and are not suffering artificially
created circumstances. His experience is essen-
tial for the student’s grasp on the progress of the
project. The presentation of their results to the
staff of Océ , who provide the case, shows them
the possible place of their technical skills within
the organization of a future employer.

The more important lessons which have been
learned over a four year period are: (1) the presen-
tation of the technical courses before the workshop
takes place is essential, (2) the project management
courses must be given before and during the work-
shop for a maximum effect, (3) the roles of client
and technical advisors when filled by the same staff
members are delicate, and (4) the assessment of the
student’s individual performance is difficult.

This form of teaching is extremely useful: the the-
oretical knowledge can be put into practice in a
rather natural way, and students realize that project
management methods, when properly applied, help
to solve the social and planning problems. o

Ir. Marco Brassé (left) and ir. Ton van den
Berg (right) are students of the post-masters
programme Software Technology. Marco
Brass & was team leader Design & Imple-
mentation of the control system in the BOOST
project. Ton van den Berg was BOOST quality
manager and member of the simulator system.
Both authors are member of XooTIC.

Dr. Peter van der Stok (left) and dr.ir. Marloes
van Lierop (right) are staff members at the De-
partment of Mathematics and Computing Sci-
ence of Eindhoven University of Technology.
Peter van der Stok is the organizer of the work-
shop and plays the role of expert in it. Marloes
van Lierop is the Programme Manager of OOTI
and supervisor of all OOTIs.

