I ntroduction

Java in Embedded Systems

MennoLindwer

For several reasons, Java is not the most obvious language for embedded sys-
tems. It requires much more memory than most other languages and even
with JIT compilers, it runs a lot slower. Therefore, systems running Java appli-
cations are more expensive than systems with the same functionality running
natively. In many embedded systems industries (consumer electronics, net-
working, etc.), each additional cost is a market barrier. Besides that, Java is an
inherently non-real-time language. However, some recent developments have
turned Java into an obvious choice for those software tasks that do not require
hard real-time operation, such as user interfaces. From the onset, Java was
intended to reduce software development cost, software distribution cost, and
lead time, which, in embedded systems, are rapidly becoming the dominant fac-
tors. Besides that, digital devices are increasingly required to interoperate with
other devices and network servers. These new features require platform inde-
pendent software, meaning that networked devices do not need to be aware of
the internal architectures of their peers. Java comes with an extensive network-
ing library and is compiled into a standardised platform independent distribution
format, making ideal for such products. This leaves the reduction of Java exe-
cution cost in embedded systems as an interesting field for Research and and
a challenge for Development...

namic loading/linking featuresinhibit determinis-
tic behaiour [15]. The programmeris shielded
off from theunderlyingmachinegiving him/herno

Java [1] is not the mostobvious languagefor em-
beddedsystems.The reasonsare maryfold. How-
ever, somerecentdevelopmentshave turnedtheta-
bles.

Comparedo corventionalprogramminganguages,
suchas C or C++, Java executionis expensve in
termsof memoryuse,processocycles,andpower
consumptionUntil recently theincreasectosthas
proven to be a market barrier in embeddedsys-
temsindustries,suchas consumerelectronicsand
networking. To the usersof mary embeddedsys-
tems, the increasedfunctionality doesnot justify
the increasedcost. Besidesthat, the Java lan-
guageis inherently 'real-time-unfriendly [15]. It
doesnot offer adequateconstructsfor specifying
timing behaiour. The garbagecollectionanddy-

XOOTIC MAGAZINE

handlegdo circumwentthe problems.

However, recently systemrequirementge.g. dy-
namic upgrade, networking, interoperability [6])
and businessrequirements(e.g. short time-to-
market) have emeged that match quite perfectly
with the mix of featuresoffered by Java. This re-
newed interesthas breathednew life into a num-
berof optimisationefforts. It shouldbe pointedout
that noneof the researchopicsare really specific
to Java or inventedspeciallyfor Java. But mary
have gainedinterest,funding, and momentumbe-
causeof the possibleapplicationin Jara. Someof
thoseefforts, suchasresearchnto garbagecollec-
tion algorithmsgoesbacka long time [14]. Other
developmentssuchasJust-In-Tme (JIT) compila-
tion [8], are quite recent. Theseoptimisationef-

forts in turn have broughtthe applicationof Java
in cost-constraineémbeddedystemsrery nearto
commercialiability. In fact,atthismomentseveral
companiesare introducingJava-enabledlevicesin
oneof the mostcost-constrainethdustries:smart-
cards.

Hand-helds .-
x 500 miflfon

— T THDN / HAVi
' L

networks f s
DVB/MHP 'Qﬁf
Home Appliances per Household.,

Y10 x 120 mitfon " e

x 1 000 milfion

Figurel: Marketsfor networkedJava-enabledlevices

Besidesre-iteratingthe much-publicisedsoftware
engingeeringadwantagesof Java in an embedded
contet, this article aimsto corvey a deeperun-
derstandingof the performanceand costissuesat
play. | hopeto shav thatJava’s high executionand
memorycostarenot causeddy singularfeaturesor
failuresin the Java system,but rather can be at-

tributedto a multitudeof deliberateconsiderations.

This meansthat the law of 'retainedmisery’ (Wet
van behoudvan ellende)almostalwaysappliesfor
attemptsat optimisations. Therefore,good under
standingof the issuess necessaryin orderto pre-
ventsystemdesignergrom choosingsolutionsthat
exactly donot quitesolve theproblemor thatarefar
moreexpensve thannecessary

This article is organisedasfollows: The next sec-
tion discussethebusinesgeasonsasrelatedto the
software developmentproductvity gap, for apply-
ing Java. Thesecondsectioninvestigatesheimpact
of Java’s featureseton executioncost. The third
sectiontakesusto thebeefof thematter namelythe
technicalsolutionsfor decreasinglaza’s execution
cost. As dessertthe fourth sectiondescribesome
hardware approachegor acceleratinglava execu-
tion. Thefifth sectionis the proverbial CFA (Con-
clusions Futurework, andAcknowledgements).

How is Java supposed to help in-
crease software development pro-
ductivity?

Javais anobjectorientedanguagdl]. Typicalcon-
structsfrom objectorientedlanguagessuchasin-
heritance areusually consideredenficial for soft-
waredevelopmentproductvity. However, this sec-
tion is concernedwith the featuresthat are more
specificto Java. Most of whatis discussedbelow is
notreally new. But Javais thefirst widely usedlan-
guagethatwrapsthemall in a nice, well-marketed
package.

Thefollowing aspect®f Javawereincludedto im-
prove softwaredevelopmentproductvity:

e Language simplicity: Thelanguages easyto
learn,i.e. thesyntaxis keptvery closeto thatof
C (C++). However, mary of the constructgor
which C++ is regardedas compl, have been
left out. Apparantly this hasnot madethe lan-
guagelessuseful. A goodexampleis the use
of interfacesjnsteadof multiple inheritanceal-
thoughsomepeoplequestionthe useof either).
Giving classegnultiple interfacesis almostas
powerful as multiple inheritance. However, it
avoids problemssuchas classesnheriting the
sameclassmorethanonce.

Becauselava is easyto learn, it quickly gained
a large developerbase. This meansthatit will
bemoreeasyto find qualifiedsoftwaredevelop-
mentpersonnel.Besideshat, Java’s simplicity
allows other professionalthansoftware devel-
opersto understandava code. Therefore pther
staleholderscanmoreeasilyparticipatan qual-
ity assurancef softwareprojects.

e Strong typing: The Java languages strongly
typed. This meansthat the compiler can stat-
ically checkmary commonly made mistales,
suchas passingwrongly typed arguments,in-
adwertently losing or addingsign extensionsat
assingmentgyointerarithmeticproblemsetc.
In fact, someresearcherglaim that, because
of Java’s strong typing compilers have more
knowledgeaboutthe way the codewill execute
and can thereforeapply more aggressie opti-
misations.This meanghat,in theory Java code
couldrunfasterthanC code...

e Exception handling: The software designer

May 2001

candefinethe applicationlevel at which excep-
tions should be caught. The languageoffers
constructsuchthat,atthelevelsbelow thatone,
developerscantreatthemtransparantlyi.e. just
passthemon). Of coursethe languagealsoof-

fers constructdor easyhandlingof exceptions
at the level definedfor that purpose.As an ex-

tra (and obvious) safetyprecaution gxceptions
thatdo slip throughthatlevel will eventuallybe
caughtby therun-timeervironment.

e Array boundary checking: The codeis guar
anteechotto violatearrayboundariesSoftware
developersshouldstill checkfor array bound-
aries. But if this fails, at leastthe stateof the
systemdoesnot get corrupted. The exception
mechanismoffers a standardisedor handling
thosesituations Also, arrayboundariearepart
of the languageand canthereforebe taken into
accountwhenwriting loops. In fact, the excep-
tion catchingmechanisntanbe legally usedto
end array handlingloops (which is not to say
thatthisis goodprogrammingpractise:-)!

e Automatic memory management: Java does
nothave explicit memoryallocation,norcanthe
programmeexplicitly returnmemory Memory
isimplicitly allocatedduringcreationof objects.
The languageassumeshat the operatingervi-
ronmentcontainsagarbageollectorthatshould

appropriatlyreclaimmemory Mary languages

(includingC) actuallydo nothave constructgor

memory allocationand de-allocation;they are
part of the library structure. In Java and C++,

implicit memory allocationis part of the lan-

guage.Iln Java, garbagecollectionis partof the
languagein the sensethatan explicit construct
hasbeen(purposely)omitted.

e Platform independence: This is achiered by
compiling Java to an intermediary language
(Java virtual machinelanguageor Java byte-
code, JBC).It is notalanguagdeature.In fact,
Java canverywell becompileddirectly into na-
tive codeof ary processof5]. In principle, it
is not possibleto compilelanguagesuchasC
and C++ to JBC, a.0. becauselava doesnot
require JBC to offer direct memorymanipula-
tion. JavaVirtual Machinelanguagenterpreters
(JVMs) areavailablefor most(embeddedplat-
forms. Combinedwith the next item, platform
independenceanresultin enormoussavings of
developmentcost,becaus®nedoesnot needto

XOOTIC MAGAZINE

maintaindifferent software versionsfor differ-
entplatforms.

e Rich standardised set of APIs. This set, in-
cluding implementationgmostly in Java) was
releasedogetherwith the language. Software
developerscan safely assuméamplementations
of theselibraries to be available on ary plat-
form thatrunsthetamgetedflavour of Java. This
meanghat developerscanconcentraten solv-
ing the real problems. They do not have to
spendeffort studying APls for mary different
platformsor implementingcodefor suchbasic
operationsassethandling,sorting,hashtables,
graphicsprimitives,etc.

The combinationof thesefeaturesis rumouredto
resultin a productvity increaseper developerof a
factorof 2.

Impact of Java's feature set on sys-
tem cost

As far asthe productioncostof embeddedievices
is concernedfeaturessuchaslanguagesimplicity,
strongtyping, and exceptionhandlingcome more
or lessfor free. The otherfeaturescomeat a high
cost.

Cost of performance penalty

Thelanguagespecifieghatevery arrayacces$asto
be checledagainstarrayboundariesDuring anex-
perimenton areal-life softwaresystem(a 15 KLoC
simulation module, written in C), array bounds
checking code could be switched off, increasing
performanceby 10Thisperformancepenaltytrans-
latesinto higher systemcost. The processingel-
ementsinside an embeddedystemare usually di-
mensionedvery carefully to exactly matchthe re-
quirementsf the software. Every unnecessarye-
sourcecauseghe eventualproductto be more ex-
pensve and therebylose marlet share. An ex-
act factor for the increasedsystemcost is diffi-
cult to give. It is usually not necessaryo actually
dimensionthe system40 times larger than other
wise would be required. On the other hand, just
scaling up the clock speedof the systemis not
enough. In orderfor a processoito actually ben-
efit from higher clock speed,it should also have

biggercacheswider memorylanes fasteron-board
buses,more complex boarddesigns,etc. A com-
monway of increasinghe Java performancas the
applicationof a Justin Time (JIT) compiler which

reducesnterpretatioroverheadassociatewvith ex-

ecuting JBC, Java’s intermediaryvirtual machine
language). However, evenif a JIT compilerwere
to remove all interpretationoverhead,Java is still

aboutafactor4 slowerthannative code(becausef

the other performancecosts,suchas array bounds
checkingandgarbagecollection).

Cost of increased memory requirements

The increasedmemory requirementsare due to
threefactors:

e The JVM is a relatively large piece of soft-
ware. The smallestfull implementationdhave
footprints of about 100KB. Becauseof opti-
misations, fancier threadingmechanismsand
fancieruserinterfacelayers,this canincreaseo
about500KB. Since,in mary casesthe JVM
will be part of the firmware of a system, it
will residein ROM. ROM is muchcheapethan
RAM (about???times). Therefore,onewould
betemptedo discardthis cost. However, RAM
is fasterthanROM, sothatmary embeddedys-
temscopy firmwareto RAM, uponstartup...

e Next to the JVM, a full Java systemrequires
about9MB of Java run-timelibraries. For sev-
eral reasonsjt makes senseto placethis code
in rewritable memory In a networked ervi-
ronment,this codedefinitely is eligible for up-
dates. Besidesthat, for performancereasons,
mostJVMs modify theinstructionsasthey exe-
cutethem(turningdynamicallylinked codeinto
semi-staticallylinked code). This requiresthe
librariesto be placedin RAM.

e Java memorymanagemenis relatvely expen-
sive (in termsof memory utilisation). This is
partly dueto programmingpractisespartly it is
inherentto the useof a garbagecollector Cur
rent programmingpractiseresultsin the con-
stant generationof mary short-lved objects.
For example functionresults asusedin expres-
sionsoften are objects,even thoughthey could
justaswell be scalartypes(integers,booleans).

Returninganobjectcauseshatobjectto becre-
atedon the heap. However, immediatelyafter
evaluationof thesurroundingexpressionthere-
turnedfunctionresultshbecomeredundant.

e The garbagecollector requiresthat the sys-
tem containsmore heapmemory than strictly
required by the application. Otherwise, the
garbagecollector would have to be activated
whene&er an object becomesredundant. To-
gether memoryallocationandde-allocatiorre-
quireabout2MB of RAM, in orderto runmean-
ingful generalpurpposeapplications.

e However, mobile applications, provided by
NTT DoCoMo’s iMode (a Japanesemobile
phoneoperatorshav thatcarefuldesignof Java
softwarecanresultin usefulapplicationghatre-
quireonly afew 10sof KB for dynamicmemory
allocations.

All-in-all, the minimumrequirementor afull Java
systemis aboutlOMB of ROM and2 MB of RAM.
This comeson top of storagedor theactualJava ap-
plication code (which is assumedo be aboutthe
sameas for the sameapplicationin natve codé)
and the requirementsf the underlying operating
system(whichis still requiredwhenrunningJava).

*High level GUI
*App. specific GUI
«Internet (e.g. URLs)
«Images JPG, GIF, ...
*(Streams)

*Threads
*Exceptions

J2SE, Full Java (JDK)
~ PMEcDC

Truffle
JavaPhone
JavaTV
MHP
HAVi, Jini

~ J2ME CLDC
JavaCard

Java Virtual
Machine

RTK / JavaOS

ge collection

Figure2: Thecompleity of theJavatechnologychart
stemsfrom thefactthatit consistsof mary API sets,
mostof which arenot preciselysubset®of eachothet
Theleft columnlists thefunctionalityof the APIs. The
rightmostbox givesa numberof productdependenfPI
extensions

It shouldbe notedthatmostembeddedystemswill
not containthe full setof Java libraries. Part of
the confusionaroundJava technologystemsfrom
the plethoraof applicationdomainspecificsubsets
and extensionsto the full Java APl set. Experi-
mentshave shavn that the full setcanbe brought

10ntheonehand,JBCis abouta factor2 morecompacthanRISC code.On the otherhand,JBCis packagedn Jaaclass
files, which containalot moredatathanjustthe JBC.Only someof thatdatagetsdiscardediuringloading.

May 2001

backto about500KB for mobileapplicationsby re-
maoving userinterfaceandcharactecorversionrou-
tines. Whendisregardingthe performancepenalty
of ROM, and when using specially designedap-
plications,the minimal footprint for a Java system
endsup at about1MB ROM and 100 KB RAM.
Again, thesecostscomeon top of therequirements
for theactual(Java) applicationsandOS.

It is up to the systemdesignetto choosethe appro-
priate API setandlive with the consequencef not
beingableto supportall Java applications.

Cost of increased system complexity

Thesecostsare difficult to quantify in a generic
senseBut we cangive anindicationof theissuesat
play. Whatis meanthereare the costsassociated
with having to designand maintain software and
hardware componentghat are more complex than
would be strictly requiredfor native operation.

The simplestscenariois whereefficient execution
(i.e. interpretemperformanceandgraphicguserin-
terface)are not required. Thereare few examples
such systems becausealevices without userinter
facesusuallyconstitutehigh-volume,low costmar
kets. Anyway, in that scenariothe only engineer
ing costis associatewvith portingabare-bonedava
interpreterto the target system. An experienced
software engineerspendsabouthalf a man-yeamn
porting, testing,andverifying a software stacklike
Suns KVM. Given frequentupdatespothin Java
interpretersoftware technologyand hardware plat-
forms, the samecostwill probablyrecurfor main-
tenanceon ayearlybasis.

A more comple and realistic scenariowould be

the higherend hand-heldand mobile devices, in

wich Java executionis addedfor userinterfacepur

posesandsimpleapplications Becaus®f thekinds

of applications,it is not requiredto have high-

performancesxecution. And becaus®f the market

positioning, it is feasibleto incorporateextra pro-

cessingpower. In this scenarioassuminghatthe

platform alreadyprovidessomedegreeof graphics
supportthe softwaredevelopmentcostis increased
by another2 man-yeardor porting and verifying

the native parts of the Java userinterface toolkit

(e.g. Suns Abstract Windowing Toolkit, AWT).

The maintenancecostwill remainat abouthalf a

man-yearannually

XOOTIC MAGAZINE

Application BC
20% - 40%

Library BC

40%

Native
20% - 40%

Figure3: Applicationsspend20% (largeappsright
bar)to 40% (smallapps left bar)of executiontime on
native code.Consequently60%to 80% of time is spent
on bytecoddnterpreting.

Thenext scenaricarethe mediumto high-endcon-
sumerdevices, suchas set-topboxes. In the near
future, they will adhereto standardsuchas Mul-
timedia Home Platform (MHP [3]), Home Audio
Video Interoperability(HAVi [6]), and Jini, which
apply Java for complex tasks, combining system
controlandadwanceduserinterfacetechnology De-
spitethe market positioning(mediumto high-end),
the consumerprice for suchsystemsdoesnot al-
low for the inclusionof PC-classhardware. In the
first versionsof thesedevices, the processospeed
is limited to about300MHz. Internal memoryis
in therangeof 16MB to 32MB. Harddisksare not
yet part of the package. The heary use of Java
in advanceduserinterfacesrequiresan optimised
Java interpreter sophisticatedgraphicsstack, and
native multithreadingsupport. Seseral companies
deliver speed-optmisethterpreters,oftenin com-
binationwith JIT compilers.Becausef their com-
plexity, thesesystemsrequire significantup-front
and running licensing fees. Therefore,a choice
for ary packageequiresanextensve selectionpro-
cess.Usually this selectionprocessnvolvesexper
imental ports of several rival software stacksonto
simulatorsof the projectedhardware system(dur
ing thosepreliminaryexperimentsthe actualhard-
wareis oftenstill in the designphase).This selec-

tion phasemay alreadyinvolve several man-years they startcompiling a (Jasa byte)codesequencet

work...

This paragrapldealtwith someof the issues,sur
roundingthe complity of addingJava suppporto
several typesof embeddedsystems. Even though
thelist of issuegperscenaricandthe setof scenar
ios arenotcomplete] hopethis paragraptygivesan
ideaof whatto expect.

What Technologies are used to de-
crease Java's execution cost?

Obviously, the choiceof technologiesdlependson
the actualcostsof the bottlenecksasdiscussedn
previous sections.For example,it malkesno sense
to optimisethreadsynchronisatioior smallembed-
deddevicesthatarenot expectedto performmuch
multi-threading. However, in most cases,it does
make sensdo write themaininterpretedoopin as-
sembly sincethis is wheremostJVMs spendabout
80

Whenanalyzingtechnologiesywe canmale several
moreor lessorthogonatateyories:hardwareversus
software, memory versusspeed,and domain spe-
cific versusgeneric. Corveniently this setof cat-
egoriescanbe representea@s a cubewith moreor
lessorthogonalsides. For example,JIT compilers
are genericsoftware enhancementsyhich impact

the exact momentthe user/systentfirst) needshat
particularfunction. Especiallyon embeddedsys-
temswith relatively light processorghisinitial call
maytake alongtime. Also, this behaiour is partic-
ularly disruptive to real-timeoperation.

In orderto preventthe JustToo Late behaiour and
decreasenemorycostof pureJIT compilers profil-
ing JIT compilerswere introduced[HotSpot, 21].
Besidesa compiler sucha systemalso contains
a conventional interpretetbasedexecution mech-
anism. Initially, all codeis executedby the in-
terpreter For every distinct code block (usually
method),the frequeny of its invocationsis mea-
sured.Whenthis frequeng passes certainthresh-
old, the codeblock gets JIT-compiled. This ap-
praochgenerallydecreasesnemoryrequirements,
becauseno memoryis waistedon the translationof
blocksthatareexecutedinfrequently However, we
dohaveto take into accounthatthe JVM hasgrovn
larger, becaus®f the extrainterpreterandprofiling
software. It alsoremainsto be seenwhetherthis
approachperformsaswell asa JIT-only solution,
sinceinitial interpretatiorrunsandprofiling efforts
maydecreaseverall performance.

the speedof the interpreterat the costof increased Subset interpreters

memoryutilisation.

In the following sections,we will categyorize and
discussa numberof commonoptimisationso Java
executionmechanisms.What we will seeis that,
asis usually the case,most optimisationsinvolve
trade-ofs, whereanimprovementon oneaxisof the
cubemeansa degradationon anotheraxis.

JIT Compilers

JIT compilers [8] were already categyorized as
genericsoftware solutionsfor increasingJava ex-
ecutionspeedatthecostof increaseanemoryutil-
isation. It is thereforequestionablevhetherthey ac-
tuallly decreasexecutioncost. If memoryis more
expensve than processorsilicon, this may not be
thecase.

Paradoxically the pureJIT (Justin Time) compiler

Theseare domain specific software optimisations
for reducingmemoryutilisation, usually at the ex-
penseof performance.

JavaSofts KVM [21] andJavaCard[21] areexam-
plesof interpreterghatdo not supportthefull setof
Javabytecodes.

The samegoesfor JVMs and library implemen-
tationsthat supportonly a subsetof the standard
Java APIs. Usually thosesubsetsarerestrictedin
termsof userinterface capabilities. For example,
the Truffle [21] userinterfacelibrary canonly han-
dle one applicationwindow at ary time. It is im-
plementedalmostfully in Java, therebyreducing
therequirednatie functionalityto a minimum (ba-
sically just pixel drawing). However, becauseal-
mostall functionality is implementedin Java and
suppliedasJava bytecodesTruffle is alsorelatively

systemganalsobe called”JustToo Late”, because slow.

May 2001

Specialised processors

Thesearegenerichardware solutionsfor accelerat-
ing bytecodeexecution. Dependingon (non-J&a)

legag/ coderequirementsheinclusionof ageneral
purposeprocessomight still be necessatyln that

ferenttypesof processors.

Of course, a specialisedJava processor(even a
heterogeneousiultiprocessqrincorporatinga Java
processorprobablycontaindesssilicon thanasin-
gle generalpurposeprocessar offering the same
Java performance.However, the questionis, cant

CaSEIheSOIUtionWi” comeatthecostof increased wefind amoreoptima|approachespecia”y’egard_

silicon areaandincreasedystemcompleity, both
in termsof hardwareandsoftwaresystemdesign.

Examples of specialised processorsare Pico-
Java [16], Moon (VulcanASIC), and Shboom(Pa-
triot Sciences). Theseare all processorghat run
the completeJava bytecodeset natvely. Keepin
mind thatthe Java Virtual Machinelanguageepre-
sentsa Comple InstructionSetComputer(CISC).
In fact, someJava bytecodesare extremely com-
plex, involving memory allocation, initialisation,
string table searchesand/orbytecodeoading. On
a regular software interpreter this requiresthou-
sandsof cycles. Normally, CISCs contain mi-

ing the systemdesignissues?

Bytecode accelerator hardware

Like specialiserocessorghesearehardware so-
lutionsfor acceleratindpytecodeaxecution[11, 13].
However, they assistagenerapurposgrocessom
executingJava. Therefore,the completesolution
always consistsof a processoland an accelerator
However, sincethis processors relieved of mary of
the Java executiontasks,it canbe relatvely small.
Besideghat,theacceleratomoduleitself shouldbe

Crocode,sp”tting Comp|e(operations'n Sequences SigniﬁcantlysmalIerthanthe\]a/a pI’OCQSSOFQ’] the

of morebasicoperationsMicrocodecanbeseenas

aformentionedeterogeneoudesigns.

akind of processeinternd 'software’. Specialised In its simplestform [2], the acceleratois actually

Java processorganimplementmostbytecodesus-
ing microcode. However, thereally comple byte-
codescan not be implementedusing suchan ex-
tremelylow-level language.Therefore,in spite of
the promiseof genericJava programmabilityheavy
investmentsn software developmentervironments
for thoseprocessorslo have to bemade.

And evenif C/C++ softwaredevelopmenterviron-
mentsare available for thosespecialisedlava pro-
cessorsthey usuallystill don't run all therequired
legag software. For example,becausehe legagy
softwarewas programmedn assemblyor requires
the supportof anoperatingsystemthatis not avail-
ablefor the Java processorThis would meanthata
generapburposeCPUneeddo beaddedo thehard-
ware system. If the projectcan afford to develop
its own ICs, the additionaldirect costis limited to
afew eurosworth of silicon perproduct. However,
if the projecthasto rely on off-the-shelfhardware,
extralCsandincreasedircuit boardsizehave to be
addedto the bill of materialand productform fac-
tor. In termsof systemdesign,goingfrom asingle-
CPUto amultiprocessosolutionaddsawhole nev
setof problems,suchascommunicatiorprotocols,
cachecohereng protocols,andresourceaccessar
bitration. This getsaggraatedin the caseof hetero-
geneoudanultiprocessoidesigns,consistingof dif-

XOOTIC MAGAZINE

a translatorfrom Java bytecodedo CPU natwe in-

structions.It canbe seenasaninstruction-leel JIT
compiler implementedn hardware. Becauset is
implementedn hardware,it canperformits tasksin

parallelto the processodoing the executionof the
generatedode.Becausehetranslationtakesplace
at instructionlevel, the systemrequiresvery little

storagefor intermediataesults(a matterof several
bytes,ratherthanseveral megabytesor a software
JIT compiler).

One instanceof such an acceleratorwill be dis-
cussedn moredetailin the next section.

Graphicsaccelerators

Measurementhave shavn that, for meaningful
Java applications, 2D graphics processingtakes

10%to 20% of all processingime [20]. Therea-

sonis thatmostJava applicationsareuserinterface
intensive. After optimisingJava bytecodeprocess-
ing, therelatve impactof thisfactorwill increaseo

20%to 50%of all processingime. This meanghat
graphicsacceleratioronly becomesan issueatfter

bytecodeacceleration.

Graphicsacceleratioris a domainspecificoptimi-
sation. It only hasusein ervironmentsthatrequire

mediaprocessingr have graphicaluserinterfaces
andlarge screensvith somedegreecolor depth.

Obviously, adding a graphics acceleratormeans
higherhardwarecosts.

Multi-level and har dwar e gar bage collector s

As was mentionedbefore, garbagecollection also
accountsfor a significantamountof performance
loss. As with graphicsthis is very applicationde-
pendent. Garbagecollection seemsto be a good
candidatdor acceleratiorthroughhardware. Some
attemptshave beenmade,includingin the authors
own projects[12]. In fact,it is not very difficult to
implementcertaingarbagecollectionalgorithmsin
hardware[14].

However, garbagecollectionalgorithmsthemseles
require substantialand variable amountsof mem-
ory. This canonly be efficiently achieved by inte-
gratingthe garbagecollectionlogic with the mem-
ory devices.Butthememorydevice businesss very
a cost-sensitie commodity market. Speciallyde-
signedgarbagecollectedmemorychipscannot be
producedn suficient numbergo make themcom-
merciallyviable.

Anotherapproachto at leastalleviate the garbage
collectionbottleneckis to implementseveral types
of software algorithms. Somealgorithmsare par
ticularly goodat quickly finding a large numberof
short-lved objects.Otheralgorithmsaremorethor
ough, but also more time consuming. Therefore,
the heapis divided in a spacefor short-lved ob-
jectsanda spacefor olderojects. The formerones
arescannedjuickly. Objectsthat have survived a
numberof thosescansaremovedto thelatterspace,
whichis scannedvith thethoroughprocedureThe
performancéenefitresultsfrom the expensve pro-
cedurehaving to scanonly partof theheap.

Optimised thread synchronisation

Java is a multithreadedanguage heaiily oriented
towardsre-use. This meansthat designerof Java
classeslswayshave to take into accountthat mul-
tiple threadsmay wish to concurrentlyaccesshe
internaldatastructuresof thoseclasses.Every ob-
ject that may be accessedoncurrentlyhasto be
protectedagainstmultiple threadsinterfering with
eachothers changes. Therefore,Java objectsare

synchronisedery conseratively. Thesynchronisa-
tion operationsnvolve threadsperformingoperat-
ing systemcallsfor claiming exclusive accessget-
ting blocked as long as the claim can not be re-
warded,andrelinquisingthe claimswhenthe oper
ationshave finished. Theseoperatingsystemcalls
areveryexpensve. A lot of time canbesaredif one
can utilise the fact that actualinterferenceis very
rare.

A Hardware approach to accelerat-
ing Java execution

At Philips Researchwe’ve beenworking sincethe
end of 1996 on hardware for Java accelerationn
embeddedystems.The work startedfrom the fol-
lowing constraints:

e chipareancreasehouldbeminimal(e.g.much
lessthansizeof low-end32-bit RISCCPUSs),

e memory utilisation should not increase,com-
paredto softwareinterpreter

e solution should be compatible with modern
RISC CPUs (since generalpurposeCPUsre-
mainnecessary),

¢ solutionshouldbe modular(i.e. have minimal
impact on other componentsn an embedded
system)jn orderto facilitatere-use,

¢ performancencreaseshouldbe atleasta factor
5 over aregularsoftwareinterpreter

We foundasolutionin theform of atranslatomod-
ule, which assistsgeneralpurposeCPUsin exe-
cuting Java bytecodes.We calledthe moduleVir-
tualMachineTranslato(VMI). Later, we found[2],
which givesa gooddescriptionof mary of the con-
cepts.VMI is very small. Essentiallyit consistsof
tablesthat direct the translation. Thesetablescan
beimplementedn avery compactvay. VMI needs
very little computationalogic, sincemostcompu-
tationstake placeonthegeneralpurposeCPU.

May 2001

Java Virtual
Machine

= Memory
BC inter- manager
preter

Figure4: Froma softwarepointof view, the bytecode
interpretermmoduleis simply replacedy hardware(as
thegarbagecollecturemodulemight be)

Sincepartof the Java interpretatiortaskis now im-
plementedn hardware,the memoryutilisation ac-
tually decreaseslightly (we needlesscodeto im-
plementthe Java interpretatiorsoftware). Sincethe
actualoperationdake placeon the generalpurpose
CPU(remembethatVMI isonly atranslator)there
are no problemswith datacohereng betweenthe
two processingelements. Contraryto most other
acceleratorsVMI hasbeendevelopedcompletely
separatelyrom the CPU.CPUandVMI only com-
municatethrough the on-chip systembus. Most
companieausestandardise@n-chip systembuses.
Therefore puilding VMI for a specificon-chipsys-
tembus, meanst is compatiblewith all CPUsthat
can be attachedto that bus. The fact that VMI
communicatesnly througha standardisetius also
meansno otherpartsof the hardware systemneed
to be modified.

Memory i— - CPU
Native | Instr.
Code | T T¥|Cache [
! | 2
Byte o ! R
code iy VMI I3 E
|
(Java) | Data
Data | ¥ Cache
Lo

Figure5: Fromanabstrachardwarepoint of view,
VMi is placedbetweerthe memoryandthe CPU
pipeline,feedingthe pipelinewith translatedytecodes

After having indicatedhow the solutionis intended
to solve the problem,while keepingwithin the con-
straints,it is now time for somemoretechnicalde-
tail.

Most computer systemscontain at least a CPU
(CentralProcessingJnit) andamemory The CPU

XOOTIC MAGAZINE

canbeseenasarobot,whichis ableto executese-
gquencesof instructions. For example, a car con-
structionrobotrepeatedlyexecutednstructionghat
tell it to move, pick up componentsattachcompo-
nents,measureartsof the constructiongtc. In or-
derto assemblea completecar, sucha robot exe-
cutesthousandof thoseinstructions. In the same
way, CPUs execute billions of instructionsfor a
simpletask,suchasdrawing animageon a screen
or printing a document. The CPU readsthosein-
structionsfrom the afore-mentioneanemory Thus
we find theinstructionsfor the Java applicationsn
the memoryandrequirethe CPU to fetch andsub-
sequentlyexecutethem. However, generalpurpose
CPUsdo not understandhe Java instructions(also
called 'bytecodes’). This is where the Java Vir-
tual Machine software comesin. It translateghe
bytecodesnto instructionsthat the CPU doesun-
derstand. This meansthat next to the functional-
ity of the bytecodegshemseles, the CPU needsto
spendtime on the interpretationtask. A very sim-
ple interpreterfor someof the bytecodescould be
programmedsfollows:

{1.unsigned interpreter(char *pc) {
2. /* 'pc’ points at bytecodes */

3 unsi gned sp[STACK SI ZE] ;

4. |/* 'sp’ conpute result stack */
5. while(TRUE) {

6 switch(*(pc++)) {

7 case push_const :

8

: *(sp++) = *(pc++);
9. br eak;
10. case pop
11. sp--;
12. br eak;
13. case add
14. *(sp-2)=*(sp-2) +*(sp-1);
15. sp--;
16. br eak;
17. case ret
18. return *(sp-1);
19. br eak;
20. }
21. }
22.}
}

The abore code does not need check stack un-
der/orerflow or codeoverrunconditions becausén
Javathisis donestatically

Noticethattheabove instructiongpushconst,pop,
add, ret) areaboutas powerful asregular CPU in-

structions. However, the while-switch-case-breakstale andthatJVMs aresuchcomplex systemghat

constructionusually requiresbetween10 and 40
CPU instructionsper iteration. The actual func-
tionality of thebytecodeginvolving spin theabove
code)requiresbetweens and10 CPU instructions.
Thereasoris thatthestackpointerrelative address-
ing introducesan extra indirectionandbecausehe
stackpointeritself needdo beupdated.This means
thata CPUneeddo executel5to 50instructiongor
operationgor which it would normallyrequirel or
2instructions.Thismeansa 7x to 50xinterpretation
andexecutionoverheadperbytecode.

Goingbackto theacceleratoconcepts:

In orderto reducethe interpretationoverhead,the
programcounteris movedfrom theCPUinto theac-
celerator The acceleratonow readsthe bytecodes
from thememoryanddetermineghelocationin its
translationtablesof the correspondingequencef
CPU instructions. It performsthis taskwithin the
time the CPU needsto executethe previous trans-
lation. Thereby this bottleneckis completelyre-
moved.

In orderto reducethe time neededfor the actual
functionality (rememberthat push, pop, add, and

ret require 5 to 10 CPU instructions), the stack
pointeris alsomovedfrom theCPUinto thetransla-
tor. Now, insteadof just providing the correspond-
ing sequenceof translatedinstructions,including

stackpointerindirections,the translatorsimplifies
thetranslatiorby substitutinghestackvaluesin the

instructionsequencegnspiredby 4] anddoingthe

stackpointerupdatesnternally Theresultingtrans-
lation sequencebave an averagelengthof about2

CPUinstructions All-in-all, thetranslatoprovides

aspeed-upn the above bytecode®f atleastafac-

tor 15.

Conclusions, Future Work, and Ac-
knowledgements

Javais becominganimportantianguagdor embed-
ded systemgprogramming.However, beforeJava-

basedproductscan becomea successthe cost of

Java executionmechansisnmasto bereduced.

Most companiesroviding Java executionmecha-
nismsad\ertisetheir solutionsciting asinglebench-
mark(e.g.[17]). In thisarticle,| hopeto have made
it clearthat performances not the only factor at

asingle-pointmeasuremertf performanceannot
give anaccuratendicationof relative qualities.

Theinterestin incorporatinglavain embeddedys-
temsis still increasing.DespiteMoore’s law (pre-
scribingthatcomputepower will steadilyincrease),
thereis a continuouseedto taylor Javaimplemen-
tationsto the strict requirement®f embeddedys-
tems. Java acceleratiortechnologieseemto offer
interestingadwantagesbut their commercialviabil-
ity still needgo be proven. Onthe shortterm (dur
ing 2001), JIT compilerswill find their way into
systemswith little real-time and memory restric-
tions. On the somavhatlongerterm (before2003),
we will seebytecodeacceleratoropeningup ex-
tremely constraineddevices to the Java language.
2D graphicsacceleratorarealreadyusedn embed-
dedsystemswith heary userinterfaces.Thesophis-
tication of garbagecollectionsystemss constantly
increasingput muchwork remainsto bedonehere.
It is questionablevhethergarbagecollectionhard-
warewill everbecomeviable.

I would like to thank the membersof the Java

Hardware Acceleratorproject at Philips Research
for their enthousiasm,in particular Otto Stein-

busch (currently at Philips Semiconductors)Nar-

cisseDuarte(currentlyat Canal+),andSelim Ben-

Yedder I've also had mary valuablediscussions
with Pieter Kunst, Nick Thorne, Harald van Wo-

erkom, andPaul Stravers.

References

[1] K. Arnold, J. Gosling, D. Holmes, The Java
Languaye Specification Addison-W\esley
2000,ISBN 0-201-70433-1

[2] E.H. Debaere,J.M. van Campenhout)nter-

pretation and Instruction Path Coprocessing

TheMIT Press]1990,CambridgeMA, USA

[3] Digital Video Broadcast Mul-

timedia Home Platform,

http:/mwwmhp.og/htmLindex.html

[4] M.A. Ertl, Implementationof Stadk-Based

Languajeson Rayister Machines PhD thesis

Technische&JniversitaetWien, Viennal996

May 2001

[5] The Free Software Foundation, The GNU
Compiler for the Java Programming Lan-
guage, http://wwwgnu.og/software/gc/java

[6]
[7]

HAVi, http://mwwwhavi.org

J. Hoogerbrugge,L. Augusteijn, Pipelined
Java Virtual Machine Interpreters, 9th Inter
national Conferenceon Compiler Construc-
tion, April 2000,Berlin, Germary

A. Krall, R. Grafl, CACAO - A 64 bit JavavVM
Just-in-Time Compiler Institut fuer Comput-
ersprachenlechnischéJniversitaeWien, Vi-
enna, 1998

[8]

[9] M. Levy, Javato Go: Part 1; Accelertors
ProcessByte Codesfor Portable and Em-
beddedApplications Cahnersviicroprocessor

Report,February2001

[10] T. Lindholm, F. Yellin, The Java Virtual Ma-

chine SpecificationAddison-Weslegy, 1996-09

[11] M. Lindwer, \ersatile Java Accelertion

Hardware, 2001,to appeat.

[12] X. Miet, Hardware for (Java)garbage collec-

tion, ENST, Paris, France October2000

[13] Nazomi, Nazomi Communications; High
Performance Java Tednolagy for Mo-
bile Wreless and Internet Appliances,

http://wwwnazomi.com

[14] K. Nilsen, Progress in Hardware-
Assisted Real-Tme Garbage Collec-
tion, lowa State University 1995,

http://wwwnavmonics.com/dat/iwvmn®5. pdf

[15] K. Nilsen, Issues in the
and Implementation of Real-Tme
Java, NewMonics, Inc., April 1996,

http://wwwnevmonics.com/dat/rtji.pdf

Design

[16] J.M.O’Connor M. Tremblay Picolva-I: The
JavaVirtual Machinein Hardware, pages45-

57,IEEE Micro, 1997-03/04

XOOTIC MAGAZINE

[17] Pendragon Software, Caffeine-
Mark 3, http://mwwpendragon-
software.com/pendragacth3/info.html

[18] Philips Research, Mobile phones, set-top
boxes, ten times faster with ne~ Philips
acceleator for Java, January 2001,
http://wwwresearch.philips.co/press-

media/010101.html

[19] Philips Semiconductors, Java hardware
acceleator for embeddedlatforms, Philips
Semiconducteorld News,November2000,
http://www.semiconductors.plifls.com/pib-

lications/content/file680.html

[20] O.L. Steinlusch, DesigningHardware to In-
terpret Mirtual Machine Instructions; Con-
cept and partial implementationfor Java
Byte Code Masters thesis, Eindhoren Uni-
versity of Technology February1998, TUE-

ID363006

[21] Sun Microelectronics,JavaSoft; The Souce

for JavaTednolay, http://wwwjavasoft.com

Biography. Menno Lindwer is a Senior Scien-
tist at Philips Researchin Eindhosen (The Nether
lands). He has beeninvolved in hardware de-
sign (methodology)since 1991, graphicsaccelera-
tion since1995, and Java acceleratiorsince 1996.
Menno holds a Masters Degreein computingsci-
encefrom TwenteUniversity of Technology(1991)
anda postmasters dggreein software technology
from Eindhoven University of Technology(1993).
Otherinterestanclude objectorienteddesign,sim-
ulator technology and system-on-silicorarchitec-
ture. Mennojoined Philips Researchn 1995. Cur
rently, he is in chage of the Platform Indepen-
dent Processingand Java Hardware Acceleration
projectsat Philips Researchin Limeil-Brevannes
(France)andEindhoven (The Netherlands).Previ-
ouswork experienceincludesa.o. artificial intelli-
gencesystemsyesearchin delayinsensitve asyn-
chronouscircuits, and performanceanalysisof 3D
graphicsaccelerators.

