
Programming Languages

Java in Embedded Systems
MennoLindwer

For several reasons, Java is not the most obvious language for embedded sys-
tems. It requires much more memory than most other languages and even
with JIT compilers, it runs a lot slower. Therefore, systems running Java appli-
cations are more expensive than systems with the same functionality running
natively. In many embedded systems industries (consumer electronics, net-
working, etc.), each additional cost is a market barrier. Besides that, Java is an
inherently non-real-time language. However, some recent developments have
turned Java into an obvious choice for those software tasks that do not require
hard real-time operation, such as user interfaces. From the onset, Java was
intended to reduce software development cost, software distribution cost, and
lead time, which, in embedded systems, are rapidly becoming the dominant fac-
tors. Besides that, digital devices are increasingly required to interoperate with
other devices and network servers. These new features require platform inde-
pendent software, meaning that networked devices do not need to be aware of
the internal architectures of their peers. Java comes with an extensive network-
ing library and is compiled into a standardised platform independent distribution
format, making ideal for such products. This leaves the reduction of Java exe-
cution cost in embedded systems as an interesting field for Research and and
a challenge for Development...

Introduction

Java [1] is not the mostobvious languagefor em-
beddedsystems.The reasonsaremanyfold. How-
ever, somerecentdevelopmentshave turnedtheta-
bles.

Comparedto conventionalprogramminglanguages,
suchas C or C++, Java executionis expensive in
termsof memoryuse,processorcycles,andpower
consumption.Until recently, theincreasedcosthas
proven to be a market barrier in embeddedsys-
temsindustries,suchas consumerelectronicsand
networking. To the usersof many embeddedsys-
tems, the increasedfunctionality doesnot justify
the increasedcost. Besidesthat, the Java lan-
guageis inherently ’real-time-unfriendly’ [15]. It
doesnot offer adequateconstructsfor specifying
timing behaviour. The garbagecollectionanddy-

namic loading/linking featuresinhibit determinis-
tic behaviour [15]. The programmeris shielded
off from theunderlyingmachine,giving him/herno
handlesto circumventtheproblems.

However, recentlysystemrequirements(e.g. dy-
namic upgrade,networking, interoperability [6])
and businessrequirements(e.g. short time-to-
market) have emerged that match quite perfectly
with the mix of featuresofferedby Java. This re-
newed interesthasbreathednew life into a num-
berof optimisationefforts. It shouldbepointedout
that noneof the researchtopicsare really specific
to Java or inventedspecially for Java. But many
have gainedinterest,funding, and momentumbe-
causeof the possibleapplicationin Java. Someof
thoseefforts, suchasresearchinto garbagecollec-
tion algorithmsgoesbacka long time [14]. Other
developments,suchasJust-In-Time (JIT) compila-
tion [8], are quite recent. Theseoptimisationef-

14 XOOTIC MAGAZINE

forts in turn have brought the applicationof Java
in cost-constrainedembeddedsystemsvery nearto
commercialviability. In fact,atthismomentseveral
companiesareintroducingJava-enableddevicesin
oneof themostcost-constrainedindustries:smart-
cards.

Figure1: Marketsfor networkedJava-enableddevices

Besidesre-iteratingthe much-publicisedsoftware
engingeeringadvantagesof Java in an embedded
context, this article aims to convey a deeperun-
derstandingof the performanceand cost issuesat
play. I hopeto show thatJava’s high executionand
memorycostarenot causedby singularfeaturesor
failures in the Java system,but rather can be at-
tributedto a multitudeof deliberateconsiderations.
This meansthat the law of ’retainedmisery’ (Wet
van behoudvan ellende)almostalwaysappliesfor
attemptsat optimisations. Therefore,goodunder-
standingof the issuesis necessary, in orderto pre-
ventsystemdesignersfrom choosingsolutionsthat
exactlydonotquitesolvetheproblemor thatarefar
moreexpensive thannecessary.

This article is organisedasfollows: The next sec-
tion discussesthebusinessreasons,asrelatedto the
softwaredevelopmentproductivity gap, for apply-
ing Java. Thesecondsectioninvestigatestheimpact
of Java’s featureset on executioncost. The third
sectiontakesusto thebeefof thematter, namelythe
technicalsolutionsfor decreasingJava’s execution
cost. As dessert,the fourth sectiondescribessome
hardware approachesfor acceleratingJava execu-
tion. Thefifth sectionis theproverbial CFA (Con-
clusions,Futurework, andAcknowledgements).

How is Java supposed to help in-
crease software development pro-
ductivity?

Javais anobjectorientedlanguage[1]. Typicalcon-
structsfrom objectorientedlanguages,suchasin-
heritance,areusuallyconsideredbenficialfor soft-
waredevelopmentproductivity. However, this sec-
tion is concernedwith the featuresthat are more
specificto Java. Most of whatis discussedbelow is
not reallynew. But Java is thefirst widely usedlan-
guagethatwrapsthemall in a nice,well-marketed
package.

Thefollowing aspectsof Java wereincludedto im-
prove softwaredevelopmentproductivity:

� Language simplicity: The languageis easyto
learn,i.e. thesyntaxis keptverycloseto thatof
C (C++). However, many of theconstructsfor
which C++ is regardedascomplex, have been
left out. Apparantly, this hasnot madethe lan-
guagelessuseful. A goodexampleis the use
of interfaces,insteadof multipleinheritance(al-
thoughsomepeoplequestiontheuseof either).
Giving classesmultiple interfacesis almostas
powerful as multiple inheritance. However, it
avoids problemssuchas classesinheriting the
sameclassmorethanonce.
BecauseJava is easyto learn,it quickly gained
a large developerbase.This meansthat it will
bemoreeasyto find qualifiedsoftwaredevelop-
mentpersonnel.Besidesthat,Java’s simplicity
allows otherprofessionalsthansoftwaredevel-
opersto understandJava code.Therefore,other
stakeholderscanmoreeasilyparticipatein qual-
ity assuranceof softwareprojects.

� Strong typing: The Java languageis strongly
typed. This meansthat the compiler can stat-
ically check many commonly mademistakes,
suchas passingwrongly typed arguments,in-
advertently losing or addingsign extensionsat
assingments,pointerarithmeticproblems,etc.
In fact, someresearchersclaim that, because
of Java’s strong typing compilers have more
knowledgeabouttheway thecodewill execute
and can thereforeapply more aggressive opti-
misations.Thismeansthat,in theory, Java code
couldrun fasterthanC code...

� Exception handling: The software designer

May 2001 15

candefinetheapplicationlevel at which excep-
tions should be caught. The languageoffers
constructssuchthat,atthelevelsbelow thatone,
developerscantreatthemtransparantly(i.e. just
passthemon). Of coursethe languagealsoof-
fers constructsfor easyhandlingof exceptions
at the level definedfor thatpurpose.As anex-
tra (andobvious) safetyprecaution,exceptions
thatdo slip throughthatlevel will eventuallybe
caughtby therun-timeenvironment.

� Array boundary checking: The codeis guar-
anteednot to violatearrayboundaries.Software
developersshouldstill checkfor array bound-
aries. But if this fails, at leastthe stateof the
systemdoesnot get corrupted. The exception
mechanismoffers a standardisedfor handling
thosesituations.Also, arrayboundariesarepart
of the languageandcanthereforebetaken into
accountwhenwriting loops. In fact, theexcep-
tion catchingmechanismcanbelegally usedto
end array handling loops (which is not to say
thatthis is goodprogrammingpractise:-)!

� Automatic memory management: Java does
nothaveexplicit memoryallocation,norcanthe
programmerexplicitly returnmemory. Memory
is implicitly allocatedduringcreationof objects.
The languageassumesthat the operatingenvi-
ronmentcontainsagarbagecollectorthatshould
appropriatlyreclaimmemory. Many languages
(includingC) actuallydonothaveconstructsfor
memoryallocationand de-allocation;they are
part of the library structure. In Java andC++,
implicit memory allocation is part of the lan-
guage.In Java, garbagecollectionis partof the
language,in thesensethatanexplicit construct
hasbeen(purposely)omitted.

� Platform independence: This is achieved by
compiling Java to an intermediary language
(Java virtual machinelanguageor Java byte-
code,JBC).It is nota languagefeature.In fact,
Java canverywell becompileddirectly into na-
tive codeof any processor[5]. In principle, it
is not possibleto compilelanguagessuchasC
and C++ to JBC, a.o. becauseJava doesnot
requireJBC to offer direct memorymanipula-
tion. JavaVirtual Machinelanguageinterpreters
(JVMs) areavailablefor most(embedded)plat-
forms. Combinedwith the next item, platform
independencecanresultin enormoussavingsof
developmentcost,becauseonedoesnotneedto

maintaindifferentsoftwareversionsfor differ-
entplatforms.

� Rich standardised set of APIs: This set, in-
cluding implementations(mostly in Java) was
releasedtogetherwith the language.Software
developerscansafelyassumeimplementations
of theselibraries to be available on any plat-
form thatrunsthetargetedflavour of Java. This
meansthatdeveloperscanconcentrateon solv-
ing the real problems. They do not have to
spendeffort studyingAPIs for many different
platformsor implementingcodefor suchbasic
operations,assethandling,sorting,hashtables,
graphicsprimitives,etc.

The combinationof thesefeaturesis rumouredto
result in a productivity increaseper developerof a
factorof 2.

Impact of Java’s feature set on sys-
tem cost

As far astheproductioncostof embeddeddevices
is concerned,featuressuchaslanguagesimplicity,
strongtyping, and exceptionhandlingcomemore
or lessfor free. The otherfeaturescomeat a high
cost.

Cost of performance penalty

Thelanguagespecifiesthateveryarrayaccesshasto
becheckedagainstarrayboundaries.During anex-
perimentonareal-lifesoftwaresystem(a15KLoC
simulation module, written in C), array bounds
checkingcode could be switchedoff, increasing
performanceby 10Thisperformancepenaltytrans-
lates into higher systemcost. The processingel-
ementsinsidean embeddedsystemareusuallydi-
mensionedvery carefully to exactly matchthe re-
quirementsof thesoftware. Every unnecessaryre-
sourcecausesthe eventualproductto be moreex-
pensive and thereby lose market share. An ex-
act factor for the increasedsystemcost is diffi-
cult to give. It is usuallynot necessaryto actually
dimensionthe system40 times larger than other-
wise would be required. On the other hand, just
scaling up the clock speedof the systemis not
enough. In order for a processorto actually ben-
efit from higher clock speed,it should also have

16 XOOTIC MAGAZINE

biggercaches,widermemorylanes,fasteron-board
buses,more complex boarddesigns,etc. A com-
monway of increasingtheJava performanceis the
applicationof a JustIn Time (JIT) compiler, which
reducesinterpretationoverhead(associatedwith ex-
ecuting JBC, Java’s intermediaryvirtual machine
language).However, even if a JIT compilerwere
to remove all interpretationoverhead,Java is still
abouta factor4 slower thannativecode(becauseof
the otherperformancecosts,suchasarraybounds
checkingandgarbagecollection).

Cost of increased memory requirements

The increasedmemory requirementsare due to
threefactors:

� The JVM is a relatively large piece of soft-
ware. The smallestfull implementationshave
footprints of about 100KB. Becauseof opti-
misations,fancier threadingmechanisms,and
fancieruserinterfacelayers,thiscanincreaseto
about500KB. Since, in many cases,the JVM
will be part of the firmware of a system, it
will residein ROM. ROM is muchcheaperthan
RAM (about???times). Therefore,onewould
betemptedto discardthiscost.However, RAM
is fasterthanROM, sothatmany embeddedsys-
temscopy firmwareto RAM, uponstartup...

� Next to the JVM, a full Java systemrequires
about9MB of Java run-timelibraries. For sev-
eral reasons,it makessenseto placethis code
in rewritable memory. In a networked envi-
ronment,this codedefinitely is eligible for up-
dates. Besidesthat, for performancereasons,
mostJVMs modify theinstructionsasthey exe-
cutethem(turningdynamicallylinkedcodeinto
semi-staticallylinked code). This requiresthe
librariesto beplacedin RAM.

� Java memorymanagementis relatively expen-
sive (in termsof memoryutilisation). This is
partly dueto programmingpractises,partly it is
inherentto theuseof a garbagecollector. Cur-
rent programmingpractiseresults in the con-
stant generationof many short-lived objects.
For example,functionresults,asusedin expres-
sionsoftenareobjects,even thoughthey could
just aswell bescalartypes(integers,booleans).

Returninganobjectcausesthatobjectto becre-
atedon the heap. However, immediatelyafter
evaluationof thesurroundingexpression,there-
turnedfunctionresultsbecomeredundant.

� The garbagecollector requires that the sys-
tem containsmore heapmemory than strictly
required by the application. Otherwise, the
garbagecollector would have to be activated
whenever an object becomesredundant. To-
gether, memoryallocationandde-allocationre-
quireabout2MB of RAM, in orderto runmean-
ingful generalpurpposeapplications.

� However, mobile applications, provided by
NTT DoCoMo’s iMode (a Japanesemobile
phoneoperator)show thatcarefuldesignof Java
softwarecanresultin usefulapplicationsthatre-
quireonlyafew 10sof KB for dynamicmemory
allocations.

All-in-all, theminimumrequirementfor a full Java
systemis about10MB of ROM and2 MB of RAM.
Thiscomeson topof storagefor theactualJava ap-
plication code(which is assumedto be about the
sameas for the sameapplicationin native code1)
and the requirementsof the underlyingoperating
system(which is still requiredwhenrunningJava).

Figure2: Thecomplexity of theJava technologychart
stemsfrom thefactthatit consistsof many API sets,
mostof whicharenotpreciselysubsetsof eachother.
Theleft columnlists thefunctionalityof theAPIs. The
rightmostboxgivesanumberof productdependentAPI
extensions

It shouldbenotedthatmostembeddedsystemswill
not contain the full set of Java libraries. Part of
the confusionaroundJava technologystemsfrom
theplethoraof applicationdomainspecificsubsets
and extensionsto the full Java API set. Experi-
mentshave shown that the full setcanbe brought

1On theonehand,JBCis abouta factor2 morecompactthanRISCcode.On theotherhand,JBCis packagedin Java class
files,whichcontaina lot moredatathanjust theJBC.Only someof thatdatagetsdiscardedduringloading.

May 2001 17

backto about500KBfor mobileapplications,by re-
moving userinterfaceandcharacterconversionrou-
tines. Whendisregardingthe performancepenalty
of ROM, and when using specially designedap-
plications,the minimal footprint for a Java system
endsup at about1MB ROM and 100 KB RAM.
Again, thesecostscomeon top of therequirements
for theactual(Java) applicationsandOS.

It is up to thesystemdesignerto choosetheappro-
priateAPI setandlive with theconsequenceof not
beingableto supportall Java applications.

Cost of increased system complexity

Thesecostsare difficult to quantify in a generic
sense.But wecangiveanindicationof theissuesat
play. What is meanthereare the costsassociated
with having to designand maintainsoftware and
hardwarecomponentsthat aremorecomplex than
wouldbestrictly requiredfor native operation.

The simplestscenariois whereefficient execution
(i.e. interpreterperformance)andgraphics(userin-
terface)arenot required. Thereare few examples
suchsystems,becausedevices without user inter-
facesusuallyconstitutehigh-volume,low costmar-
kets. Anyway, in that scenario,the only engineer-
ing costis associatedwith portingabare-bonesJava
interpreterto the target system. An experienced
softwareengineerspendsabouthalf a man-yearon
porting,testing,andverifying a softwarestacklike
Sun’s KVM. Given frequentupdates,both in Java
interpretersoftwaretechnologyandhardwareplat-
forms, thesamecostwill probablyrecurfor main-
tenanceon ayearlybasis.

A more complex and realistic scenariowould be
the higher-end hand-heldand mobile devices, in
wich Java executionis addedfor userinterfacepur-
posesandsimpleapplications.Becauseof thekinds
of applications, it is not required to have high-
performanceexecution.And becauseof themarket
positioning,it is feasibleto incorporateextra pro-
cessingpower. In this scenario,assumingthat the
platformalreadyprovidessomedegreeof graphics
support,thesoftwaredevelopmentcostis increased
by another2 man-yearsfor porting and verifying
the native parts of the Java user interface toolkit
(e.g. Sun’s Abstract Windowing Toolkit, AWT).
The maintenancecost will remainat abouthalf a
man-year, annually.

Figure3: Applicationsspend20%(largeapps,right
bar)to 40%(smallapps,left bar)of executiontimeon
nativecode.Consequently, 60%to 80%of time is spent
on bytecodeinterpreting.

Thenext scenarioarethemediumto high-endcon-
sumerdevices, suchas set-topboxes. In the near
future, they will adhereto standardssuchasMul-
timedia Home Platform (MHP [3]), Home Audio
Video Interoperability(HAVi [6]), andJini, which
apply Java for complex tasks, combining system
controlandadvanceduserinterfacetechnology. De-
spitethemarket positioning(mediumto high-end),
the consumerprice for suchsystemsdoesnot al-
low for the inclusionof PC-classhardware. In the
first versionsof thesedevices,the processorspeed
is limited to about300MHz. Internal memory is
in the rangeof 16MB to 32MB. Harddisksarenot
yet part of the package. The heavy use of Java
in advanceduser interfacesrequiresan optimised
Java interpreter, sophisticatedgraphicsstack,and
native multithreadingsupport. Several companies
deliver speed-optmisedinterpreters,often in com-
binationwith JIT compilers.Becauseof their com-
plexity, thesesystemsrequiresignificant up-front
and running licensing fees. Therefore,a choice
for any packagerequiresanextensive selectionpro-
cess.Usually, this selectionprocessinvolvesexper-
imentalports of several rival softwarestacksonto
simulatorsof the projectedhardware system(dur-
ing thosepreliminaryexperiments,theactualhard-
wareis oftenstill in thedesignphase).This selec-

18 XOOTIC MAGAZINE

tion phasemay alreadyinvolve several man-years
work...

This paragraphdealtwith someof the issues,sur-
roundingthecomplexity of addingJava suppportto
several typesof embeddedsystems.Even though
thelist of issuesperscenarioandthesetof scenar-
ios arenot complete,I hopethisparagraphgivesan
ideaof whatto expect.

What Technologies are used to de-
crease Java’s execution cost?

Obviously, the choiceof technologiesdependson
the actualcostsof the bottlenecks,asdiscussedin
previous sections.For example,it makesno sense
tooptimisethreadsynchronisationfor smallembed-
deddevicesthatarenot expectedto performmuch
multi-threading. However, in most cases,it does
make senseto write themaininterpreterloop in as-
sembly, sincethis is wheremostJVMs spendabout
80

Whenanalyzingtechnologies,wecanmake several
moreor lessorthogonalcategories:hardwareversus
software, memoryversusspeed,and domainspe-
cific versusgeneric. Conveniently, this setof cat-
egoriescanbe representedasa cubewith moreor
lessorthogonalsides. For example,JIT compilers
are genericsoftware enhancements,which impact
thespeedof theinterpreter, at thecostof increased
memoryutilisation.

In the following sections,we will categorize and
discussa numberof commonoptimisationsto Java
executionmechanisms.What we will seeis that,
as is usually the case,most optimisationsinvolve
trade-offs, whereanimprovementononeaxisof the
cubemeansadegradationonanotheraxis.

JIT Compilers

JIT compilers [8] were already categorized as
genericsoftware solutionsfor increasingJava ex-
ecutionspeed,at thecostof increasedmemoryutil-
isation.It is thereforequestionablewhetherthey ac-
tuallly decreaseexecutioncost. If memoryis more
expensive than processorsilicon, this may not be
thecase.

Paradoxically, thepureJIT (JustIn Time) compiler
systemscanalsobecalled”JustTooLate”, because

they startcompiling a (Java byte)codesequenceat
theexactmomenttheuser/system(first) needsthat
particularfunction. Especiallyon embeddedsys-
temswith relatively light processors,this initial call
maytakea longtime. Also, thisbehaviour is partic-
ularly disruptive to real-timeoperation.

In orderto prevent theJustToo Latebehaviour and
decreasememorycostof pureJIT compilers,profil-
ing JIT compilerswere introduced[HotSpot, 21].
Besidesa compiler, such a systemalso contains
a conventional interpreter-basedexecution mech-
anism. Initially, all code is executedby the in-
terpreter. For every distinct code block (usually
method),the frequency of its invocationsis mea-
sured.Whenthis frequency passesa certainthresh-
old, the code block gets JIT-compiled. This ap-
praochgenerallydecreasesmemoryrequirements,
becauseno memoryis waistedon thetranslationof
blocksthatareexecutedinfrequently. However, we
dohaveto take into accountthattheJVM hasgrown
larger, becauseof theextra interpreterandprofiling
software. It also remainsto be seenwhetherthis
approachperformsas well as a JIT-only solution,
sinceinitial interpretationrunsandprofiling efforts
maydecreaseoverall performance.

Subset interpreters

Theseare domain specific software optimisations
for reducingmemoryutilisation, usuallyat the ex-
penseof performance.

JavaSoft’s KVM [21] andJavaCard[21] areexam-
plesof interpretersthatdonotsupportthefull setof
Java bytecodes.

The samegoesfor JVMs and library implemen-
tations that supportonly a subsetof the standard
Java APIs. Usually, thosesubsetsarerestrictedin
termsof userinterfacecapabilities. For example,
theTruffle [21] userinterfacelibrary canonly han-
dle oneapplicationwindow at any time. It is im-
plementedalmost fully in Java, therebyreducing
therequirednative functionalityto aminimum(ba-
sically just pixel drawing). However, becauseal-
most all functionality is implementedin Java and
suppliedasJavabytecodes,Truffle is alsorelatively
slow.

May 2001 19

Specialised processors

Thesearegenerichardwaresolutionsfor accelerat-
ing bytecodeexecution. Dependingon (non-Java)
legacy coderequirements,theinclusionof ageneral
purposeprocessormight still be necessary. In that
case,thesolutionwill comeat thecostof increased
silicon areaandincreasedsystemcomplexity, both
in termsof hardwareandsoftwaresystemdesign.

Examples of specialised processorsare Pico-
Java [16], Moon (VulcanASIC), andShboom(Pa-
triot Sciences). Theseare all processorsthat run
the completeJava bytecodeset natively. Keepin
mind thattheJava Virtual Machinelanguagerepre-
sentsa Complex InstructionSetComputer(CISC).
In fact, someJava bytecodesare extremely com-
plex, involving memory allocation, initialisation,
string tablesearches,and/orbytecodeloading. On
a regular software interpreter, this requiresthou-
sandsof cycles. Normally, CISCs contain mi-
crocode,splitting complex operationsin sequences
of morebasicoperations.Microcodecanbeseenas
a kind of processor-internal ’software’. Specialised
Java processorscanimplementmostbytecodesus-
ing microcode.However, the really complex byte-
codescan not be implementedusing suchan ex-
tremely low-level language.Therefore,in spiteof
thepromiseof genericJavaprogrammability, heavy
investmentsin softwaredevelopmentenvironments
for thoseprocessorsdohave to bemade.

And even if C/C++softwaredevelopmentenviron-
mentsareavailable for thosespecialisedJava pro-
cessors,they usuallystill don’t run all the required
legacy software. For example,becausethe legacy
softwarewasprogrammedin assemblyor requires
thesupportof anoperatingsystemthatis not avail-
ablefor theJava processor. This would meanthata
generalpurposeCPUneedsto beaddedto thehard-
waresystem. If the project canafford to develop
its own ICs, the additionaldirect cost is limited to
a few eurosworth of silicon perproduct.However,
if theprojecthasto rely on off-the-shelfhardware,
extra ICsandincreasedcircuit boardsizehave to be
addedto thebill of materialandproductform fac-
tor. In termsof systemdesign,goingfrom a single-
CPUto amultiprocessorsolutionaddsawholenew
setof problems,suchascommunicationprotocols,
cachecoherency protocols,andresourceaccessar-
bitration.Thisgetsaggravatedin thecaseof hetero-
geneousmultiprocessordesigns,consistingof dif-

ferenttypesof processors.

Of course, a specialisedJava processor(even a
heterogeneousmultiprocessor, incorporatinga Java
processor)probablycontainslesssilicon thanasin-
gle generalpurposeprocessor, offering the same
Java performance.However, the questionis, can’t
wefind amoreoptimalapproach,especiallyregard-
ing thesystemdesignissues?

Bytecode accelerator hardware

Like specialisedprocessors,thesearehardwareso-
lutionsfor acceleratingbytecodeexecution[11, 13].
However, they assistageneralpurposeprocessorin
executingJava. Therefore,the completesolution
always consistsof a processorand an accelerator.
However, sincethisprocessoris relievedof many of
theJava executiontasks,it canbe relatively small.
Besidesthat,theacceleratormoduleitself shouldbe
significantlysmallerthantheJava processorsin the
aformentionedheterogeneousdesigns.

In its simplestform [2], the acceleratoris actually
a translatorfrom Java bytecodesto CPU native in-
structions.It canbeseenasaninstruction-level JIT
compiler, implementedin hardware. Becauseit is
implementedin hardware,it canperformits tasksin
parallelto theprocessordoing theexecutionof the
generatedcode.Becausethetranslationtakesplace
at instructionlevel, the systemrequiresvery little
storagefor intermediateresults(a matterof several
bytes,ratherthanseveralmegabytesfor a software
JIT compiler).

One instanceof such an acceleratorwill be dis-
cussedin moredetail in thenext section.

Graphics accelerators

Measurementshave shown that, for meaningful
Java applications, 2D graphics processingtakes
10% to 20% of all processingtime [20]. The rea-
sonis thatmostJava applicationsareuser-interface
intensive. After optimisingJava bytecodeprocess-
ing, therelative impactof this factorwill increaseto
20%to 50%of all processingtime. Thismeansthat
graphicsaccelerationonly becomesan issueafter
bytecodeacceleration.

Graphicsaccelerationis a domainspecificoptimi-
sation. It only hasusein environmentsthat require

20 XOOTIC MAGAZINE

mediaprocessingor have graphicaluserinterfaces
andlargescreenswith somedegreecolor depth.

Obviously, adding a graphics acceleratormeans
higherhardwarecosts.

Multi-level and hardware garbage collectors

As wasmentionedbefore,garbagecollectionalso
accountsfor a significantamountof performance
loss. As with graphics,this is very applicationde-
pendent. Garbagecollection seemsto be a good
candidatefor accelerationthroughhardware.Some
attemptshave beenmade,including in theauthor’s
own projects[12]. In fact, it is not very difficult to
implementcertaingarbagecollectionalgorithmsin
hardware[14].

However, garbagecollectionalgorithmsthemselves
requiresubstantialand variableamountsof mem-
ory. This canonly be efficiently achieved by inte-
gratingthegarbagecollectionlogic with themem-
orydevices.But thememorydevicebusinessisvery
a cost-sensitive commoditymarket. Speciallyde-
signedgarbagecollectedmemorychipscannot be
producedin sufficient numbersto make themcom-
merciallyviable.

Anotherapproachto at leastalleviate the garbage
collectionbottleneckis to implementseveral types
of softwarealgorithms. Somealgorithmsarepar-
ticularly goodat quickly finding a large numberof
short-livedobjects.Otheralgorithmsaremorethor-
ough, but also more time consuming. Therefore,
the heapis divided in a spacefor short-lived ob-
jectsanda spacefor olderojects.The formerones
arescannedquickly. Objectsthat have survived a
numberof thosescansaremovedto thelatterspace,
which is scannedwith thethoroughprocedure.The
performancebenefitresultsfrom theexpensive pro-
cedurehaving to scanonly partof theheap.

Optimised thread synchronisation

Java is a multithreadedlanguage,heavily oriented
towardsre-use. This meansthat designersof Java
classesalswayshave to take into accountthatmul-
tiple threadsmay wish to concurrentlyaccessthe
internaldatastructuresof thoseclasses.Every ob-
ject that may be accessedconcurrentlyhas to be
protectedagainstmultiple threadsinterfering with
eachother’s changes.Therefore,Java objectsare

synchronisedveryconservatively. Thesynchronisa-
tion operationsinvolve threadsperformingoperat-
ing systemcalls for claimingexclusive access,get-
ting blocked as long as the claim can not be re-
warded,andrelinquisingtheclaimswhentheoper-
ationshave finished. Theseoperatingsystemcalls
areveryexpensive. A lot of timecanbesavedif one
canutilise the fact that actual interferenceis very
rare.

A Hardware approach to accelerat-
ing Java execution

At PhilipsResearch,we’ve beenworking sincethe
end of 1996 on hardware for Java accelerationin
embeddedsystems.Thework startedfrom thefol-
lowing constraints:

� chipareaincreaseshouldbeminimal(e.g.much
lessthansizeof low-end32-bitRISCCPUs),

� memory utilisation should not increase,com-
paredto softwareinterpreter,

� solution should be compatible with modern
RISC CPUs (since generalpurposeCPUs re-
mainnecessary),

� solutionshouldbe modular(i.e. have minimal
impact on other componentsin an embedded
system),in orderto facilitatere-use,

� performanceincreaseshouldbeat leasta factor
5 over a regularsoftwareinterpreter.

Wefoundasolutionin theform of atranslatormod-
ule, which assistsgeneralpurposeCPUs in exe-
cuting Java bytecodes.We calledthe moduleVir-
tualMachineTranslator(VMI). Later, wefound[2],
whichgivesagooddescriptionof many of thecon-
cepts.VMI is very small. Essentially, it consistsof
tablesthat direct the translation. Thesetablescan
beimplementedin averycompactway. VMI needs
very little computationallogic, sincemostcompu-
tationstake placeon thegeneralpurposeCPU.

May 2001 21

Figure4: Froma softwarepointof view, thebytecode
interpretermoduleis simply replacedby hardware(as
thegarbagecollecturemodulemight be)

Sincepartof theJava interpretationtaskis now im-
plementedin hardware,thememoryutilisation ac-
tually decreasesslightly (we needlesscodeto im-
plementtheJava interpretationsoftware).Sincethe
actualoperationstake placeon thegeneralpurpose
CPU(rememberthatVMI isonlyatranslator),there
areno problemswith datacoherency betweenthe
two processingelements. Contrary to most other
accelerators,VMI hasbeendevelopedcompletely
separatelyfrom theCPU.CPUandVMI only com-
municatethrough the on-chip systembus. Most
companiesusestandardisedon-chipsystembuses.
Therefore,building VMI for aspecificon-chipsys-
tembus,meansit is compatiblewith all CPUsthat
can be attachedto that bus. The fact that VMI
communicatesonly throughastandardisedbusalso
meansno otherpartsof the hardwaresystemneed
to bemodified.

Figure5: Fromanabstracthardwarepoint of view,
VMi is placedbetweenthememoryandtheCPU
pipeline,feedingthepipelinewith translatedbytecodes

After having indicatedhow thesolutionis intended
to solve theproblem,while keepingwithin thecon-
straints,it is now time for somemoretechnicalde-
tail.

Most computersystemscontain at least a CPU
(CentralProcessingUnit) anda memory. TheCPU

canbeseenasa robot,which is ableto executese-
quencesof instructions. For example,a car con-
structionrobotrepeatedlyexecutesinstructionsthat
tell it to move, pick up components,attachcompo-
nents,measurepartsof theconstruction,etc. In or-
der to assemblea completecar, sucha robot exe-
cutesthousandsof thoseinstructions. In the same
way, CPUs executebillions of instructionsfor a
simpletask,suchasdrawing an imageon a screen
or printing a document. The CPU readsthosein-
structionsfrom theafore-mentionedmemory. Thus
we find the instructionsfor theJava applicationsin
thememoryandrequiretheCPUto fetchandsub-
sequentlyexecutethem. However, generalpurpose
CPUsdo not understandtheJava instructions(also
called ’bytecodes’). This is where the Java Vir-
tual Machinesoftware comesin. It translatesthe
bytecodesinto instructionsthat the CPU doesun-
derstand. This meansthat next to the functional-
ity of the bytecodesthemselves, the CPU needsto
spendtime on the interpretationtask. A very sim-
ple interpreterfor someof the bytecodescould be
programmedasfollows:

{1.unsigned interpreter(char *pc) {
2. /* ’pc’ points at bytecodes */
3. unsigned sp[STACK_SIZE];
4. /* ’sp’ compute result stack */
5. while(TRUE) {
6. switch(*(pc++)) {
7. case push_const :
8. *(sp++) = *(pc++);
9. break;
10. case pop :
11. sp--;
12. break;
13. case add :
14. *(sp-2)=*(sp-2)+*(sp-1);
15. sp--;
16. break;
17. case ret :
18. return *(sp-1);
19. break;
20. }
21. }
22.}
}

The above code does not need check stack un-
der/overflow or codeoverrunconditions,becausein
Java this is donestatically.

Noticethattheabove instructions(pushconst,pop,
add,ret) areaboutaspowerful asregular CPU in-

22 XOOTIC MAGAZINE

structions. However, the while-switch-case-break
constructionusually requiresbetween10 and 40
CPU instructionsper iteration. The actual func-
tionality of thebytecodes(involving spin theabove
code)requiresbetween5 and10 CPUinstructions.
Thereasonis thatthestackpointer-relative address-
ing introducesanextra indirectionandbecausethe
stackpointeritself needsto beupdated.Thismeans
thataCPUneedsto execute15to 50instructionsfor
operationsfor which it wouldnormallyrequire1 or
2 instructions.Thismeansa7x to 50xinterpretation
andexecutionoverheadperbytecode.

Goingbackto theacceleratorconcepts:

In order to reducethe interpretationoverhead,the
programcounterismovedfrom theCPUinto theac-
celerator. Theacceleratornow readsthebytecodes
from thememoryanddeterminesthelocationin its
translationtablesof thecorrespondingsequenceof
CPU instructions. It performsthis taskwithin the
time the CPU needsto executethe previous trans-
lation. Thereby, this bottleneckis completelyre-
moved.

In order to reducethe time neededfor the actual
functionality (rememberthat push,pop, add, and
ret require 5 to 10 CPU instructions), the stack
pointeris alsomovedfrom theCPUinto thetransla-
tor. Now, insteadof just providing thecorrespond-
ing sequenceof translatedinstructions,including
stackpointer indirections,the translatorsimplifies
thetranslationby substitutingthestackvaluesin the
instructionsequences[inspiredby 4] anddoingthe
stackpointerupdatesinternally. Theresultingtrans-
lation sequenceshave anaveragelengthof about2
CPUinstructions.All-in-all, thetranslatorprovides
aspeed-upon theabove bytecodesof at leasta fac-
tor 15.

Conclusions, Future Work, and Ac-
knowledgements

Java is becominganimportantlanguagefor embed-
dedsystemsprogramming.However, beforeJava-
basedproductscan becomea success,the cost of
Java executionmechansismhasto bereduced.

Most companiesproviding Java executionmecha-
nismsadvertisetheirsolutionsciting asinglebench-
mark(e.g.[17]). In thisarticle,I hopeto havemade
it clear that performanceis not the only factor at

stake andthatJVMs aresuchcomplex systemsthat
asingle-pointmeasurementof performancecannot
giveanaccurateindicationof relative qualities.

Theinterestin incorporatingJava in embeddedsys-
temsis still increasing.DespiteMoore’s law (pre-
scribingthatcomputepowerwill steadilyincrease),
thereis acontinuousneedto taylor Java implemen-
tationsto thestrict requirementsof embeddedsys-
tems. Java accelerationtechnologiesseemto offer
interestingadvantages,but their commercialviabil-
ity still needsto beproven. On theshortterm(dur-
ing 2001), JIT compilerswill find their way into
systemswith little real-time and memory restric-
tions. On thesomewhat longerterm(before2003),
we will seebytecodeacceleratorsopeningup ex-
tremely constraineddevices to the Java language.
2D graphicsacceleratorsarealreadyusedin embed-
dedsystemswith heavy userinterfaces.Thesophis-
ticationof garbagecollectionsystemsis constantly
increasing,but muchwork remainsto bedonehere.
It is questionablewhethergarbagecollectionhard-
warewill ever becomeviable.

I would like to thank the membersof the Java
Hardware Acceleratorproject at Philips Research
for their enthousiasm,in particular Otto Stein-
busch(currently at Philips Semiconductors),Nar-
cisseDuarte(currentlyat Canal+),andSelimBen-
Yedder. I’ve also had many valuablediscussions
with PieterKunst, Nick Thorne, Harald van Wo-
erkom,andPaulStravers.

References

[1] K. Arnold, J. Gosling,D. Holmes,TheJava
Language Specification, Addison-Wesley
2000,ISBN 0-201-70433-1

[2] E.H. Debaere,J.M. van Campenhout,Inter-
pretationand InstructionPath Coprocessing,
TheMIT Press,1990,CambridgeMA, USA

[3] Digital Video Broadcast Mul-
timedia Home Platform,
http://www.mhp.org/html index.html

[4] M.A. Ertl, Implementationof Stack-Based
Languageson Register Machines, PhD thesis
TechnischeUniversitaetWien,Vienna1996

May 2001 23

[5] The Free Software Foundation, The GNU
Compiler for the Java Programming Lan-
guage, http://www.gnu.org/software/gcc/java

[6] HAVi, http://www.havi.org

[7] J. Hoogerbrugge,L. Augusteijn, Pipelined
Java Virtual Machine Interpreters, 9th Inter-
national Conferenceon Compiler Construc-
tion, April 2000,Berlin, Germany

[8] A. Krall, R. Grafl, CACAO - A 64 bit JavaVM
Just-in-Time Compiler, Institut fuer Comput-
ersprachen,TechnischeUniversitaetWien,Vi-
enna,1998

[9] M. Levy, Java to Go: Part 1; Accelerators
ProcessByte Codes for Portable and Em-
beddedApplications,CahnersMicroprocessor
Report,February2001

[10] T. Lindholm, F. Yellin, TheJava Virtual Ma-
chineSpecification,Addison-Wesley, 1996-09

[11] M. Lindwer, Versatile Java Acceleration
Hardware, 2001,to appear...

[12] X. Miet, Hardware for (Java)garbage collec-
tion, ENST, Paris,France,October2000

[13] Nazomi, Nazomi Communications; High
Performance Java Technology for Mo-
bile Wireless and Internet Appliances,
http://www.nazomi.com

[14] K. Nilsen, Progress in Hardware-
Assisted Real-Time Garbage Collec-
tion, Iowa State University, 1995,
http://www.newmonics.com/dat/iwmm95.pdf

[15] K. Nilsen, Issues in the Design
and Implementation of Real-Time
Java, NewMonics, Inc., April 1996,
http://www.newmonics.com/dat/rtji.pdf

[16] J.M.O’Connor, M. Tremblay, PicoJava-I: The
JavaVirtual Machine in Hardware, pages45-
57, IEEE Micro, 1997-03/04

[17] Pendragon Software, Caffeine-
Mark 3, http://www.pendragon-
software.com/pendragon/cm3/info.html

[18] Philips Research, Mobile phones, set-top
boxes, ten times faster with new Philips
accelerator for Java, January 2001,
http://www.research.philips.com/press-
media/010101.html

[19] Philips Semiconductors, Java hardware
accelerator for embeddedplatforms, Philips
SemiconductorsWorld News,November2000,
http://www.semiconductors.philips.com/pub-
lications/content/file680.html

[20] O.L. Steinbusch,DesigningHardware to In-
terpret Virtual Machine Instructions; Con-
cept and partial implementationfor Java
Byte Code, Master’s thesis,Eindhoven Uni-
versity of Technology, February1998,TUE-
ID363006

[21] Sun Microelectronics,JavaSoft; The Source
for JavaTechnology, http://www.javasoft.com

Biography. Menno Lindwer is a Senior Scien-
tist at Philips Researchin Eindhoven (The Nether-
lands). He has been involved in hardware de-
sign (methodology)since1991,graphicsaccelera-
tion since1995,andJava accelerationsince1996.
Mennoholdsa Master’s Degreein computingsci-
encefrom TwenteUniversityof Technology(1991)
anda postmaster’s degreein software technology
from Eindhoven University of Technology(1993).
Otherinterestsincludeobjectorienteddesign,sim-
ulator technology, and system-on-siliconarchitec-
ture. MennojoinedPhilipsResearchin 1995.Cur-
rently, he is in charge of the Platform Indepen-
dent Processingand Java Hardware Acceleration
projectsat Philips Researchin Limeil-Brevannes
(France)andEindhoven (TheNetherlands).Previ-
ouswork experienceincludesa.o. artificial intelli-
gencesystems,researchin delay insensitive asyn-
chronouscircuits, andperformanceanalysisof 3D
graphicsaccelerators.

24 XOOTIC MAGAZINE

