
Multidisciplinary Development

Some personal notes on multidisciplinary
development

Ton Kostelijk

This text contains notes on my experience with some disciplines: software and
mathematics, embedded software and hardware, proceeded by a more per-
sonal introduction.

Several months ago, I was invited to put some words
on paper about my prejudices of different disci-
plines. Thinking about it, and extending it to the
cultural issue as well, I realize that I have crossed
a lot of “cultural” boundaries in my profession and
because of my personal background.

I was born in 1961 as the 11th child of an agricul-
tural farmer, a religious family, in a small village
in a polder (North-Holland). In particular here in
Brabant, I still miss the wide outlook over the land
20 km far, the waters and wind that surrounded me
there. With the sixties and growing welfare, a lot
changed in my first 20 years. My eight brothers in
particular were quite outgoing and paved my path
to be allowed a lot of freedom in behavior. Already
with my scooter, I visited my eldest married sister
at the age of 4, a trip of 5 km away (I was very well
taught to duck to the side when a car passes). As
one of the very few of my town, I was educated at
the Athenaeum, in the nearby (12 km) city. I realize
now that it was the first time of many that I joined a
new group, where many of my old group did not fol-
low that step. In the city, things go very differently.
My circle of movement kept on growing, and I de-
cided to go to the Free University in Amsterdam, to
become a scientist.

In different ways, most of us cross cultural bound-
aries, even when you are Dutch, and you live in The
Netherlands. Differences between groups are an in-
teresting subject to discuss, provided that it is done
with the willingness to understand. When done in
a reproaching or even accusing way, there are only
losses. However, in the end the differences between

individuals are larger than the differences between
groups. So I propose you read the remainder with
some relativism.

My education (experimental solid state physics)
combined a strong mathematical foundation with
pragmatism and a sharp eye for deviations in ex-
pected behavior. In short, physics is all about con-
structing, rejecting, validating and extending mod-
els of the experimental reality. Mathematics is
about models of the imagination. When an exper-
imental model is equivalent to an imaginary model,
knowledge of mathematicians can be used.

Software and mathematics

Some people think that programming is a form of
applied mathematics. In my view software origi-
nates more from engineering than from mathemat-
ics. I respect Dijkstra for his contributions but I dis-
agree with his rigid view on software development.
Even G̈odel’s incompleteness theorem has proven
that proofs and completeness are not fully united.
Still there are people that keep on searching for the
ultimate software development method or tool that
will enhance productivity enormously, and prevent
any mistake that happened in the past. Instead of
posing the question “what is the best method for all
systems?” one should pose the question “what is the
best approach for my system?” In this way, mean
and lean solutions most likely occur. First of all, one
can benefit of the intrinsic structure of the problem
at hand. Secondly, the notion “approach” instead
of “method” indicates which route to take without

November 2003 19



claiming to know the solution. The typical prob-
lem is too difficult to tackle in one go, leading to
another element: usage of an incremental approach,
or in other words, a spiral development model. And
last but not least, the job is performed by a (set of)
group(s) of people, where experience, communica-
tion and other cultural items play an important role.

Nevertheless, one can benefit a lot from mathemati-
cal insights, just like physics benefits from it, with-
out implying that physics is a sub-domain of math-
ematics. Since problem / system modeling is appar-
ently so important, it may no longer be a surprise
that so many software architects originally studied
physics.

Figure 1: Typical hardware view of a system

Embedded Software and Hardware
Development

There are several differences between hardware and
software.

First of all, the definition of a system is quite dif-
ferent for hardware or software. For a hardware de-
signer, a system is a collection of hardware blocks
that are interconnected. For a software designer,
a system consists of several layers; an application
(including services) runs on drivers where drivers
are “almost hardware.” Whereas for hardware de-
signers interrupt routines are considered out of their
scope. This implies that a gap in responsibility ex-
ists, the hardware software interface.

Secondly, embedded software is mostly engaged in
handling use-case transitions, whereas hardware de-
signers are focused to make a block process well in
a steady-state use case.

Thirdly, hardware typically is designed bottom-up
(“re-use”) whereas software is typically designed
top-down. This latter statement may no longer be
completely true: because of high development cost,
software re-use is growing rapidly, resulting in more
and more glue code in systems. One may wonder
whether the amount of glue code is in balance with
the shielded amount of core code.

Application Software

Driver Software

Figure 2: Typical software view of a system

Fourthly, hardware has real concurrently running
functions. Software only has timesharing, where
concurrency is faked by the operating system. The
software performance is deteriorated many fac-
tors by limited caches, uncached access, context-
switches (interrupts in particular and task-switches)
and busload. As a result, hardware designers typ-
ically overestimate the software performance of a
system. The average software designer is not at all
focused on performance whatsoever. This means
that performance set-backs are common when ex-
ecution architecture view is not elaborated in a sys-
tem.

Fifthly, one of the major separating issues is that
software development lags behind one or two gener-
ations of the hardware development. In other words,
the hardware and software focus differs.

Finally, software suffers from hardware bugs, not
vice versa. On average, 30-50% of the effort to
make drivers is related to bug fixing, unclear specs,
system errors, etc. One of the opportunities is to
keep the overall balance sound: whether to save ef-
fort in hardware design by spending effort at the
software side, or vice versa.

20 XOOTIC MAGAZINE



Final remarks

The clich́e that technical software people talk to
computers only and work in isolation is so beside
reality. This paper could have grown many pages
more because making products involves so many
different disciplines. In the global world we live in,
it involves many different cultures and nationalities
as well. In our work, this gives extra color to our
profession. It is also the reason why the educational
focus of an architect shifts from technical towards
social during his or her professional life. Since the
differences between individuals are larger than the
differences between groups, it helps to forget the
group your colleague might be part of, and appre-
ciate the unique person you are in contact with. In
case of misunderstanding, the group habits may be
a cause though, but firstly focusing on the group
clichés ignores most value of the person. Multi-
disciplinary work can thus become an adventure of
synergy and appreciation.

About the author

Ton Kostelijk Born in 1961, Mar-
ried. From 1979 to 1985 Ton
Kostelijk studied physics, Experi-
mental solid state physics with IT,
at the VU Amsterdam. From 1985
to 1995 he worked at Philips Natlab

on CAD for VLSI Design, for which he received
his Ph.D. in 1994. Thereafter, he was Chief soft-
ware archtict Digital Receivers program (G+4 set-
topboxes) at Philips’ ADC/ASA until 1999. Cur-
rently, Ton Kostelijk works as system architect at
the Philips Digital Systems Lab in Eindhoven.

Currently engaged in

• System Performance Feasibility
• Member of Core Architecture Team Disk Sys-

tems product family.
• Coaching of architects
• Chairman of “QITARCH” of PDSL
• Teaching courses for CTT (3), ESI, OOTI.

November 2003 21


