
POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

X00TIC
July 2008-Volume 13-Number 1

magazine

Designing Deeply
Embedded Systems



XOOTIC MAGAZINE

Contents

Designing Deeply Embedded Systems
editorial . . . . . . . . . . . . . . . . . 3

Designing and Programming Efficient Em-
bedded Systems-on-Chip

Jeroen Leijten, Lex Augusteijn . . . . 5

Multicore/MPSOC Design and Convenient
Concurrency

Steve Leibson . . . . . . . . . . . . . 13

OOTIs contribute to the Daedalus system-
level design framework

Dorieke Schipper, Andy Pimentel . . . 19

Multi-Processor Programming for Embed-
ded Systems

Andreas Hansson, Benny Åkesson,
Andrew Nelson and Jef van
Meerbergen . . . . . . . . . . . . 23

Advertorials

ASML . . . . . . . . . . . . . . . . . . 4
Oce . . . . . . . . . . . . . . . . . . . 17
Topic . . . . . . . . . . . . . . . . . . . 18
Tass . . . . . . . . . . . . . . . . . . . 32

Colofon

XOOTIC MAGAZINE
Volume 13, Number 1
July 2008

Editors
Yanja Dajsuren
Panagiotis Georgiadis
Jorn Bakker
Chris Delnooz
Menno Lindwer

Address
XOOTIC and XOOTIC MAGAZINE
P.O. Box 6122
5600 HC Eindhoven
The Netherlands
board@xootic.nl
http://www.xootic.nl

Secretariat OOTI
Technische Universiteit Eindhoven
Department of Mathematics and Computer
Science
c.o. Ms. M. de Wert
HG 6.57, P.O. Box 513
5600 MB Eindhoven
The Netherlands
ooti@tue.nl
http://wwwooti.win.tue.nl/

Print production
WENS Creatie, Son en Breugel

Reuse of articles contained in this magazine
is allowed only after informing the editors and
with reference to “Xootic Magazine.”

2 XOOTIC MAGAZINE

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY



Editorial Preface

Designing Deeply Embedded Systems
editorial

In front of you, you find a new issue of XOOTIC Magazine. It has taken us one-and-a-half years
to present you with a new issue. Many thought the Magazine was dead. However, nothing could
be further from the truth. Your new Magazine Committee is still a bit rusty and experienced some
booting issues on this release. But the first egg is out and we are sure that many nice ones will
follow!

This issue is about a topic that is currently in the spotlight for several reasons. More than ever,
tiny devices with lots of functions are becoming part of everybody’s lives. By now, we all carry
around mobile phones with integrated cameras. Many of those phones can act as navigation
systems. However, a much more extreme example was announced June 13 this year: a medical
eye implant of one qubic millimeter, containing a real system-on-chip, with a real functioning
microcontroller [1]! These systems are becoming completely programmable. Contrary to the
desktop computing community, the deeply embedded computing community has known for years
that future power, area, and cost requirements can only be met if systems are designed to fit
closely to the application domain and make sufficient use of parallelism and multi-core concepts.
This issue of XOOTIC Magazine explores these concepts from a number of different angles.

The article by Jeroen Leijten and Lex Augusteijn gives an in-depth analysis of the bottlenecks in
traditional system design. They also show solutions to designing such systems to be very effi-
cient, yet managable targets for software development. Steve Leibson subsequently describes
how such systems could be programmed, with a particular focus on super pipelining. Despite
the efforts of Leijten, Augusteijn, and Leibson, in the 2007 Workshop, the OOTIs experienced
that the design tools for these systems are far from ideal. Dorieke Schipper writes about how
they harmonized a toolflow to take designs from top-level ANSI-C code all the way down to a
ready-to-go FPGA implementation. Last but not least, Andreas Hansson and Benny Åkesson
show how one can develop composable software for multi-core embedded systems.

When you are reading this, your Magazine Committee is already working on the next issue. By
that time, we will be celebrating OOTI’s 20th birthday. Obviously, that Magazine will look back
on those 20 years.

Remains for us to wish you happy reading!

XOOTIC Magazine Committee

Yanja Dajsuren

Georg Panagiotis

Jorn Bakker

Chris Delnooz

Menno Lindwer

References

[1] Center for Wireless Integrated MicroSystems Annual Report 2007
www.wimserc.org/annual report/circuits AR07.pdf

July 2008 3



Bij de chipproductie werd tot nog 
toe Deep UV-licht gebruikt (193 nm). 
Om kleinere chips mogelijk te maken, 
werkt ASML nu aan de toepassing van 
Extreem UV-licht (13.5 nm). 

Een systeem van magnetisch 
gestuurde spiegels in een 
vacuüm ‘kneedt’ het EUV tot 
een constante bundel, sterk 
genoeg om het silicium te 
belichten, voor de chipproductie 
van 10-nm-structuren. 

Door het neerslaan van vrije koolstof-
atomen (0.5 nm) op de spiegels in het 
vacuümsysteem wordt de reflectie 
verminderd. 

In het vacuüm zijn vluchtige 
koolwaterstofmoleculen  
aanwezig. EUV-fotonen
slaan deze organische 
moleculen uiteen.

ASML zoekt naar oplossingen  
om het spiegelsysteem schoon 
te houden. Schoonvegen behoort 
niet tot de mogelijkheden.

13.5 nm

EUV-fotonen

-1%

Profiel: Wereldwijd marktleider in chip-lithografiesystemen | Marktaandeel: 65% | R&D-budget: 500 miljoen 

euro | Kansen voor: Fysici, Chemici, Software Engineers, Elektrotechnici, Mechatronici en Werktuigbouw-

kundigen | Ontdek: ASML.com/careers

Voor engineers die vooruitdenken

Morgen kunnen we 
10-nm-chips maken. 

Vandaag mag 
jij bedenken hoe.

17000023 ASML_adv_210x297_NIEUW_2.indd   1 05-06-2008   15:51:30



Designing Deeply Embedded Systems

Designing and Programming Efficient
Embedded Systems-on-Chip

Jeroen Leijten, Lex Augusteijn

Silicon Hive

In this paper, we give an overview of the issues playing in embedded
multi-processor designs. We can roughly divide this space into three cate-
gories: homogeneous multi-processors, heterogeneous multiprocessors,and
fixed-function devices. The homogeneous multi-processors have been derived
from desktop designs, containing multiple high-speed general-purpose proces-
sor cores. Heterogeneous multi-processors have their functions mapped onto
sets of specially designed processor cores. Fixed-function devices are char-
acterized in that most of the actual processing is performed by weakly pro-
grammable dedicated hardware blocks.

Introduction

The point of the whole exercise is to move
away from fixed-function devices, in which all
functionality is cast in hard-wired blocks. Until
recently, these types of devices could not be
rivaled in terms of efficiency. However, they
are inflexible, very expensive to design, have
a very limited application scope, and a short
commercial lifetime. Thus, the world is look-
ing for programmable solutions and turns to the
software community for answers.

Because the software community tends to
focus on solving performance issues using
limited numbers of homogeneous high-speed
general purpose processors, we will investi-
gate some of the issues around this type of
systems. We will discuss how these issues
can be overcome with application-specific pro-
cessor designs. But, in order to really com-
pete with the fixed-function devices, the hetero-
geneous applicationspecific multi-processors
have to break away from the classical DSP or
enhanced-RISC approach.

Application-specific multi-processor architec-

tures require some specific tooling and skills
to program, which we discuss as well. In par-
ticular, there is a need for optimizing compil-
ers, which can perform instructionselection for
different instruction-sets with combinations of
user-defined operations. Compilers have to ex-
tract parallelism from sequential code. In multi-
core systems, the compiler needs to find its
way in compiling for the whole architecture. De-
sign space exploration tooling must be able to
reason about all aspects of the architecture, in
order to assist in finding the right parameter
settings. Last but not least, since the actual
SoCs often are still being processed, most soft-
ware development takes place on simulators.
These simulators must simulate complete sys-
tems sufficiently fast, yet provide enough accu-
racy to allow both software and hardware de-
signers to establish functional correctness and
timing behaviour.

In the past, a chip had a single function. It
could be a memory chip, a sound chip, or
even a microprocessor. Together, these chips
formed a system. Nowadays, most chips con-
tain complete systems, performing large sets
of functions. These chips are thus referred to

July 2008 5



as Systems-on-Chip (SoCs).

The Intel Core Duo T2500 processors [10] are
positioned for the embedded computing mar-
ket. They are single chips, consisting of two
processor cores, each with their own cache, an
on-chip bus, and two levels of shared cache.
The chips have various interfacing logic and
power management units. As such, they are
real SoCs.

The processor cores on the T2500 run at a
maximum frequency of 2GHz. Having some
parallel computing capability within each pro-
cessor, the chip can calculate an absolute max-
imum of 24 GOPS (Giga-Operations Per Sec-
ond), assuming that the software manages to
keep all computational elements busy at all
times. At this speed, the T2500 consumes 31
Watts.

In this article, we will compare architectures
on the power they consume per actually ex-
ecuted (effective) byte-operation. This metric
is expressed in Joules-per-operation. Given
that, during regular benchmarks, a T2500 is
utilized for about 70%, it consumes about 2
nano-Joules per operation.

So much for raw compute power. However,
even if the application software could be sched-
uled such that all execution units would be
kept busy, it is unlikely that they can fetch their
data fast enough. The on-chip memory (L2
cache) is shared between the two cores and
produces a maximum data stream of only 2.7
GB/s (Giga-Bytes per second).

Compared to that, the compute and data re-
quirements for full HD (1080p) high-definition
video decoding are roughly two times higher:
60GOP/s, 4 GB/s [1]. To fit this in a pack-
age that does not require a fan, the power
consumption needs to be below 1 Watt. In
the wireless world, the requirements are even
stricter. A typical mobile phone battery pack
delivers about 5Wh. Most of that is already
spent on the display, signal reception, and con-
trol operations. In order to watch a whole
movie, without the battery running out, the
video processing may consume a few 100 mW.
This boils down to energy consumption per op-
eration between 2 and 20 pico-Joule.

Additionally, the embedded world needs to deal

with strict requirements on form factor (size)
and cost. At $322, a typical Intel T2500
would cost more than a whole mobile phone
[2]. An image sensor SoC for highend mobile
phones (e.g. [14]) with a 16 GOP/s image pro-
grammable processor [17] costs about $3 to
$6. Similar figures hold in application domains
such as mobile and wireless LAN communica-
tion standards. Security and automotive sys-
tems are moving in the same direction.

In order to rival hard-wired solutions, it follows
that the Systems-on-Chip for these types of
embedded functions need to be roughly a fac-
tor 100 to 1000 more efficient, both in terms of
efficiency (GOP/s) and cost, than current-day
practice in high-end general purpose embed-
ded devices.

Now comes a little bit of philosophy: parallelism
was pioneered in the ’70s by research institutes
and companies such as Cray, Inc. Supercom-
puters. These systems were known for their
huge size and even larger power bill. On the
other hand, using ever-increasing clock speeds
of a single processor, Intel is known for bringing
’80s mainframe compute power to the form fac-
tor (and power consumption) of a home sound
system. Thus, parallel computing technology is
not associated with efficiency. In fact, it seems
counterintuitive to make calculations more effi-
cient by making them happen in parallel. Why
would it make a difference whether calculations
happen in parallel or sequentially? The power
for doing them will be consumed anyway. In
fact, when you do them in parallel, you also
need to spend power on communicating the re-
sults, right?

Wrong!

A fully programmable 30-core digital video re-
ceiver was produced in 2004 [7], [12]. This
SoC had a maximum computational through-
put of 60 GOP/s, consuming less than 1 Watt
(i.e. about 16 pico-Joule per operation). As
of April 2005, Intel is advocating the use of
multi-core processors, because they are more
power-efficient [11].

6 XOOTIC MAGAZINE



So what’s wrong with the tradi-
tional high-performance proces-
sor?

In general, traditional high-performance pro-
cessors spend the majority of their chip real-
estate (and thus also power consumption) on
functions that have a secondary effect on the
actual operation throughput.

There are roughly four reasons:

• Pushing technology to the limits means
falling over the edge of diminishing return
on chip real estate.

• Speculation is bad!
• In order to reach high clock speeds, hard-

ware and power are increasingly spent on
control, rather than on computation.

• Centralized resources are power and per-
formance bottlenecks.

Diminishing Return on Chip Real Estate

Chips are produced in so-called silicon pro-
cesses. When pushing the clock speed of a
processor significantly higher than the ’sweet
spot’ for the fabrication process, chip area and
power consumption grow faster than linear. In
order to make the T2500 operate at 2GHz, Intel
had to take the following measures:

• Specify the operating voltage to be 1.3V
[10], rather than 0.8V (customary for a 45
nm process). This increases power by a
factor of 2.6.

• In order to support higher voltages and
higher currents, the physical layout was
pushed to produce fast-switching and
strong wires, repeaters, and buffers.

• Push the construction methodology (RTL
synthesis) to produce fast, but large, logi-
cal circuitry, with additional bypasses and
gates.

Why is speculation bad?

Speculation boils down to using chip real es-
tate for functions or operations of which you are
not sure that you will need them. And if there

is a chance that operations or stored data are
eventually not used for the end result, a cor-
responding percentage of the power and area
that is spent on them, is wasted.

Speculation is applied in several architectural
forms in high-clocked processors. These are
some examples:

• Caches speculate on once-fetched data be-
ing needed again. Storing data in a cache
means storing the data twice, having to do
expensive cache-lookups on every fetch,
and having to keep several layers of caches
synchronized. Thus, caches are far less
efficient than having a simple local mem-
ory which is pre-loaded deterministically, to
hold exactly that code that needs to be ex-
ecuted.

• Pipelined processors are processors in
which the actual operations have been seg-
mented into many small sub-steps, such
as instruction fetch, decode, instruction re-
ordering, etc (exceeding 10 stages on some
CPUs). Deeper pipelines mean smaller
and faster pipeline stages, thus increase in
clock frequency. However, on conditional
jumps, a pipelined processor will have pre-
fetched many instructions, which are then
wasted. Actually, on average real-life code,
20% of all instructions is a jump (see e.g.
[6]). So, on deeply pipelined processor
cores, pipeline flushes occur more often
than not.

• In order to reduce performance loss be-
cause of jump mis-prediction, processors
employ branch prediction tables. However,
the tables act as caches in speculating that
these branches will be visited again.

• Out-of-order execution is a process by
which the processor itself analyzes incom-
ing sequences of instructions to determine
which ones can run in parallel. The proces-
sor’s execution pipelines are replicated and
parallel operations are distributed among
them. But, often the calculations are ac-
tually executed speculatively, because it is
not known in advance whether the results
will actually be needed.

According to [8], 9% of the area of a typical X86
processor is spent on the integer and floating

July 2008 7



point processing units and 50% (!) is spent on
the caches.

What centralized resources?

Figure 1 (taken from [9]) illustrates the central-
ized resources in a processor that is similar to
the cores within an Intel T2500. The Instruc-
tion Control Unit is connected to almost ev-
ery other block in the design. The FPU Reg-
ister File needs to feed three parallel floating
point execution units. What’s not depicted is
that, similarly, the integer register file has to
feed the three Integer Execution Units (IEUs).
The Integer Scheduler has to analyze and feed
instructions to three parallel IEUs. What is
also very important is that all these units have
to read and write their data through a single
Load/Store Queue Unit.

When a single unit has to drive multiple other
units spread over a large device, wiring be-
comes a problem and the design is not scal-
able. Also, a register file having to feed multiple
parallel calculation units has to have at least
as many read and write ports. Each additional
read/write port adds to the size of the register
file. This is roughly a logarithmic function.

It’s difficult to quantify the impact of such cen-
tralized resources on the area and power effi-
ciency of a design, without being able to an-
alyze power simulation results from individual
blocks within the design.

So how to design an efficient
multi-processor system?

In order to relieve the above issues, processor
designers have made several improvements.
For example, traditional embedded RISC pro-
cessors are already much more efficient than
desktop processors. Embedded RISC pro-
cessors consume around 200 pJ/operation
(90 nm silicon fabrication process). For a
long time now, designers have turned to Dig-
ital Signal Processors (DSPs) which are typ-
ically more efficient than RISC processors
on convolution-based algorithms. On these
types of algorithms, DSPs consume 50 to 100

pJ/operation. Some processor designers went
further, adding more application-specific oper-
ations to their processors (calling them “config-
urable processors”). This way, some managed
to bring power consumption down to about 20
pJ/operation.

However, the fundamental flaws that we dis-
cussed before, were not dealt with. Even
configurable processors contain relatively deep
pipelines (5 to 7 stages), centralized resources,
inflexible I/O sub-systems, and relatively high
bandwidth requirements. In order to really
compete with fixed-function hardware, power
consumption has to drop by another factor of
10, as we mentioned in the introduction. This
means that all resources have become fully
scalable, speculation has to be fully removed,
and all resources must be spent on calculation,
rather than control.

Note that we can not wait for silicon process
technology (Moore’s law) to help out, because
processing requirements increase even more
rapidly. For example, we are already con-
fronted with design requirements for Quad-HD
video at 120 frames/second (i.e. requiring
16x performance over the 60 GOP/s calculated
three years ago in [1]).

Basically, this boils down to four things: (i) in-
verting the steps that have been taken in the
past to build very generic processors at very
high clock speeds, (ii) remove all overhead by
having the compiler schedule all resources, (iii)
scale all architectural components, such that
parallelism can be optimally exploited, and (iv)
make system-level decisions visible to all tools,
including the compiler, such that these tools
can reason about all kinds off trade-offs.

Increasing Efficiency of Processor
Cores

• When more performance is needed, rather
than increasing clock speed, keep the pro-
cessor in the silicon process’ sweet spot
by adding more parallel compute resources,
without increasing dependency on central
resources.

• Rather than spending chip area and power
on speculation, schedule all operations

8 XOOTIC MAGAZINE



Figure 1: AMD Athlon Microarchitecture Block Diagram

and memory allocation statically, replace
caches by scratch pad memories, reduce
pipeline depth, and remove out-of-order ex-
ecution.

• Maximize the use of locality of reference.
De-centralize resources, by having multi-
ple controllers (and thus multiple processor
cores), multiple scratch pad memories per
core, and multiple register files per core.
This way, wires are kept short. Also thin
wires and lean drivers can be instantiated,
because they need to drive fewer modules
over shorter distances.

• There is no one-size-fits-all solution. Pro-
cessors will have to be designed specifically
for each application domain. Processors
will have application-specific operations.

So let’s say we reduce the processing area to
exactly what’s needed for the actual calcula-
tions, by removing speculation. And suppose
we can also convert caches into regular mem-
ories of the exact size needed for the applica-
tion, then through the analyses of the previous

chapter, it’s easy to see that SoC real-estate
can be reduced by several factors. Add to that
the benefits of running at a low clock speed (at
least a factor 3 less power consumption), we
can see the path to obtaining efficient SoCs.

Actually, all these measures make processor
design become much more easy. Processor
designers no longer have to think about how to
implement complicated cache eviction strate-
gies, organize out-of-order execution, design
bypass networks, and design arbitration for
centralized resources. Since these features
do not add to the overall functionality of the
processor, they are very hard to verify. Thus,
removing them makes processor verification
much easier.

In fact, processors become composable. Their
complexity no longer increases with size. In
traditional processor design (and also in tra-
ditional DSP and application-specific acceler-
ator design), centralized controllers and regis-
ter files prevented replication of compute re-
sources. When these bottlenecks are re-

July 2008 9



moved, parallel replication of compute units be-
comes trivial [13].

Increasing Efficiency at the System
Level

Already for a long time, it’s acknowledged that
bandwidth between cores in an SoC (be it
processors, hardwired accelerators, or mem-
ories) is becoming a bottleneck. Additionally,
with increasing numbers of transistors, the rel-
ative distance between SoC modules becomes
larger. This means that on-chip signals need
more than a single clock cycle to travel be-
tween SoC modules. Thus, they have to travel
in multi-cycle hops, increasing the latency of
data transfers.

Different kinds of solutions are being applied
for these kinds of system-level issues. How-
ever, in systems with communicating heteroge-
neous processor cores, software tools and sim-
ulators need to be able to reason about such
intra-core infrastructures. Therefore, the com-
posability requirement holds for system-level
interconnect as well.

Also, in contrast with the required heteroge-
neous structure of the processor cores, the in-
terconnect infrastructure needs to be homoge-
neous. Else, tools and developers can not de-
pend on deterministic behavior of the SoC.

Any system-level methodology needs to pro-
vide for deterministic interconnect architec-
tures. On top of that the architecture needs
to be composable and APIs and tools need to
take latency, bandwidth and other parameters
into account. Last but not least, the tooling
needs to provide several levels of system simu-
lation, such that designers and software devel-
opers can validate their assumptions.

The Software Design Bottleneck

There was one very valid reason to achiev-
ing performance increase in the traditional way:
the software design bottleneck. Functionality
of today’s ever more complex devices is ex-
pressed in software. Software development
productivity had to increase. Software design-

ers simply did not have the time to design their
software for multitudes of processors, having
to think about which type of processor core
is best suited for a particular algorithm, hav-
ing to split source data over multiple scratch
pad memories, having to control communica-
tion and synchronization (message passing),
having to determine in which register file data
is to be stored, etc.

So, we can have the compilers for solving all
these issues? Yes and no.

Some compilers can indeed schedule sequen-
tial code to take advantage of 10s of parallel
computation units, and, at the same time de-
termine which register files to use for which lo-
cal data, which data lanes to use to exchange
data between register files, etc. (e.g. [19]).
Compilers have sophisticated data flow graph
matching algorithms to automatically select op-
erations with complicated functionalities. Ad-
ditionally, software designers can make use of
extended operator overloading mechanisms to
keep their code portable and easy to under-
stand.

The European ACOTES project [15] goes a
step further and aims to automatically split se-
quential code in multi-processor code and to
automatically extract vector parallelism from
sequential code.

But, even though compilers get ever more pow-
erful, the system designer still has a respon-
sibility to design a balanced system that pro-
grammers can grasp. The system’s features
have to match the compute requirements of the
application domain. Next to that, the software
designer will have to have intimate knowledge
of the system architecture. Using that knowl-
edge, the software designer maps tasks onto
processor cores, maps data onto scratch pad
memories, and often also selects appropriate
application-specific operations.

However, all of this only works if composability
of architectures and applications is preserved
at all levels of the system design. The whole
system has to be built on a template that al-
lows tools to reason about tradeoffs between
different mappings. This means that SoC de-
sign can not be viewed only from the angle of
instantiating multiple RISC cores and subse-

10 XOOTIC MAGAZINE



quently adding dedicated blocks for all sorts of
functionality and on-chip communication.

As an example, we can compare HiveFlex VSP
2500 [16] with ARC 417V [4]. The former has
a regular structure. For increasing compute re-
quirements, the ANSI-C programmable video-
specific processors can simply be replicated.
The latter one has a number of dedicated hard-
ware blocks for specific video functions (e.g.
entropy encode, entropy decode, motion esti-
mation), which can not be scaled. Also the lat-
ter has irregular interconnect, which does not
allow replication. But, most importantly, the
compiler tool chain only provides support for
the controller CPU [5]. All other engines have
to be manually programmed or controlled.

Figure 2: HiveFlex VSP, tiled video signal
processor architecture

Figure 3: ARC AV417V video sub-system

Conclusion

The world is turning to the software commu-
nity to bring the solution to the ever-increasing
cost of designing new SoCs for each applica-
tion and for each new video, imaging, or com-
munications standard.

However, in order to make programmable
SoCs compete with their fixed-function coun-
terparts, programmable solutions have to be-
come a factor 100 to 1000 more efficient.

Some relief comes from configurable multi-
core processors. Because of the applica-
tion of multiple cores, parallelism and effi-
ciency do increase. They provide some degree
of application-specific functionality. However,
generally this not enough to reach the required
100-fold efficiency increase and they are hard
to program.

Composable multi-core processors have been
shown to be good compiler targets and there-
fore relatively easy to program. Additionally,
in order to really rival fixed-function devices,
such composable architectures can be con-
figured for high locality of reference, com-
plete removal of centralized resources, shallow
pipelines, scalable I/O, and distributed memo-
ries.

We have shown that the required composable
architectures can be built today. Compilers
and simulators for these architectures are also
available. The ACOTES European project aims
to improve these compilers further, in particu-
lar in regard to automatically scheduling over
multi-core processors. However, the software
architect has to understand the trade-offs and
be trained to deal with multiple instruction sets,
partitioning over sets of heterogeneous proces-
sors, and take bandwidth limitations and com-
munication latencies into account.

July 2008 11



References

[1] Alvarez M, et al. A Performance Characterization of High Definition Digital Video Decoding using
H.264/AVC Proc. IEEE Int’l Workload Characterization Symp., 6-8 Oct. 2005, pp. 24-33

[2] A-Power Online Intel Core Duo T2500 2.0GHz 2M 667MHz FSB #1484
www.apower.com/product-1484

[3] ARC International (www.arc.com)

[4] ARC International Video 417V Subsystem
www.arc.com/subsystems/video/AV417V diagram.pdf

[5] ARC International GNU Tools for ARC R©Processors
www.arc.com/software/development/gnutools.html

[6] Fritts, J.; Wolfe, W.; Liu, B. Understanding multimedia application characteristics for designing
programmable media processors Dept. of Electrical Engineering, Princeton University

[7] Gruijters, P., et al. Flexible Embedded Processors for Developing Multi-Standard OFDM Broadcast
Receivers
www.us.design-reuse.com/articles/8887/flexible-embedded-processors-fordeveloping-multi-
standard-ofdm-broadcast-receivers.html

[8] Herring, C. x86 Everywhere MicroSoft WinHEC 2005
developer.amd.com/assets/WinHEC2005 x86 Everywhere.pdf

[9] Huynh, J. The AMD AthlonTMXP Processor with 512KB L2 Cache Technology and Performance Lead-
ership for x86 Microprocessors
Advanced Micro Devices, Inc. courses.ece.uiuc.edu/ece512/Papers/Athlon.pdf

[10] Intel Intel Core Duo T2500 processors
download.intel.com/design/intarch/prodbref/31127205.pdf

[11] Intel Intel Multi-Core Technology www.intel.com/multi-core/index.htm

[12] Leijten, J. The Avispa Family of ULIW Parallel-Processing Cores for Multimedia and Communications
Spring Processor Forum, 25 April 2006

[13] Leijten, J.; Lindwer, M. Multiprocessing Template for Media Applications Proc. IEEE ISM, 2006

[14] MagnaChip MC531B 1/3.2” 3.2MP eDoF SOC sensor
www.magnachip.com/eng/download/MC531EB.pdf

[15] Munk, H.; et al. Acotes; Advanced Compiler Technologies for Embedded Streaming
www.hitech-projects.com/euprojects/ACOTES/

[16] Silicon Hive BV HiveFlex VSP2500 Series
www.siliconhive.com/Flex/Site/Page.aspx?PageID=9263

[17] Silicon Hive HiveFlex ISP2200 Series, Camera Image Signal Processor
www.siliconhive.com/Flex/Site/Page.aspx?PageID=8879

[18] Tensilica Inc. (www.tensilica.com)

[19] Turley, J. Avispa+ Buzzes with Innovation; High-End Core Combines Decades of Competing Archi-
tectural Ideas MicroProcessor Report, 9 April 2004

12 XOOTIC MAGAZINE



Multicore/MPSOC Design and Convenient Concurrency

Multicore/MPSOC Design and
Convenient Concurrency

Steve Leibson

Tensilica

For the first 25 years of their existence, microprocessors were designed to be
as general-purpose as possible to widen its use across as many design projects
as possible to increase sales volumes and to amortize each processor’s design
across many, many ICs. When each processor chip was hand designed by
teams consisting of dozens or hundreds of engineers, such amortization was
almost mandatory. The cost of generating mask sets and fabricating production
volumes of such processors was also very large. Thus, for the first quarter-
century of its existence, microprocessor architectural design focused on cre-
ating relatively complex, fixed-ISA (instruction-set architecture) machines that
had a lot of features intended to appeal to the broadest possible design audi-
ence.

When systems design began to migrate from
the board level to the chip level, it was a nat-
ural and logical step to continue using fixed-
ISA processor IP in SOCs and to continue to
treat the processor as an expensive resource
to be fully exploited up to its performance lim-
its. Consequently, many system designers be-
came versed in the selection and use of fixed-
ISA processors and the related tool sets for
their system designs and became accustomed
to a single-processor design mentality. Thus,
when looking for processor IP to use in an SOC
design, system designers naturally turned to
fixed-ISA processor cores and generally lim-
ited themselves to one processor per design,
augmenting the processor with hardware to
achieve performance goals. However, when
custom silicon serves as the system substrate,
designers are not limited to one fixed-ISA mi-
croprocessor core as they are with board-level
systems based on discrete, pre-packaged mi-
croprocessors. Configurable processor cores
allow system designers to tailor one or more
microprocessor cores to more closely fit the in-

tended application (or set of applications) on
the SOC. A closer fit means that each proces-
sor’s register set is sized appropriately for the
intended task and that the processor’s instruc-
tions closely fit the intended tasks as well. For
example, a processor tailored for digital audio
applications may need a set of 24-bit registers
for the audio data and a set of specialized in-
structions that operate on 24-bit audio data us-
ing a minimum number of clock cycles.

Processor tailoring offers the SOC design team
several practical benefits:

• Tailored instructions perform assigned
tasks in fewer clock cycles.

• For real-time applications such as audio
processing, the reduction in clock cycles di-
rectly lowers operating clock rates, which in
turn cuts power dissipation.

• Lower power dissipation extends battery life
for portable systems and reduces the sys-
tem costs associated with cooling in all sys-
tems.

• Lower clock rates also allow the SOC to be

July 2008 13



fabricated in slower and therefore less ex-
pensive IC-fabrication technologies.

Even though the technological barriers to freer
ISA selection were torn down by the migration
of systems to chip-level design, system-design
habits are hard things to break. Many sys-
tem designers who are well versed in compar-
ing and evaluating fixed-ISA processors from
various vendors elect to stay with the familiar,
which is perceived as a conservative design
approach. When faced with designing next-
generation systems, these designers immedi-
ately start looking for processors with higher
clock rates that are just fast enough to meet
the new systems performance requirements.
Then they start to worry about finding batteries
or power supplies with extra capacity to han-
dle the higher power dissipation that accompa-
nies operating these processors at higher fre-
quencies. They also start to worry about find-
ing ways to remove the extra waste heat from
the system package. In short, this design ap-
proach is not nearly as conservative as it is per-
ceived; it is merely old fashioned.

Processor Parallelism and “Convenient
Concurrency” for SOC Designs

Many articles, conference papers, and gen-
eral discussions of multicore or multiproces-
sor SOCs (MPSOCs) and associated program-
ming models narrowly focus on particular ho-
mogeneous, multiple-processor architectures.
This narrow focus severely limits the possible
ways in which multiple computing resources
can be used to attack a problem. Such dis-
cussions tend to focus on ”embarrassingly par-
allel” problems such as graphics. Article and
paper authors frequently declare that other big
problems cannot be solved until there are tools
that can automatically partition problems into
processor-sized chunks. However, the truth is
that many design problems are conveniently
concurrent and are easy to attack with multiple
processor cores, though not necessarily using
an SMP (ed: Symmetrical Multi-Processor) ar-
chitecture.

Expanding our architectural thinking be-
yond SMP multicores uncovers at least two

kinds of concurrency –heterogeneous, not
homogeneous– that easily exploit multiple pro-
cessors. Many embedded systems exhibit
such “convenient concurrency.” The first such
system architecture exists in many consumer
devices including mobile phones, portable mul-
timedia players, and multifunction devices. You
might call this sort of parallelism “composi-
tional concurrency,” where various subsystems
–each containing one or more processors op-
timized for a particular set of tasks– are wo-
ven together into a product. Communications
are structured so that subsystems communi-
cate only when needed. For example, a user-
interface subsystem running on a controller
may need to turn audio processing on or off,
control the digital camera imaging functions,
or interrupt video processing to stop, pause,
or change the video stream. In this kind of
concurrent system, many subsystems operate
simultaneously. Yet they have been designed
to interact at only a high level and do not clash.

Figures 1 and 2 are, respectively, block dia-
grams of a Personal Video Recorder (PVR)
and a Super 3G mobile phone that illustrate
this idea. Figure 1 shows seven identified pro-
cessing blocks (shown in gray), each with a
clearly defined task. Figure 2 shows 18 such
processing blocks. In Figure 1, it’s easy to see
how one might use as many as seven proces-
sors (or more for sub-task processing) to divide
and conquer the PVR design problem. Simi-
larly, Figure 2 shows how as many as 18 pro-
cessors might be employed on a Super 3G mo-
bile phone chip.

Figure 1: Personal Video Recorder Block Diagram

14 XOOTIC MAGAZINE



Figure 2: Super 3G Mobile Phone Handset Block
Diagram

Some engineers might criticize this sort of
architecture because of its theoretical ineffi-
ciency in terms of gate and processor count.
Ten, twenty, or more processor cores could,
at least in theory, be replaced with just a few
general-purpose cores running at much higher
clock rates. However, this criticism is mis-
placed. When processors were expensive, de-
sign styles that favored the use of few, big,
fast processors held sway. With the end of
Denard scaling (also called classical scaling)
at 90nm (ed: IC fabrication feature size), tran-
sistors continue to get much smaller at each
IC fabrication node but they no longer get that
much faster and they no longer dissipate much
less power. In fact, static leakage current has
started to climb. As a result, the big proces-
sors’ power dissipation and energy consump-
tion have become unmanageable at high clock
rates and system designers are now being
forced to adopt design styles that reduce sys-
tem clock rates before their chips burn to cin-
ders under even normal operating conditions.

Compositionally concurrent system design of-
fers tremendous system-level advantages:

• Distributing computing tasks over more on-
chip processors trades transistors for clock
rate, reducing overall system power and
energy consumption. Given the continued
progress of Moore’s Law and the end of
Denard scaling, this is a very good engi-
neering trade off.

• Subsystems can be more easily powered
down when not used –as opposed to keep-

ing all the cores in a multicore SMP system
running. Subsystems can be shut off com-
pletely and restarted quickly or they can be
throttled back by using complex dynamic
voltage and frequency scaling algorithms
based on predicted task load.

• Because these subsystems are task-
specific, they run more efficiently on
application-specific instruction set proces-
sors (ASIPs), which are much more area
and power efficient than general-purpose
processors so the gate advantages of fewer
general purpose cores may be much less
than it seems on first consideration.

• Compositionally concurrent system designs
avoid complex interactions and synchro-
nizations between subsystems. Shutting
down the camera subsystem on a compo-
sitional product is a trivial task to perform
in software while making sure that such a
task can safely be suspended in a cooper-
ative, multitasking environment running on
an SMP system can be significantly more
complex. Proving that a 4-core SMP sys-
tem running a mobile phone and its audio,
video, and camera functions will not drop
a 911 emergency call when other applica-
tions are running, or that low priority appli-
cations will be properly suspended when a
high-priority task interrupts, is often a night-
mare of analysis involving “death by simula-
tion.” Reasonably independent subsystems
interacting at a high level are far easier to
validate both individually and composition-
ally.

Pipelined dataflow, the second kind of con-
currency, complements compositional concur-
rency. Computation often can be divided into a
pipeline of individual task engines. Each task
engine processes and then emits processed
data blocks (frames, samples, etc.). Once
a task completes, the processed data block
passes to the next engine in the chain. Such
asymmetric multiprocessing algorithms appear
in many signal- and image-processing appli-
cations from cell-phone baseband processing
to video and still-image processing. Pipelining
permits substantial concurrent processing and
also allows even sharper application of ASIP

July 2008 15



principles: each of the heterogeneous proces-
sors in the pipeline can be highly tuned to just
one part of the task.

For example, Tensilica’s Diamond Standard
388VDO Video Engine (Figure 3) mates two
appropriately and differently configured 32-bit
processor cores with a DMA controller to cre-
ate a digital-video codec subsystem. One pro-
cessor core in the subsystem is configured
as a stream processor and the other as a
pixel processor. The stream processor ac-
celerates serial processing such as bitstream
parsing, entropy decoding, and control func-
tions. The pixel processor works on the video
data plane and performs parallel computations
on pixel data using a single instruction multi-
ple data (SIMD) instruction architecture. Both
processors have different local memory and
data width configurations as required by their
functional partition. This configuration decodes
H.264 D1 main profile video while running at
200 MHz, which easily achieved with 130nm
technology and is even easier to fabricate with
more advanced IC fabrication processes.

A Pentium-class processor decodes H.264 D1
main profile video running at a clock rate of be-
tween 1 and 2 GHz while dissipating several
tens of Watts. A paper presented at the re-
cent ICCE (International Conference on Con-
sumer Electronics) discussed decoding H.264
D1 main profile video using 125% of a 600MHz
TI TMS320DM642 DSP, putting the required
clock rate at 720 MHz. Unfortunately, you
cannot synthesize SOC processors that run at
720 MHz –much less 1 to 2 GHz-using avail-
able ASIC foundry technologies. In this case,
pipeline processing drops the required clock
frequency considerably over the “one big, fast
processor” design approach and allows the

video decoder to be fabricated in a conven-
tional ASIC manufacturing technology.

Figure 3: Tensilicas Diamond 388VDO Video
Engine IP core

Combining the compositional-subsystem style
of design with asymmetric multiprocessing
(AMP) in each subsystem makes it apparent
that products in the consumer, portable, and
media spaces may need 10 to 100 processors-
each one optimized to a specific task in the
product’s function set. Programming each
AMP application is easier than programming
each multithreaded SMP application because
there are far fewer intertask dependencies to
worry about. Experience shows that this de-
sign approach is eminently practical. By using
this approach, you will avoid many of the op-
timization headaches associated with multiple
application threads running on a limited set of
identical processors in an SMP system.

16 XOOTIC MAGAZINE



Printing for

Professionals

Computer Science…
Beyond the Ordinary

‘Tijdens mijn studie kunstmatige intelligentie heb ik mij behalve in informatica verdiept 

in psychologie, filosofie en taalkunde. Die achtergrond komt mij goed van pas bij het 

bedenken van nieuwe software voor Océ. Eindgebruikers weten doorgaans niet welke 

toepassingen ze missen. Ik probeer hun werkwijze te begrijpen om die vervolgens door 

middel van technologie verder te kunnen verbeteren. Dat open denken vanuit de klant 

vind ik erg boeiend.’

Joost Meijer

Ben jij ook op zoek naar een Beyond the Ordinary Job? Kijk dan op www.oce.nl/jobs



Voor meer informatie: WWW.TOPIC.NL 

Bij ons krijg je uitdaging als arbeidsvoorwaarde!

TOPIC Embedded Systems in Best is gespecialiseerd in embedded software ontwikkeling, test-, integratie- & 
configuratiemanagement en hardware design. De bijna 150 gedreven software- en hardware specialisten die behoren tot 
de besten in hun vakgebied, werken bij TOPIC aan state-of-the-art en gevarieerde projecten in de consumentenelectronica, 
medische- en professionele systemen. TOPIC onderscheidt zich door de persoonlijke benadering van medewerkers en 
opdrachtgevers, de kwaliteit en professionaliteit van onze TOPIC’ers en daardoor het niveau van onze projecten. 

Vanwege de succesvolle groei van TOPIC Embedded Systems hebben wij uitdagende functies voor ervaren embedded
software engineers, hardware designers, software testers en configuration managers. Beschik jij over 
minimaal 2 jaar werkervaring in bijvoorbeeld C, C++, C#, Windows, UNIX, UML, RUP, O.O., ISEB, TMap, CMMi, TPI, 
CMSynergy, DSP’s, VHDL, ASIC’s, FPGA’s, real-time en embedded software? En wil jij je blijven ontwikkelen in projecten 
en via ons Personal Improvement Program? En wil je graag arbeidsvoorwaarden op maat? Mail dan snel je motivatie met 
CV naar recruitment@topic.nl of bel eerst met Frank de Roo, manager recruitment, (0499) 336 979.

Gedreven software- of 
hardware engineer?

TOPIC Embedded Systems: 
embedded in your future?
TOPIC Embedded Systems: 
embedded in your future?



OOTIs contribute to the Daedalus system-level design frame work

OOTIs contribute to the Daedalus
system-level design framework

Dorieke Schipper, Andy Pimentel

Eindhoven University of Technology
University of Amsterdam

Advances in silicon processing technology enable integration of ever more
complex systems, containing multiple processing elements on a single chip, as
a result of which the design complexity increases. The successful deployment
of these Heterogeneous Multi-Processor Systems-on-Chip (MP-SoC) requires
a very high design productivity to deal with the growing complexity of the sys-
tem with limited design resources. This design productivity problem has led to
the emergence of system-level design.

Introduction

System-level design offers a higher level of
abstraction, which allows designers to model
and simulate the behavior of complex embed-
ded systems with minimal effort. Furthermore,
the use of architectural platforms facilitates re-
use of IP components. Hiding complexity and
implementation details from the users makes
system-level design very suitable for exploring
architectures in the early design stages, con-
tributing to make better design decisions in an
early stage of the design process. Simulation
and prototyping of architectures plays a crucial
role in matching and selecting candidate archi-
tectures to the requirements, such as execution
speed or cost, of the final product.

System-level design for MP-SoC-based em-
bedded systems however still involves a sub-
stantial number of challenging design tasks.
For example, applications need to be decom-
posed into parallel specifications so that they
can be mapped onto an MP-SoC architecture.
Subsequently, applications need to be parti-
tioned into HW- and SW-parts since MP-SoC
architectures often are heterogeneous in na-
ture. To this end, MP-SoC platform architec-

tures need to be modeled and simulated to
study system behavior and to evaluate a variety
of different design options. Once a good candi-
date architecture has been found, it needs to
be synthesized, which involves the synthesis
of its architectural components as well as the
mapping of applications onto the architecture.

To accomplish all of these tasks, a range of dif-
ferent tools and tool-flows is often needed, po-
tentially leaving designers with all kinds of in-
teroperability problems. Moreover, there typ-
ically remains a large gap between the de-
ployed system-level specifications (or models)
and actual implementations of the system un-
der study, known as the implementation gap.

OOTI workshop 2007: Daedalus

The OOTI workshop 2007 was the last project
assignment before the OOTIs went to the com-
panies for their final projects. The goal of this
three-month workshop was to improve usabil-
ity and integration of the Daedalus system-
level design framework, developed by the Lei-
den Embedded Research Center (LERC) in
cooperation with the University of Amsterdam
(UvA). This framework addresses the chal-

July 2008 19



lenges described above and provides a sin-
gle environment for rapid system-level archi-
tectural exploration, high-level synthesis, pro-
gramming, and prototyping of MP-SoC archi-
tectures.

In Figure 1, the conceptual design flow of
the Daedalus framework is depicted. Here, a
key assumption is that the MP-SoCs are con-
structed from a library of pre-defined and pre-
verified IP components. These include a va-
riety of programmable and dedicated proces-
sors, memories, and interconnects, thereby al-
lowing the implementation of a wide range of
MP-SoC platforms. This means that Daedalus
aims at composable MP-SoC design, in which
MP-SoCs are strictly composed of IP library
components. Starting from a sequential mul-
timedia application specification in C, the KPN-
gen tool allows for automatically converting the
sequential application into a parallel Kahn Pro-
cess Network (KPN) specification. Here, the
sequential input specifications are restricted to
so-called static affine nested loop programs,
which is an important class of programs in,
e.g., the scientific and multimedia application
domains.

result
ESPAMvisualization

XML
saver

XML
saver

DSE 
KPNgen

RDBMS

Sesame

Workflow description

Figure 1: The Daedalus framework

The generated or handcrafted KPNs (the lat-
ter in the case that, e.g., the input specifica-
tion did not entirely meet the requirements of
the KPNgen tool) are subsequently used by
the Sesame modeling and simulation environ-
ment to perform system-level architectural de-
sign space exploration. To this end, Sesame
uses (high-level) architecture model compo-
nents from the IP component library (see the
left part of Figure 1). Sesame allows for
quickly evaluating the performance of different
application to architecture mappings, HW/SW
partitionings, and target platform architectures.

Such exploration should result in a number of
promising candidate system designs, of which
their specifications (system-level platform de-
scription, application-architecture mapping de-
scription, and application description) act as in-
put to the ESPAM tool. This tool uses these
system-level input specifications, together with
RTL (ed: Register Transfer Level, i.e. common
hardware design language abstraction level)
versions of the components from the IP library,
to automatically generate synthesizable VHDL
(ed: standardized hardware description lan-
guage) that implements the candidate MP-SoC
platform architecture. In addition, it also gen-
erates the C code for those application pro-
cesses that are mapped onto programmable
cores. Using commercial synthesis tools and
compilers, this implementation can be readily
mapped onto an FPGA for prototyping. Such
prototyping also allows for calibrating and val-
idating Sesames system-level models, and as
a consequence, improving the trustworthiness
of these models.

The Daedalus framework is targeted to support
MP-SoC architects in industry, as well as small
and medium-sized enterprises. However, the
Daedalus framework itself is still in develop-
ment and at the start of the OOTI-project the
three main tools (KPNgen for generating KPNs
from ‘C’ code, Sesame for design space ex-
ploration and simulation, and ESPAM for gen-
erating synthesizable VHDL) were only provi-
sionally connected. Installing the framework or
setting up an experiment could only be done
by a software expert with extensive knowledge
about the tools used within Daedalus.

The main goal of the OOTI workshop was to
build a framework to make the tools acces-
sible for the user, who is not a software ex-
pert, to do system-level design of MP-SoCs. A
second goal was to allow different tool flows
to be composed, such that newly developed
tools can easily be integrated into the Daedalus
framework. A non-software expert should be
able to set up and configure a complete experi-
ment, running from a C-application to a working
FPGA prototype.

20 XOOTIC MAGAZINE



Results

During the OOTI workshop a couple of im-
provements have been made to the Daedalus
framework and several supporting tools have
been added to improve the user-friendliness,
flexibility and deployability of the framework.
Key improvement is the new notion of a con-
figurable tool flow, solving important interoper-
ability issues and improving flexibility; thereby
making the Daedalus environment ready for in-
tegration of new tools as well as for customiza-
tion of the design flow.

The design flow (or tool flow) in Daedalus
is composable and constructed from design
flow blocks. These design flow blocks, which
are illustrated as the dashed boxes in Fig-
ure 2, are the tools that take part in the de-
sign flow together with their input- and out-
put descriptions. The latter descriptions, il-
lustrated by the grey boxes in Figure 2, pro-
vide information about what input/output data
a tool consumes/produces and from/to where
it reads/writes this data. A design flow is de-
scribed as a composition of the design blocks.
For example, Figure 2 shows a design flow
which includes a visualization block to graph-
ically show Sesame’s design space exploration
results and which stores both these results and
ESPAM’s prototyping results in a database us-
ing the so-called XML saver tool. Evidently, this
composability of the design flow allows for eas-
ily adding new design steps to a design pro-
cess, or to customize design flows for specific
application domains.

Pµ

Pµ Pµ FPGA
specification

specification

specification
System−level

MemMem

MP−SoC

Gate−level

RTL

Xbar

HW IP

V
al

id
at

io
n 

/ C
al

ib
ra

tio
n netlist

Platform
in VHDL
IP cores Auxiliary

filesprocessors
C code for

in XML
Platform spec.

in XML Network in XML
Kahn Process

Automated system−level synthesis:

RTL synthesis: commercial tool, e.g.

Mapping spec.

System−level architectural exploration: Sesame

ESPAM

Xilinx Platform Studio

Parallelization
KPNgen

Sequential
program in C

Models
RTL

Models
High−level

IP Library

Figure 2: A Daedalus design flow

Second, a database is added to the Daedalus
framework, storing the settings and results
of every experiment. The Oracle Berkeley
DB XML relational database management sys-
tem has been chosen to be integrated into
Daedalus, because most design information,
as well as experimental results, is described
using XML-based descriptions, making a na-
tive XML-database the most suitable choice.
Enough information is stored to completely re-
produce past experiments. Furthermore, a
user interface is developed to allow the user to
easily search and browse experimental results.

The third major addition to the Daedalus frame-
work, developed during the OOTI workshop, is
a separate FPGA control and monitoring tool,
including a configuration manager, an execu-
tion control panel, and an on-line monitoring
console. The VHDL, generated by ESPAM, is
synthesized using commercial synthesis tools
and compilers. The control and monitoring tool
can be used to evaluate these FPGA-based
prototypes of MP-SoCs. The tool is designed
in such a way that users unfamiliar with FPGA
prototyping boards can perform experiments to
improve the MP-SoC design as a final step in
the design process.

Daedalus in business

Recently, a project has been initiated to-
gether with the Dutch SME Chess B.V. to put
Daedalus to work in a real-life situation. Goal
of the project is to employ Daedalus to develop
a still image compression system for very high
resolution images. Chess B.V. is a company
that provides image processing solutions for
customers that build industrial process moni-
toring and medical appliances. With respect
to this, the still image compression systems for
different customers have to meet different per-
formance and cost requirements.

Daedalus makes it possible to evaluate a large
range of candidate designs in a matter of days,
yielding valuable information about the cost,
design time, space, performance, etc. of the
different candidate designs. Promising can-
didates can be evaluated in more detail us-
ing the automatically generated FPGA proto-

July 2008 21



type and Daedalus control and monitoring tool.
Daedalus thereby contributes to finding the
best solution for every single customer.

Conclusion

During the OOTI workshop 2007, OOTIs have
gained experience with system-level design
of MP-SoCs and the design challenges faced
when building large, complex tool chains to

support system-level design. The main ob-
jective of the workshop was to improve the
user-friendliness, flexibility and deployability of
the Daedalus system-level design framework.
Thanks to the OOTI contribution, Daedalus can
now be employed in a real-life situation, where
it provides MP-SoC designers the opportunity
to make important design decisions based on
robust simulation results, in an early stage of
the design process.

22 XOOTIC MAGAZINE



Multi-Processor Programming

Multi-Processor Programming for
Embedded Systems

Andreas Hansson, Benny Åkesson, Andrew Nelson and Jef van Meerbergen

Eindhoven University of Technology
Philips Research Laboratories, Eindhoven

This article discusses the structure of an advanced practical course on how to
program multi-processor embedded systems. Programming of multi-processor
embedded systems brings many challenges compared to software develop-
ment for desktop computers, mainly due to differences in the processor archi-
tecture and tooling, the functionality and interaction with the memory system,
and how the programmer is exposed to the parallelism in the system.

Introduction

Compilers and tooling for embedded proces-
sors are typically less forgiving than those of
common desktop processors, and the proces-
sors have tight area and power budgets, which
often lead to functionality such as floating-point
support being left out. Additional complications
arise as the embedded programmer is exposed
to the memory architecture. The processors
often lack caches and require explicit memory
management. Moreover, the memory is of-
ten distributed, with non-uniform sizes and ac-
cess latencies. It is also common that the pro-
cessors do not run an operating system, and
hence do not have memory management func-
tions or a file system. The low-level view of the
memory system enables the designer to effi-
ciently map algorithms to the platform, but re-
quires detailed knowledge about the architec-
ture.

Despite the difficulties in porting an applica-
tion to an embedded processor, the biggest
challenge that faces the embedded program-
mer is typically to exploit the parallelism of the
system. Most programmers are used to se-
quential languages, like C, and are unfamiliar

with parallel programming. The starting point is
therefore often an algorithm, implemented as a
sequential program, that has to be partitioned
into tasks and the tasks mapped to processors.
Since the algorithm is distributed, the program-
mer also has to solve the task of communica-
tion and synchronisation between tasks.

The course Embedded Systems Laboratory,
given by the Electronic Systems Group at Eind-
hoven University of Technology, aims to famil-
iarise students with the aforementioned issues.
The goal of the course is to teach how pro-
gramming for embedded multi-processor sys-
tems and ordinary desktop computers differ.
Students furthermore learn how algorithm im-
plementation, processor synchronisation and
communication, and memory mapping affect
the quality of an application executing on mul-
tiple processors. The course is project based
and the assignment concerns mapping a JPEG
decoder on a multi-processor platform, about
which more presently.

Assignment starting point

The application used in the course is a fully
functional JPEG decoder written in ANSI C.

July 2008 23



The decoder is to be mapped to the hardware
platform depicted in Figure 2. The architec-
ture consists of three uniform Silicon Hive [1]
Very Large Instruction Word (VLIW) proces-
sor cores, a large off-chip SRAM and a frame
buffer for video output. The different compo-
nents are interconnected by an instance of the
Æthereal Network on Chip (NoC) [2]. In addi-
tion, a general-purpose host CPU is attached
to the system. Next, we give a brief introduc-
tion to the concepts of JPEG decoding, and to
the different building blocks of the architecture.

Application

Decoding a JPEG image is a non-trivial task
involving similar steps as many other media
codecs, such as MP3, AAC, and H264. The
core of all the aforementioned standards is a
discrete cosine transform, that transforms data
into the frequency domain. This allows pruning
of frequencies to which humans are less sen-
sitive. The formats are hence lossy, but enable
a trade-off between file size and signal quality.
To achieve a good compression ratio, however,
the transformation into the frequency domain is
combined with other techniques, like run-length
encoding. The JPEG decoder can be gener-
alised into three main decoding stages, shown
in Figure 1: Variable Length Decoding (VLD),
Inverse Discrete Cosine Transform (IDCT) and
Colour Conversion (CC).

Sampling
Down-

DCT
Forward

Transform
Color

EncodingQuantisation

Decoding
Quantisation

De-
DCT

Inverse
Sampling

Up-
Transform

Color

JPEG dataRaw data

IDCTCC VLD

Figure 1: JPEG encoding and decoding.

The VLD decodes the variable-length encoded
JPEG data, dequantises it and arranges it into
blocks of 8x8 values, referred to as minimum
coded units (MCU). The MCUs initially contain
frequency data, but are transformed from the
frequency domain to the pixel domain, and up-
scaled if necessary, by the IDCT step. After this
transformation, the blocks contain image data

in the YCbCr colour format that is converted to
RGB in the CC step.

The JPEG decoder is chosen for the course as
it offers a manageable amount of code to fa-
miliarise with. At the same time, the decoder
retains the technical complexities of its audio
and video counterparts, thus giving the appli-
cation good educational value. The decoder
additionally has the benefit of being familiar to
the students and fun to work with, as the re-
sults can be presented on a screen attached to
the actual hardware platform.

Hardware platform

The platform used in the course builds on the
concept of using multiple distributed computa-
tional and storage resources, interconnected
by a scalable NoC. Silicon Hive provides their
low-cost, low-power domain-specific VLIW pro-
cessing cores, and NXP provides the intercon-
nect fabric. The students hence work with
industrially relevant intellectual property com-
ponents. Using this type of embedded plat-
form in the course is representative for signal-
processing architectures where low power, and
support for many features and standards is im-
perative. A complete architecture instance is
mapped to a Xilinx Virtex4 LX-160 FPGA. The
instance runs in 48 MHz, occupies roughly 7
Mgates, and contains: three VLIW cores, a
host CPU, a central memory, a frame buffer,
and a NoC that ties it all together. The FPGA
is available in the classroom during the labora-
tory sessions, and it is possible for students to
work remotely between sessions.

The Silicon Hive VLIW cores are customis-
able, making it possible to adapt the costs and
the performances of the various computation
nodes to a given application, as advocated
in [3,4]. For the course, we use a simple, three-
issue-slot architecture, without a floating-point
unit, with a single multiplier and Load Store
Unit (LSU). The cores use a memory-mapped
architecture and have a master interface to en-
able reads and writes to memories external to
the processor. As shown in Figure 2, every
processor also has its own private instruction
and data memory. Having memory distributed

24 XOOTIC MAGAZINE



VLIW

SRAM

Host CPU

Video I/O

NoC

SW tasks

Streaming API

Scheduler

HW Abstraction Layer

Circular buffers

Buffer administration

Private data

memory
Data

Bus I/O

memory
Instruction

Streaming I/O

VLIW core

Figure 2: Architecture template.

over the different processing devices provides
higher bandwidth with lower latency, which re-
sults in a higher performance at a lower power
consumption [5]. The memories are also ac-
cessible through a slave port on the proces-
sor’s bus interfaces, forming a distributed mem-
ory together with the dedicated memory tiles.
The challenges that arise due to the selected
processor architecture are: 1) the application
must use fixed-point arithmetic, 2) multiplica-
tion and load/store operations compete for the
same instruction slot, 3) the application must fit
in a local memory of 32 kbyte (which is chosen
to just barely fit the complete JPEG decoder),
4) the processor core has no caches and re-
quires explicit memory management.

As seen in Figure 2, the system contains not
only VLIW processing cores, but also a host
CPU. The host is a general-purpose proces-
sor that is responsible for the initialisation and
orchestration of the hardware resources. Al-
though the host processor is typically part of
the SoC, e.g. like in the IBM Cell [6], we choose
to let the host interface with the system via
USB, thus allowing interaction with an exter-
nal computer. Together with an extensive set
of system libraries, this enables the students
to use their own PCs as host CPUs during the
labs.

In addition to the 32 kbyte of data memory in
each core, a central memory tile, here after re-
ferred to as external memory, provides 8 Mbyte
of SRAM. While being significantly larger, the
external memory, however, has an access time
an order of magnitude larger than the local
memories. This is due to the traversal of the
NoC, and the sharing of the memory read and
write port. The platform instance has only one

external memory, as is commonly the case, ei-
ther for cost reasons or due to a limited number
of pins [7]. In addition to the background mem-
ory, the cores can also write to a frame buffer,
where a designated display controller presents
the contents on a DVI output port. This func-
tionality is used during the laboratory sessions
to get immediate visual feedback of the results.

All the aforementioned hardware blocks are
physically interconnected by the Æthereal
NoC [2]. In Æthereal, the different master and
slave interfaces are logically interconnected by
connections. A connection can be seen as vir-
tual wires, offering a certain bandwidth and la-
tency. Together, a set of connections forms a
use-case, which acts as a virtual on-chip in-
frastructure. Network resources are allocated
for a number of use-cases, using the UMARS
tool [8], and it is left as an exercise for the
students to choose an appropriate use-case
for their specific JPEG decoder implementa-
tions. This involves determining which cores
need to communicate and characterising their
bandwidth and latency requirements. There
are also use-cases where only certain cores
can access the external memory.

Tools and support libraries

The Silicon Hive cores are supplied together
with a retargetable compiler, assembler and
linker, as well as a complete system develop-
ment environment. This enables the developer
to quickly implement and debug applications,
evaluate e.g. memory footprint and instruction
schedule, and thus decide on mapping to pro-
cessors and memories.

In the development environment, a number

July 2008 25



of refinement steps are possible, going from
fast checking of the functional correctness, to
cycle-accurate simulation. First, all code is
compiled with gcc, to verify that the algorithm
is working for the supplied set of reference im-
ages. Second, the code that is to be run on the
cores is compiled with hivecc, but not sched-
uled. This enables the programmer to generate
code with instruction semantics of the specified
core. Third, the compiled code is scheduled
to maximise Instruction Level Parallelism (ILP),
and the programmer thus gets a complete view
of the utilisation of the core’s resources, i.e. the
register files and interconnect. In this step, the
tools also provide feedback about memory us-
age, instruction slot scheduling, and detailed
profiling information. The fourth and last step
uses the FPGA, with the student’s computer
acting as a host. The host then loads the mi-
crocode to the embedded cores on the FPGA
and starts the execution.

The availability of development tools and sup-
port libraries remove much tedious and error-
prone work, and thus enable the students to
focus on solving the actual assignment.

Assignment overview

The assignment is to map the JPEG applica-
tion on the presented hardware platform. The
students work in design teams with four mem-
bers. Effort is made to ensure that all groups
are multi disciplinary and multi cultural and
hence contain students with different educa-
tional and cultural backgrounds. After an initial
week of introductory exercises of tutorial na-
ture, the teams assign roles with different re-
sponsibilities to their members. The four roles
are: 1) application expert, 2) architecture ex-
pert, 3) embedded programming expert, and
4) group leader. The task of the application ex-
pert involves learning the details of the JPEG
decoding algorithm, and to identify the impor-
tant functions in the code and their interfaces.
The architecture expert focuses on the details
of the processing cores, network-on-chip and
memories. The embedded programming ex-
pert learns how to port and upload code to the
embedded VLIW core, and how to use the sys-

tem support libraries. Lastly, the group leader
is responsible for dividing the work among the
members, reporting the team progress, and
helping the team wherever needed.

To pass the course, each team has to present
a functionally correct implementation of the ap-
plication executing on a single core and at least
two parallel implementations. Each team fur-
thermore has to deliver a report explaining their
solutions and benchmarking results, showing
what they have learnt during the course. Stu-
dents are graded individually and must hence
also present their personal contributions to the
group during an oral exam.

The project is carried out in three phases: 1)
porting the application to execute on a single
core on the target platform, 2) parallelising the
application to use multiple cores, and 3) op-
timising the solutions to reduce the decoding
time. These steps are discussed further in the
subsequent sections.

Porting the application

The JPEG application is distributed as sequen-
tial C code that executes on a normal desk-
top computer. The first challenge of the design
teams is to port the code to execute on a single
VLIW core. The major issues to solve involve
memory management, and handling of console
and file I/O.

No standard library function is provided for
dynamic memory allocation, since the mem-
ory architecture is non-uniform, creating mul-
tiple placement options. Memory allocations
are hence done statically, and the program-
mer determines if a particular variable should
be mapped to the limited amount of faster local
memory of the core, or to the larger but slower
external memory. A challenge in this step is
that statically allocating arrays requires algo-
rithmic knowledge from the programmer, since
they must be dimensioned for the worst case.

The application makes rich use of the con-
sole to print debug information in case there
is something wrong in the implementation or
the encoded image. The architecture has no
means of outputting this information, since it

26 XOOTIC MAGAZINE



does not have a console.

The original JPEG decoder uses file system I/O
to read the encoded bit stream and to write the
decoded image. However, the provided archi-
tecture does not have a file system. Instead,
the core must read the encoded image from
the external memory, which is the only memory
large enough to store it, and write the decoded
image to the frame buffer. The host is used
to transfer the encoded image from the file to
the external memory, which requires familiar-
ity with the system support libraries for com-
munication between the host application and
the SoC. The decoded image is also written
back to external memory during development,
allowing the host application to read the output
and compare to a reference image that was de-
coded before porting the code. Automating this
procedure allows bugs introduced during port-
ing to be discovered quickly.

Parallelising the application

After successfully porting the application to the
target platform and performing initial bench-
marks, the design teams proceed by paral-
lelising the application to make use of multi-
ple cores. As previously mentioned, the as-
sessment criteria require each group to imple-
ment and benchmark at least two different par-
allelisations. The two most common solutions
involve exploiting data parallelism by allowing
multiple cores to work on different parts of the
image, and functional parallelism where the de-
coding functions are mapped to the different
cores. Many variations of these solutions have
been explored during the course, including hy-
brid versions that aim to combine the best of
both. In this article, we limit the discussion to
the two basic solutions, which are presented
next.

Data parallelism

The idea of a data parallel implementation of
the application is that multiple cores are as-
signed to decode different parts of the image.
A benefit of this approach is that very few

changes are required to the ported code exe-
cuting on a single core. All cores execute the
same program, but use a unique identifier to
determine which part of the image to decode.

The image can be divided among the cores ac-
cording to different strategies that distribute the
complexity of the image differently among the
cores. This is illustrated in Figure 3 where the
image is partitioned among three cores accord-
ing to the different shades of grey. Dividing the
image in three horizontal slices, as done in the
left part of the figure, would create an unbal-
anced load in a scenic picture with a blue sky in
the top, since significantly less computation is
required by the IDCT for this part of the image.
Another strategy that is better in this respect
is tiling, shown in the right part of the figure,
where a core decodes every third MCU block.

Figure 3: Strategies for data partitioning

The main drawback with the data parallel JPEG
decoder is that the VLD is inherently sequen-
tial, and it is not possible to know exactly where
a block begins without decoding the previous
ones. This implies that all cores must read the
encoded image from external memory and per-
form the VLD, although the IDCT and colour
conversion is skipped if the current MCU block
does not correspond to its assigned part of
the image. Increasing the number of cores
hence creates additional contention for the ex-
ternal memory, limiting the scalability of this ap-
proach. Note that the partitioning strategy to
the left in Figure 3 only requires the first core
to read 1/3 of the image from external memory,
and the second core 2/3, while the last core
must read all of it. This can be compared to the
tiling strategy on the right in the figure, which
requires all cores to read the entire memory,
increasing memory contention.

July 2008 27



Functional parallelism

In this solution, the decoding functions are
mapped to the different cores, creating a
pipeline where an MCU block is processed by
all the cores in sequence before decoding is
complete and it is written to the frame buffer.
An important challenge is to determine how
to partition the functions among the different
cores to get a balanced load and to minimise
inter-core communication. The cycle-accurate
simulation model of the VLIW core provides
profiling information containing execution times
and number of invocations of the different func-
tions. Although this information is very helpful
when deciding how to split the functions be-
tween the cores, it comes with the assump-
tion that communication is instantaneous and
that all memory accesses take one cycle. This
information should hence be used with ex-
treme care and must be validated on the actual
FPGA implementation. A common way to split
the decoder is according to the three stages,
VLD, IDCT, and CC that were previously ex-
plained. This partitioning has the benefit of pro-
viding clear interfaces between the functions
where only frequency blocks and pixel blocks
are communicated between the cores.

A difficulty with a functional partitioning is that
different pictures place very different computa-
tional requirements on the functions in the de-
coding algorithm. Figure 4 shows the decod-
ing time required for the VLD, IDCT, and CC,
respectively, on a single core. The two im-
ages are both XGA resolution (1024 x 768), but
Noise contains a lot of high frequency informa-
tion and has a size of 748 KB, whereas Quiet
contains mostly uni-coloured MCUs and occu-
pies only 53 KB. Note that for the largely uni-
coloured picture, the colour conversion takes
more than one third of the time. Conversely, for
an image with a lot of detail, the VLD requires
almost two thirds of the time. This shows that
it is extremely difficult to partition the decoder
in a way that creates a good balance between
the cores for all pictures.

 0

 2

 4

 6

 8

 10

Noisy Quiet

D
ec

od
in

g 
tim

e 
(s

)

Input image

CC
IDCT
VLD

Figure 4: Single-core profiling.

Communication between the cores is done us-
ing the C-HEAP protocol [9], provided with the
hardware platform. C-HEAP uses logical cir-
cular FIFOs of programmable size that are al-
located in the local memories of the cores.
Communication is blocking and reading from
an empty FIFO or writing to a full FIFO tem-
porarily causes a core to stall. The sizes of
the FIFO buffers hence affect the throughput
of the application, resulting in a trade-off be-
tween memory usage and performance. Com-
munication is structured such that a producing
core writes into the memory of a consuming
core. This is because writes are posted, while
a reading core blocks until a response has ar-
rived. Local reads and remote writes hence re-
duce the load on the interconnect and provides
increased performance. Using C-HEAP for all
communication has the benefit that it is possi-
ble to measure how much time a core spends
waiting for another by instrumenting it with a
few counters. This allows the load balance of
the partitioning to be verified on the actual sys-
tem with real communication and memory ac-
cess latencies.

Compared to a data parallel implementation,
the functional partitioning is scalable in terms
of memory requirements. The cores only have
a subset of the decoding functions and hence
require less instruction memory. There is fur-
thermore only a single core reading from exter-
nal memory, reducing contention. A drawback
of this approach is that it is difficult and time
consuming to create a good load balance. Ad-
ditionally, the partitioning has to be reconsid-
ered if the platform architecture or software is
modified, as this may cause the current bottle-

28 XOOTIC MAGAZINE



neck to shift.

Optimising the decoder

Once a solution is functionally correct, an itera-
tive optimisation and benchmarking phase be-
gins to improve its quality. In this section, we
elaborate on the benchmarking procedure and
optimisations for a decoder executing on both
a single core and on multiple cores.

Benchmarks

The teams are encouraged to continuously
evaluate their designs through quantitative
benchmarks throughout the development pro-
cess. This allows them to directly see the im-
pact of design decisions on quality, and learn
about the trade-offs involved. The benchmark-
ing procedure is standardised by a committee,
comprised of representatives from all design
teams. This ensures that all teams are familiar
with the procedure, and that their results are
comparable. The standardised benchmarks
consider two aspects of embedded systems
being performance, in this case decoding time,
and memory requirements.

Decoding time is measured by starting a timer
on the host after uploading the encoded JPEG
image to the external memory. After starting
the timer, the host starts the three cores and
waits until all of them have completed. A ben-
efit of this benchmarking method is that it is
easy to implement, although a drawback of the
approach is that the time required for the host
to start the cores and to detect that they fin-
ished execution is captured by the measure-
ment. Since the host processor is connected
via USB, this overhead may add up to a sec-
ond to the decoding time. Benchmarking the
memory requirements of a solution is simple,
as the required amount of instruction and data
memory is output by the tooling for every core.

Optimisations for a single-core decoder

The optimisation process is guided by profiling
the code using the previously mentioned cycle

accurate simulator. Profiling helps identifying
functions that are called often or requires a lot
of time to execute, which indicates that they
may be good candidates for optimisation.

Optimisations targeting the single core decoder
can be categorised as: 1) algorithmic short
cuts, 2) adaptations to fit with the computa-
tional cores, and 3) adaptations to fit better
with the communication infrastructure. The first
category involves using knowledge about the
JPEG decoding algorithm to speed up decod-
ing, such as throwing away higher frequency
components, or exploiting common cases in
the image format. The second category con-
cerns making the computation more efficient by
adapting it to the processor core architecture to
get a more efficient instruction schedule. The
third category considers rewriting the code to
reduce the number of memory accesses. For
the first category, the programmer must have
deep insight into the JPEG algorithm. The lat-
ter two categories require the programmer to
be intimately familiar with the target architec-
ture and tooling.

The most influential algorithmic short cut in
JPEG decoding is that of IDCT-bypassing. That
is, when an MCU is uni-coloured and does not
contain any frequency components, the IDCT
can be skipped. The short cut does not com-
promise the result, and in the case of the Quiet
benchmark image, more than half of the MCUs
are skipped. Another important optimisation is
that of detecting common colour encodings in
the CC. Most JPEGs use only two types of en-
coding (4:2:2 and 1:1:1), and by implementing
special CC functions for these common cases,
the indexing in the CC is greatly simplified.

There are many opportunities to improve the
JPEG decoding time by exploiting knowledge
of the processor core architecture. One of
the major adaptations is to replace the given
Loeffler IDCT with Chen-Wang IDCT. The lat-
ter uses fewer multiplications and is better
matched to the VLIW in question. By further
adapting the code to use variables rather than
arrays, the load on the register banks increase,
but extra transfers to memory are avoided, re-
sulting in a net gain. Another technique, useful
in the CC, is to use look-up tables with precom-

July 2008 29



puted values, and thus avoid a multiplication
and a shift operation.

The last category of optimisations targets the
memory architecture, aiming to reducing the
number of accesses to remote memories, and
to use the accesses more efficiently. A signifi-
cant speed-up is achieved by using local mem-
ory rather than the shared external memory (or
the memory of another core). The size is, how-
ever, very limited, and not all data will fit in
the local memories. To use the remote mem-
ory accesses more efficiently, the code must
be adapted to read/write whole words rather
than sub-words, such as characters. The lat-
ter optimisation, for example, reduces the time
required for the VLD by almost two times.

Optimisations for parallel decoders

The optimisations used for the single-core de-
coder are also applicable for the parallel de-
coders, but it is quickly noted by the students
that the speed-ups observed for the single-core
solution are not reflected when they are ap-
plied to code that runs on multiple cores. This
demonstrates the influence that communica-
tion (and not only computation) has on the de-
coding time.

There are refinements of data parallel im-
plementations, addressing the memory con-
tention. One such refinement involves en-
suring that only one core performs the VLD
on a particular line and shares the important
results with the other cores through a struc-
ture in memory, allowing them to skip the line.
This optimisation reduces the decoding time for
both noisy and quiet with approximately 15%.
A drawback of this refinement is that additional
memory (approximately 2 kbyte) is required to
store the information shared by the cores. The
optimisations for the functionally pipelined ver-
sion mostly considers moving smaller blocks of
code between the cores to improve the load
balance, or reducing the amount of data that
is communicated between the cores.

Example results

The single core implementation requires
roughly 16 seconds to decode the noisy pic-
ture after initial porting. After the aforemen-
tioned optimisations, the decoding time is al-
most cut in half to 9 seconds. The data parallel
and functionally pipelined version requires 7.2
and 7.8 seconds, respectively, to decode the
noisy picture after all optimisations have been
applied. This shows that parallelising the JPEG
decoder improves performance, although the
benefits are far away from the theoretical max-
imum. The single core and the parallel so-
lutions all decode the simpler quiet image in
about the same time, around two seconds, in-
dicating that the benefits of parallelisation are
diminishing as the amount of computation is
reduced and communication becomes a domi-
nant factor. One of the likely remaining bottle-
necks is that burst behaviour could not be fully
exploited.

The memory requirements for the different im-
plementations are shown in Table 1. Note that
both multi-core solutions use far more mem-
ory than the single core. Especially data par-
allel, which is essentially a triple single core,
although with some specific optimisations. The
functionally pipelined implementation has in
comparison been greatly reduced in size, since
each core does not have to contain the full
JPEG decoder.

Table 1: Memory footprint for the different
implementations.

Data mem-
ory (bytes)

Instruction
memory
(bytes)

Single core 2910 19908
Data parallel 3 x 3446 3 x 26894

Pipelined 5670 + 1724
+ 2504

23380 +
7204 + 4438

Conclusions

In the Embedded Systems Laboratory, the stu-
dents get to familiarise with many of the difficul-
ties involved in programming multi-processor
embedded systems. By the end of the course,
they have successfully ported a JPEG decoder

30 XOOTIC MAGAZINE



to the target multi-processor platform and eval-
uated a range of parallelisations on an ac-
tual FPGA instance. The assignment presents
many challenges, ranging from working in a
group to choosing the right compiler directives
for a critical piece of an algorithm.

Embedded Systems Laboratory ran for the
second time in 2008 with 31 participating mas-
ter students, both from the Electrical Engineer-
ing and International Masters programme on

Embedded Systems. The course concepts
have furthermore been exported to the Techni-
cal University of Delft, where a similar course
was given by the Computer Engineering de-
partment for the first time this year. Next year,
we aim to introduce even more challenges in
the assignment, and prepare another class of
students for the problems we are facing with
the wide-spread adoption of multi-processor
systems.

References

[1] Silicon hive, Available from: http://www.siliconhive.com, Silicon Hive, 2007.

[2] K. Goossens, J. Dielissen, and A. Rădulescu, The Æthereal network on chip: Concepts, architectures,
and implementations, IEEE Des. and Test of Comp., 2005.

[3] A. Jerraya, A. Bouchhima, and F. Petrot, Programming models and HW-SW interfaces abstraction for
multi-processor SoC, Pr. DAC, 2006.

[4] C. Rowen and S. Leibson, Engineering the Complex SOC: Fast, Flexible Design with Configurable
Processors. Prentice Hall PTR, 2004.

[5] D. Soudris, N. D. Zervas, A. Argyriou, M. Dasygenis, K. Tatas, C. Goutis, and A. Thanailakis, Data-
reuse and parallel embedded architectures for low-power, real-time multimedia applications, IEEE
International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), pp.
243254, 2000.

[6] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and D. Shippy, Introduction to the Cell multipro-
cessor, IBM Journal of Research and Development, vol. 49, no. 4/5, 2005.

[7] J. Leijten, J. van Meerbergen, A. Timmer, and J. Jess, Prophid: a platform-based design method,
Journal of Design Automation for Embedded Systems, vol. 6, no. 1, pp. 537, 2000.

[8] A. Hansson, M. Coenen, and K. Goossens, Undisrupted quality-of-service during reconfiguration of
multiple applications in networks on chip, in Proc. DATE, 2007.

[9] A. Nieuwland et al., C-HEAP: A Heterogeneous Multi-Processor Architecture Template and Scalable
and Flexible Protocol for the Design of Embedded Signal Processing Systems, Des. Autom. for Emb.
Syst., vol. 7, no. 3, 2002.

July 2008 31



Meer dan 50 vacatures bij dé professionals in embedded software!

TASS HAALT HET BESTE UIT DE BESTEN

jobs.tass.be
jobs.tass.nl




