
Component Technology

Component Based Development
M. Huizing

The most used buzzword in the IT-world last year, was probably component,
often used as in the combination component-based development (CBD). In this
article, I will try to illuminate what components are, why it is a buzzword, what
we can expect from it, and what is needed to apply components. In this context,
the problems arising from the application of components will be mentioned.

Components and their promise

First, then,what arecomponents?Of coursethere
area lot of definitionsaround,but oneof themost
useful is this: software components are (binary)
units of independent production, acquisition, and
deployment that interact to form a functioning sys-
tem.

So, typically, componentsare rathersmall but in-
dependentpartsof a system.But a largesystemas
a whole canbe seenasa componentaswell. It is
importantto recognizecomponentsareruntimeen-
tities. They exist while the systemis running, in
fact: the systemconsistsof components,and is a
componentitself. Componentsarenot just design
entitieslike classesin object-orientationare.

As saidearlier, at his momenteverybodyis raving
aboutcomponents,andseemsto expectalot from it.
Whatis expectedform components,andwhy is ev-
erybodythat enthusiast?The expectedadvantages
to be derived from the applicationof components
canbesummarizedasfollows.

1. flexibility
Run-timecomponentscan work independently,
and, if designedproperly, aremuch lessdepen-
dent on their environment (hardware, system-
software, other applications or components).
Therefore,component-basedsystemsare much
moreadaptableandextendablethansystemstra-
ditionally designedand built. Usually, compo-

nentsarenot changed,but replaced.This flexi-
bility is importantin two areas:

a. hardware and system software.
Component-basedsystemsare less sensitive
to changesin the foundation (for example:
theoperatingsystem)thantraditionalsystems.
This results in a more rapid migration from
oneoperatingsystemto another, or from one
DBMS to another. An interestingresultis also
thepossibilityof asystemin a technicallyhet-
erogeneousenvironment.

b. functionality.
Component-basedsystemsareat a functional
level much more adaptableand extendable
than traditional systems,becausemostof the
new functionality canbe reusedsomeway or
anotheror derived from alreadyexisting com-
ponents.

2. reuse
In principle, CBD enablesthe developmentof
componentswhichcompletelyimplementatech-
nical solution or a businessaspect. Suchcom-
ponentscanbe usedeverywhere. Functionality,
beit technicalor businessoriented,hasto bede-
velopedand implementedjust once, insteadof
severaltimes,asis now typically thecase.It will
be clear this is a good thing from the point of
view of maintainability, robustnessandproduc-
tivity.
Of course,this reusecanbe within a company,

January, 1999 5



but alsoover severalcompanies.This will bethe
caseof componentsmadeby third-parties.

3. maintainability
In a component-basedsystema piece of func-
tionality ideally is implementedjust once. It is
self-evident this results in easiermaintenance,
which leadsto lower cost,anda longer life for
thesesystems. In fact, the distinction between
maintenanceandconstructionwill becomevery
vague,andcompletelydisappearaftersometime.
New applicationswill consistfor avery largepart
of alreadyexisting components.Building a sys-
tem will look more like assemblythan really
building. Moreover, the large, monolithic sys-
temsaswe know them,will disappearresulting
in ablurring of thebordersbetweenthesystems.

It is alsousualto mentionthe following pointsas
advantagesof CBD:

4. morerapid development/higherproductivity
of thedevelopers

In principle, CBD will result in a more rapid
developmentof systems,for reasonsof reuse
amongothers. In the long run, this higherpro-
ductivity will be realised.However, in theshort
runthefruits of reusewill besmallerthanthecost
of the introductionof a new way of systemde-
velopment.Furthermore,at his momentreusable
componentsarenot available in sufficient mea-
sure,andon topof thatdifficult to acquire.

5. distribution
CBD makesit possibleto designsystemsfor dis-
tribution(onaLAN, or theInternet,or whatever).
This is in factoneof themainreasonsfor thecur-
renthype.And of course,it is a hugeadvantage.
However, at thismomentdistribution usuallyhas
a high price in performanceandcomplexity, and
a judiciousapplicationof distribution is impera-
tive for thetimebeing.

Problems and pitfalls

Of course,this is a ratherimpressive list of advan-
tages.Are thereany drawbacksor difficultiescon-
nectedto components?As amatterof fact,yes.

To startwith, if you want to usecomponentsto the

best,a properenvironmentis necessary. Of course,
in theory it is possibleto build your own environ-
ment immediatelyon top of the operatingsystem.
But in practice,this is not possible. Furthermore,
oneof the mostpromisingaspectsof components
is reuse,meaningit shouldbepossibleto useagain
a componentmadein anothersituation,possiblyin
anotherenvironment.This impliesstandardization,
andin factthis is themostimportantobstacleto the
full blossomingof CBD at this moment.Standards
areneededregardingthe middleware in which the
componentsaresupposedto work. Middlewarecan
meana lot of things,but what is meanthereis: a
communication layer which enables components to
send higher-level messages to other components, if
needed in a network. Of courseit is openfor dis-
cussionwhat belongsto themiddleware,andwhat
not. For example: shouldtransaction-handling be
partof it? And how aboutpersistence?And soon.

On this field thereare now threecompetingstan-
dards: CORBA from the Object Management
Group, COM/DCOM from Microsoft and Java’s
RemoteMethod Invocation. In fact, thesethree
standardsare not completelycomparableto each
other. CORBA is just a standard, whereas
COM/DCOM is not just a standardbut also an
implementation. CORBA is really language-
independent,COM/DCOMsupposedlyis, andRMI
is partof theJava-standard.A comparisonbetween
thesestandardsis, though interesting,not in the
scopeof thisarticle.

At least as important, but less well known
are the difficulties connectedwith designingfor
component-systems.Therearetwo popularmyths
here.

CBD and legacy

The first myth is especiallypopularin large com-
panieswith a lot of huge,existing systems,the so
called legacy systems. Thesesystemsoften incor-
poratea lot of functionality, which the company
doesn’t want to develop again. On the otherhand,
theexistingsystemsaretechnicallyobsoleteandof-
ten unmaintainable.A possiblesolution seemsto
be to divide the legacy systemin a coupleof func-
tion modules, to wrapthosemodules,andto deploy

6 XOOTIC MAGAZINE



thosemodulesascomponents.Technicallythis is
possible,and in the short run, it can be very use-
ful. And againfrom a technicalpoint of view, these
wrappedmodulesare components.However, the
suppositionis you get the advantagesof compo-
nentsif you call themcomponents.But that is not
true.Legacy systemsaredesignedusingadevelop-
mentmethodwhich is not suitablefor thedevelop-
mentof components.As aresult,thosecomponents
will be much too big to reuse. The inside of the
components will be the sameunmaintainablecod-
ing asit usedto be.So,althoughthesemodulesare
componentsin the technicalsense,the advantages
of CBD will notmaterializeif thisapproachis cho-
sen.

The questionhereis: is it possibleto refactor ex-
isting legacy systemsin sucha way really useful
componentswill emerge? Thereis not a definite
answeryet, but mostexpertsarepessimistic.This
meansthoselegacy systemsmust probablybe re-
placedsomewherein thefuture.

CBD and OO

Theothermyth is: developingcomponentsis easy,
becausecomponentsandobjectsarethe same.So
just useanobject-orientedmethod,andthecompo-
nentswill flourish. Unfortunately, componentsand
objectshave a lot in common,but arenot thesame.

There are at least two challengesconcerninga
methodfor CBD. The first one is: how to design
componentswhichareassafe,secureandrobustas
possible,andarestill lightweight,andeasyto use.
The secondoneis: how to designgenericcompo-
nentswhich areusablein a lot of differentenviron-
ments,andcanbemadespecificfor a concreteim-
plementation.Is thistobedonewith akind of inher-
itance?Or delegation?Or by deriving from generic
patterns?Or acombinationof these?

In the developmentof a system,a lot of entities
areencounteredwhich arein facta combinationof
aspects. For example, if a run-of-the-mill order-
entry systemis developed, somethinglike order
will springup. But in fact this simplenotion turns
out to bea rathercomplex combinationof different
aspects:an ordercanbe seenaskind of financial
asset. An ordermustbe persistent.An ordercan

only be createdby authorizedemployees,so will
haveakind of authorization.An ordermustbeable
to live on a Unix systemandon a NT system.And
so on. All theseaspectsarenot specificto order,
but generic,and will be relevant in other entities
as well. Theseaspectscan be seenas orthogonal
dimensions.Therefore,they will be implemented
in differentcomponents,which mustbe combined
oneway or anotherto form the order. How is this
to be done? And how are the orthogonaldimen-
sionsto berecognized?How canwe ensurethedi-
mensionsareorthogonal,andremainso?Theseare
someof thequestionsto beansweredby a method
for component-baseddevelopment.

You get the advantages of components if
you call them components, but that is not
true!

Thereis at leastoneelementalreadyrecognizable
in the solution: patterns. Patternsaregenericso-
lutions to problemsoccurringin differentcontexts.
They have alreadyproved usefulin normal object-
orienteddesign,andthis kind of abstractionseems
very useful to solving the genericity problem in
CBD. In a specificsituation,you derive a compo-
nentfrom analreadyderivedandimplementedrole
in a pattern. Componentscanbe coupledto each
otherin a controllableway. But patternsarenot the
only buzzword in this context: aspect-orientedpro-
gramming,adaptive programming,and othersare
investigatedaswell.

Theseissuesareespeciallypressingin the field of
ERP(EnterpriseResourcePlanning)-systems,like
BaanandSAP. At this moment,thesesystemsare
monolithic,but they needto be broken up in com-
ponents.This meansan ERPsystemwill become
a kind of framework in which businesscomponent
canfunction.But how thebusinesscomponentsare
to berecognizedor how theERP-producercanpro-
vide genericbusinesscomponentsis still in veils.
However, it is no wondercompanieslike Baanand
IBM areheavily investingin researchanddevelop-
mentin thisarea.

Of course,a lot of peopleareworking on this, so
methodsfor developing componentsare growing
up at his moment. Usually they arebasedon the

January, 1999 7



existing object-orientedmethods.The UML (Uni-
fied ModelingLanguage)is commonlyused,but as
a standardthe UML just addressesthe setof con-
cepts,thediagramtechniqueandsoon. Thedevel-
opmentmethoditself is not definedby the UML.
And object-orientationis agoodstartingpoint for a
CBD-method,but not sufficient by itself.

In a comparisonbetweenobject-orientationand
component-orientation, what are the similarities
anddifferences?Objectsandcomponentsarecom-
parable,in thefollowing sense;they aresupposedto
encapsulatetheir own statecompletely, andto pro-
videaninterfaceto theoutsideworld. In thecontext
of object-orientationhowever, this is trueduringde-
sign,but very oftennot anymoreduring the imple-
mentation. It is rathercommon(althoughregret-
table)to hagglewith theprinciplesof OO-designin
theimplementation,for examplefor reasonsof per-
formance.In acomponentworld, interfaceoriented
designand also implementationis crucial, and to
someextentenforcedby themiddleware(CORBA,
DCOM,etc).Why?Becauseit is impossibleto pre-
dict thepossibleusesof acomponent.Soin acom-
ponent,interfacedesignis more importantthan it
usuallyis in object-orienteddesign,andencapsula-
tion of thestateis enforced.It is not a surprisede-
sign techniqueslike design-by-contract, usingpre-
andpost-conditionsaregoingthrougharevival asa
resultof theupsurgeof CBD.

Thesamegoesfor thread-securityandthelike: ob-
jectsareusuallynot thread-secure,becausethede-
signerknows (or thinksheknows) how theobjects
are going to be used. In a componentcontext he
cannotbesureaboutthat,andthereforethecompo-
nentshave to besecured.

The main differencebetweena componentandan
object is this: a component is meant to be a run-
time entity, whereas an object is an instance of a
class. Objectsexist atruntime,but classesarereally
designentities.Inheritance(a relationshipbetween
classes)therefore,is a lessusefulconceptin acom-
ponentcontext thanit is in anobject-orientedcon-
text. Becauseof the possibilitiesof call backsand
the difficulties with ensuringthe encapsulationof
thestate,inheritanceis evenproblematicin a com-
ponentcontext. The movementfrom inheritance
basedsolutionsto objectcomposition,messagefor-

wardingand delegation, which was alreadyon its
way in theOOworld, hasgainedspeedin thecom-
ponentworld.

Componentsaredeployed independently, and it is
impossibleto predicthow the componentis going
to be used. As a result,concernsaboutdependen-
ciesbetweencomponents,call backs,components
usingeachother, but belongingto differentthreads,
safetyandsecurity, andsoonaremuchmoreimpor-
tantthanthey arein plain object-orientedmodeling
or design. Seenfrom this perspective, CBD takes
the consequencesof object-orientationto the run-
timeenvironment.

Logistics and organization

There is still anotherfield in which innovation is
needed,andwhich is crucialto thesuccessof CBD.
Thisfield is logisticsandorganization.

Althoughit is possibleto developandreusecompo-
nentswithin just oneorganization,it is self-evident
acquisitionfrom third partiesis averyimportantad-
vantage.But how to acquirethesereusablecompo-
nentsfrom the outside? As always,a balancebe-
tweencostsandbenefitsmust be struck. Nobody
is investingtwo weekstimein searching,evaluating
andacquiringa componentof which the reusewill
yield 2 daystime. So, if (asis thecasenowadays)
thesearchingandsoon of a componentcostsa lot
of time (approximately5 � 8 mandaysfor a small
component!),only big componentswill beacquired
andreused.It is thereforeimperative to shortenthe
time for searching,evaluatingandacquiringcom-
ponents. Only thena real componentmarket will
grow up.

Organizationswhich aresupposedto deploy com-
ponents have now an IT-organization suited to
the developmentandmaintenanceof large, mono-
lithic systems.Obviously, suchan organizationis
not suited for the developmentor use of compo-
nents. Building components(software especially
meantfor reuse,of which it is impossibleto pre-
dict how they are going to be reused)demandsa
more quality-orientedview than normal software-
developmentdoes. And the reuseof components
demandsa thoroughknowledge of how to reuse
components,andwhereto get them. Again a way

8 XOOTIC MAGAZINE



of thinkingwhich is notcommonin themainstream
of softwaredevelopment.

Theseproblemslie alittle bit outsidethescopemost
peopleusewhen thinking and talking aboutcom-
ponents. But they are at the core of the question
whetherCBD will succeedor fail. CBD is not just
anothertechnique,it hasvery strongrepercussions
on thewayof workingof peopleandorganizations.

Conclusion

Component-baseddevelopment has a lot of
promises. But it is not a silver bullet. It will not
solve all the problemsof software development.
And a lot of work hasto be donebeforeCBD is

really possible. Technicalstandardizationis nec-
essary, anda methodsuitedto CBD hasto be de-
veloped. But perhapsthe most immediatebottle-
neck is the organizationandthe logisticsof CBD.
JustusingJava or DCOM or a fancy methodis not
enough;theway IT is organizedhasto bechanged.
And only if that happens,will CBD turn not to be
yet anotherfatamorgana.

Mat Huizing is working for the ICG Group and located
in Cappelle aan de IJssel. He is a specialist in object
oriented design and object oriented modelling, with
emphasis on component based development, heuristics,
and patterns. The ICG Group is a consultancy- and
software-house specialized in CBD and OO.
For more information, you can contact Mat Huizing at:
mat@icgroup.nl

January, 1999 9


