Component Technology

Component Based Development

M. Huizing

The most used buzzword in the IT-world last year, was probably component,
often used as in the combination component-based development (CBD). In this
article, | will try to illuminate what components are, why it is a buzzword, what
we can expect from it, and what is needed to apply components. In this context,
the problems arising from the application of components will be mentioned.

Components and their promise

First, then,what are components?Of coursethere
area lot of definitionsaround,but one of the most
useful is this: software components are (binary)
units of independent production, acquisition, and
deployment that interact to form a functioning sys-
tem.

So, typically, componentsare rathersmall but in-

dependenpartsof a system.But a large systemas
awhole canbe seenasa componentaswell. It is

importantto recognizecomponentgreruntimeen-
tities. They exist while the systemis running, in

fact: the systemconsistsof componentsandis a
componenitself. Componentsare not just design
entitieslike classe$n object-orientatiorare.

As saidearlier at his momenteverybodyis raving

aboutcomponentsandseemdo expectalot fromit.

Whatis expectedform componentsandwhy is ev-

erybodythat enthusiast?The expectedadvantages 2.

to be derived from the applicationof components
canbesummarizedasfollows.

1. flexibility
Run-time componentsan work independently
and, if designedproperly are muchlessdepen-
dent on their ervironment (hardware, system-
software, other applications or components).
Therefore,component-basedystemsare much
moreadaptableandextendablehansystemsra-
ditionally designedand built. Usually compo-

nentsare not changedput replaced. This flexi-
bility is importantin two areas:

a. hardware and system software.
Component-basedystemsare less sensitve
to changesin the foundation (for example:
theoperatingsystem}hantraditionalsystems.
This resultsin a more rapid migration from
oneoperatingsystemto another or from one
DBMS to another An interestingresultis also
the possibility of a systemin atechnicallyhet-
erogeneousnvironment.

b. functionality.

Component-baseslystemsare at a functional
level much more adaptableand extendable
thantraditional systems pecausamost of the

new functionality canbe reusedsomeway or

anotheror derived from alreadyexisting com-

ponents.

reuse
In principle, CBD enablesthe developmentof
componentsvhich completelyimplementatech-
nical solutionor a businessaspect. Suchcom-
ponentscan be usedeverywhere. Functionality
beit technicalor businessoriented hasto be de-
velopedand implementedjust once, insteadof
severaltimes,asis now typically the case.lt will

be clearthis is a good thing from the point of
view of maintainability robustnessand produc-
tivity.

Of course,this reusecan be within a compary,

January, 1999

but alsoover severalcompaniesThis will bethe
caseof componentsnadeby third-parties.
. maintainability
In a component-basedystema piece of func-
tionality ideally is implementedust once. It is
self-evident this resultsin easiermaintenance,
which leadsto lower cost, and a longer life for
thesesystems. In fact, the distinction between
maintenancend constructionwill becomevery
vague andcompletelydisappeanftersometime.
New applicationswill consistfor averylargepart
of alreadyexisting componentsBuilding a sys-
tem will look more like assemblythan really
building. Moreover, the large, monolithic sys-
temsaswe know them, will disappearesulting
in ablurring of thebordersbetweerthe systems.

It is alsousualto mentionthe following pointsas
adwantageof CBD:

4. morerapid development/highemproductivity

of the dewlopers

In principle, CBD will resultin a more rapid
developmentof systems,for reasonsof reuse
amongothers. In the long run, this higher pro-
ductvity will berealised.However, in the short
runthefruits of reusewill besmallerthanthecost
of the introductionof a new way of systemde-
velopment.Furthermoreat his momentreusable
componentsare not availablein suficient mea-
sure,andontop of thatdifficult to acquire.

. distribution

CBD malesit possibleto designsystemdor dis-
tribution (onaLAN, orthelnternet,or whateser).
Thisis in factoneof themainreasongor thecur
renthype. And of coursejt is a hugeadwantage.
However, atthis momentdistribution usuallyhas
a high pricein performanceandcomplity, and
ajudiciousapplicationof distribution is impera-
tive for thetime being.

Problems and pitfalls

Of course this is aratherimpressie list of advan-
tages.Are thereary dravbacksor difficulties con-
nectedo components?As a matterof fact,yes.

To startwith, if youwantto usecomponentso the

XO0OTIC MAGAZINE

best,a properenvironmentis necessaryOf course,
in theoryit is possibleto build your own erviron-
mentimmediatelyon top of the operatingsystem.
But in practice,this is not possible. Furthermore,
one of the mostpromisingaspectof components
is reusemeaningt shouldbe possibleto useagain
acomponeninadein anothersituation,possiblyin
anotherervironment. This implies standardization,
andin factthisis themostimportantobstacleo the
full blossomingof CBD at this moment.Standards
are neededregardingthe middlevarein which the
componentaresupposedo work. Middlewarecan
meana lot of things, but whatis meanthereis: a
communication layer which enables components to
send higher-level messages to other components, if
needed in a network. Of courseit is openfor dis-
cussionwhat belongsto the middlevare,andwhat
not. For example: shouldtransaction-handlg be
partof it? And how aboutpersistencend soon.

On this field thereare now three competingstan-
dards: CORBA from the Object Management
Group, COM/DCOM from Microsoft and Java’s
RemoteMethod Invocation. In fact, thesethree
standardsare not completely comparableto each
other CORBA is just a standard, whereas
COM/DCOM is not just a standardbut also an
implementation. CORBA is really language-
independentCOM/DCOM supposedlys, andRMI
is partof the Java-standardA comparisorbetween
thesestandardss, though interesting, not in the
scopeof this article.

At least as important, but less well known
are the difficulties connectedwith designingfor
component-systemsTherearetwo popularmyths
here.

CBD and legacy

The first myth is especiallypopularin large com-
panieswith alot of huge,existing systemsthe so
calledlegacy systems. Thesesystemsoften incor
poratea lot of functionality which the compary
doesnt wantto develop again. On the otherhand,
theexisting systemsretechnicallyobsoleteandof-
ten unmaintainable.A possiblesolution seemso
be to divide the legag/ systemin a coupleof func-
tion modules, to wrapthosemodulesandto deploy

thosemodulesas components.Technicallythis is
possible,andin the shortrun, it canbe very use-
ful. And againfrom atechnicalpointof view, these
wrappedmodulesare components. However, the
suppositionis you get the advantagesof compo-
nentsif you call themcomponentsBut thatis not
true. Legag systemsaredesignedisinga develop-
mentmethodwhich is not suitablefor the develop-
mentof componentsAs aresult,thosecomponents
will be muchtoo big to reuse. The inside of the
components will be the sameunmaintainablecod-
ing asit usedto be. So,althoughthesemodulesare
componentsn the technicalsensethe adwantages
of CBD will notmaterializeif this approachis cho-
sen.

The questionhereis: is it possibleto refactor ex-
isting legagy systemsin sucha way really useful
componentswvill emege? Thereis not a definite
answeryet, but mostexpertsare pessimistic. This
meansthoselegag/ systemsmust probablybe re-
placedsomevherein thefuture.

CBD and OO

The othermythis: developingcomponentss easy
becauseomponentsand objectsarethe same. So
just useanobiject-orientednethod,andthe compo-
nentswill flourish. Unfortunately componentsand
objectshave alot in common but arenotthe same.

There are at least two challengesconcerninga
methodfor CBD. The first oneis: how to design
componentsvhich areassafe,secureandrobustas
possible,andarestill lightweight, andeasyto use.
The secondoneis: how to designgenericcompo-
nentswhich areusablein alot of differenterviron-

ments,andcanbe madespecificfor a concretam-

plementationlsthisto bedonewith akind of inher

itance?0Or delgyation?Or by deriing from generic
patterns?Or acombinationof these?

In the developmentof a system,a lot of entities
areencounteredvhich arein facta combinationof
aspects. For example, if a run-of-the-mill order
entry systemis developed, somethinglike order
will springup. But in factthis simplenotionturns
outto bearathercomplex combinationof different
aspects:an order canbe seenaskind of financial
asset. An order mustbe persistent. An ordercan

only be createdby authorizedemployees, so will
have akind of authorization An ordermustbeable
to live on a Unix systemandonaNT system.And
soon. All theseaspectsare not specificto order
but generic,and will be relevant in other entities
aswell. Theseaspectsanbe seenas orthogonal
dimensions. Therefore,they will be implemented
in differentcomponentsyhich mustbe combined
oneway or anotherto form the order How is this
to be done? And how are the orthogonaldimen-
sionsto berecognized™How canwe ensurehedi-
mensionsareorthogonalandremainso? Theseare
someof the questiongo be answeredy a method
for component-basedevelopment.

You get the advantages of components if
you call them components, but that is not
true!

Thereis at leastone elementalreadyrecognizable
in the solution: patterns. Patternsare genericso-
lutionsto problemsoccurringin differentcontexts.
They have alreadyproved usefulin normal object-
orienteddesign,andthis kind of abstractiorseems
very useful to solving the genericity problemin
CBBD. In a specificsituation,you derive a compo-
nentfrom analreadyderived andimplementedole
in a pattern. Componentsan be coupledto each
otherin acontrollableway. But patternsarenotthe
only buzzword in this contet: aspect-orientegro-
gramming,adaptve programming,and othersare
investigatecaswell.

Theseissuesare especiallypressingin the field of

ERP (EnterpriseResourcePlanning)-systemdike

Baanand SAP At this moment,thesesystemsare

monolithic, but they needto be broken up in com-

ponents. This meansan ERP systemwill become
a kind of framework in which businesscomponent
canfunction. But how thebusinessomponentsre

to berecognizedr how the ERP-producecanpro-

vide genericbusinesscomponentss still in veils.

However, it is no wondercompaniedike Baanand

IBM arehewily investingin researctanddevelop-

mentin this area.

Of course,a lot of peopleareworking on this, so
methodsfor developing componentsare growing
up at his moment. Usually they are basedon the

January, 1999

existing object-orientedmethods. The UML (Uni-
fied Modeling Language)s commonlyused but as
a standardhe UML just addressehe setof con-
ceptsthediagramtechniqueandsoon. Thedevel-
opmentmethoditself is not definedby the UML.

And object-orientations a goodstartingpoint for a
CBD-method put not sufficient by itself.

In a comparisonbetweenobject-orientationand
component-orientatip what are the similarities
anddifferencesbjectsandcomponent@recom-
parablejn thefollowing sensethey aresupposedo
encapsulat¢heir own statecompletely andto pro-
vide aninterfaceto theoutsideworld. In the context
of object-orientatiomowever, thisis trueduringde-
sign, but very often not arymoreduring the imple-
mentation. It is rathercommon (althoughregret-
table)to hagglewith the principlesof OO-desigrin
theimplementationfor examplefor reason®f per
formance.ln acomponentvorld, interfaceoriented
designand also implementationis crucial, and to
someextentenforcedoy the middlevare (CORBA,
DCOM, etc). Why? Becausét is impossibleto pre-
dict the possibleusesof acomponentSoin acom-
ponent,interface designis more importantthan it
usuallyis in object-orientedlesign,andencapsula-
tion of the stateis enforced.It is not a surprisede-
signtechniquedik e design-by-contrdgc using pre-
andpost-conditiong@regoingthrougharevival asa
resultof theupsuge of CBD.

The samegoesfor thread-securitgndthelike: ob-
jectsareusuallynot thread-securehecausehe de-
signerknows (or thinks he knows) how the objects
are going to be used. In a componentcontet he
cannotbe sureaboutthat,andthereforethe compo-
nentshave to besecured.

The main differencebetweena componentandan
objectis this: a component is meant to be a run-
time entity, whereas an object is an instance of a
class. Objectsexistatruntime,but classesrereally
designentities. Inheritancg(a relationshipbetween
classesjhereforejs alessusefulconcepin acom-
ponentcontet thanit is in an object-orienteccon-
text. Becauseof the possibilitiesof call backsand
the difficulties with ensuringthe encapsulatiorof
the state,inheritances even problematicin a com-
ponentcontext. The movementfrom inheritance
basedsolutionsto objectcompositionmessagéor-

XO0OTIC MAGAZINE

warding and delegation, which was alreadyon its
way in the OO world, hasgainedspeedn the com-
ponentworld.

Componentsare deplo/ed independentlyandit is
impossibleto predicthow the components going
to be used. As aresult,concernsaboutdependen-
cies betweencomponentsgall backs,components
usingeachother but belongingto differentthreads,
safetyandsecurity andsoonaremuchmoreimpor
tantthanthey arein plain object-orientednodeling
or design. Seenfrom this perspectie, CBD takes
the consequencesf object-orientatiorto the run-
time ervironment.

L ogistics and organization

Thereis still anotherfield in which innovation is
neededandwhichis crucialto thesucces®f CBD.
Thisfield is logisticsandorganization.

Althoughit is possibleto developandreusecompo-
nentswithin just oneorganizationit is self-evident
acquisitionfrom third partiesis averyimportantad-
vantage But how to acquirethesereusablecompo-
nentsfrom the outside? As always, a balancebe-
tweencostsand benefitsmust be struck. Nobody
is investingtwo weekstime in searchingevaluating
andacquiringa componenbf which the reusewill
yield 2 daystime. So,if (asis the casenowvadays)
the searchingandso on of a componentostsa lot
of time (approximately5—8 mandaysfor a small
component!)pnly big componentsvill beacquired
andreused.lt is thereforeimperatie to shortenthe
time for searching evaluatingand acquiringcom-
ponents. Only thena real componenimarket will
grow up.

Organizationswhich are supposedo deplgy com-
ponentshave nov an IT-organization suited to
the developmentand maintenancef large, mono-
lithic systems.Obviously, suchan organizationis
not suited for the developmentor use of compo-
nents. Building componentgsoftware especially
meantfor reuse,of which it is impossibleto pre-
dict how they are going to be reused)demandsa
more quality-orientedview than normal software-
developmentdoes. And the reuseof components
demandsa thorough knowledge of how to reuse
componentsandwhereto getthem. Again a way

of thinkingwhichis notcommonin the mainstream
of softwaredevelopment.

Theseproblemdie alittle bit outsidethescopemost
peopleusewhenthinking and talking aboutcom-
ponents. But they are at the core of the question
whetherCBD will succeedr fail. CBD is notjust

really possible. Technicalstandardizations nec-
essary anda methodsuitedto CBD hasto be de-
veloped. But perhapsthe mostimmediatebottle-
neckis the organizationandthe logistics of CBD.
JustusingJava or DCOM or afang methodis not
enoughtheway IT is organizedhasto be changed.

anothertechniquejt hasvery strongrepercussionsAnd only if thathappenswill CBD turn notto be

ontheway of working of peopleandorganizations.

Conclusion

Component-baseddevelopment has a lot of
promises. But it is not a silver bullet. It will not
solve all the problemsof software development.
And a lot of work hasto be donebefore CBD is

yetanotherfatamorgana.

Mat Huizing isworking for the ICG Group and located
in Cappelle aan de 1Jssel. He is a specialist in object
oriented design and object oriented modelling, with
emphasis on component based development, heuristics,
and patterns. The ICG Group is a consultancy- and
software-house specialized in CBD and OO.

For moreinformation, you can contact Mat Huizing at:
mat@icgroup.nl

January, 1999

