
Free the Software

AFIO: Inside an open source project
Koen Holtman

What do people actually do when they work in an open source project? What is
the software process? Below I try to answer such questions by describing one
particular case: my own work on afio, an open source archiver program that
was initially created in 1985, and for which I have been the maintainer since
1993.

Introduction

While a lot has been written about open source soft-
ware, much less has been written about the process
of creating open source software. I know of a few
good general accounts, which I refer to at the end
of this article. In this article I will not describe the
‘typical’ or ‘average’ open source software process.
What is average is a difficult question anyway, and
depends in part on how broadly you define open
source. Here, I give an account of my own activ-
ities in doing open source. I focus in particular on
the case of the afio program. By using a specific
case I can describe details of the micro-process that
are often not covered in the more general accounts
of open source development.

The afio archiver

Afio is a Linux/Unix program for packing up files
into archives, and writing these archives to devices.
It is very similar in function to the Unix ‘tar’ and
‘cpio’ commands, and the pkzip package in MS-
DOS/Windows. Figure 1 shows the ‘official’ short
description of afio that I bundle with releases.

Archiver & backup program with builtin compres-
sion Afio makes cpio-format archives. Afio can
make compressed archives that are much safer
than compressed tar or cpio archives. Afio is best
used as an ‘archive engine’ in a backup script.

Figure 1: The short description of afio in its Linux
Software Map entry

The main attraction of afio, over the better-known
tar, is that afio makes compressed archives in a
safer way: it compresses the individual files in
the archive, rather than the complete archive byte
stream like tar does. If a compressed tar archive
encounters even a single byte error on reading, the
remainder of the archive cannot be unpacked any-
more, and all the data in it is lost. Afio archives are
more fault tolerant: a read error will generally only
affect the unpacking of a single file.

Early history of afio

The first version of afio was written by Mark
Brukhartz in 1985, or possibly even a few years ear-
lier. I never talked to Mark Brukhartz, so I do not
know exactly why he started afio. My guess, from
the documentation he included, is that he needed a
better version of the cpio program which he was us-
ing, and that he did not have the cpio source. In
terms of software years, afio is ancient, and that is
part of the attraction in maintaining it. They really
wrote C differently back then. This is a typical frag-
ment of the 1985 afio code, which is still part of the
source today.

/*
* inavail()
*
* Index available input data within the
* buffer. Stores a pointer to the data
* and its length in given locations.
* Returns zero with valid data, -1 if

June 2002 15

* unreadable portions were replaced with
* nulls.
*/

STATIC int
inavail (bufp, lenp)

reg char **bufp;
uint *lenp;

{
reg uint have;
reg int corrupt = 0;

while ((have = bufend - bufidx) == 0)
corrupt |= infill ();

*bufp = bufidx;
*lenp = have;
return (corrupt);

}

In 1985, Mark Brukhartz added an open-source type
license at the start of the afio source, and distributed
it to others in the Unix community. I don’t know
exactly what distribution mechanism he used, but
it was not FTP on the early Internet. In 1991,
someone called Jeff Buhrt added the fault tolerant
compression feature to afio, and distributed the im-
proved version, probably by posting it to a Usenet
newsgroup. In any case, soon afterwards an En-
glishman called Dave Gymer downloaded afio from
Usenet and started using it. In 1993 he made a
Linux port, and uploaded it to sunsite.unc.edu, then
the major FTP site for Linux application software.

How does one get involved in an open
source project?

At one point in early 1993, I had a bad experi-
ence with the fault tolerance of tar, so I went look-
ing on the Linux FTP sites for a more fault tol-
erant program. Afio was the most fault tolerant
program I could find. Afio did not have all the
types of fault tolerance I wanted, so I started writ-
ing my own backup program called tbackup which
would use afio as a main component. The main
added feature of tbackup was the fault tolerant and
user friendly handling of cheap floppies as a backup
medium – I had many boxes of cheap floppies lying
around, containing outdated versions of the Slack-
ware Linux distribution.

Pretty soon I found that afio would crash in com-
pressing large files if the hard disk was nearly full.
So I changed the code to fix that, and also mailed
the changes to Dave Gymer, for him to incorporate

in new afio releases. Fixing the code and mailing
the fixes were fairly natural things for me to do.
From my late 1980s home computer hobbyist days I
was used to writing my own improvements to other
people’s code. Also I had already been using BBS
systems and Internet mail for some time, so I was
used to communicating over the net with complete
strangers. It was obvious that the Linux commu-
nity was just another bunch of computer hobbyists
working in a gift economy, similar to my old home
computer club. All things considered, it required no
big conceptual leap for me to become a Linux open
source contributor. It was just a combination of be-
havioral patterns and rules that I knew already.

At one point, in an e-mail exchange with Dave, we
came to the joint conclusion that I was making more
frequent changes to the afio code than he was. So
we agreed that I should make the future afio re-
leases. In December 1993 I uploaded a new ver-
sion of afio, version ‘2.3.5 for Linux’, to the usual
Linux FTP sites. I had updated the documentation
so that future bug reports would be sent to me. I was
now the official maintainer of afio for Linux. Peo-
ple with other Unix versions also picked up the new
afio for Linux version, ported it to their systems, and
sent me portability patches. So after a few versions
I dropped the ‘for Linux’ from the version designa-
tion.

What does an open source main-
tainer do?

Here is the process that I use to maintain afio. It
has remained more or less the same over the years,
even though, since 1993, the size and composition
of the Linux community has changed drastically. I
did not get this process from a textbook, nor did
I first study other open source efforts to see how
they did it. I started doing it this way because it
seemed to be the obvious way to do things. (It is
actually an interesting question if the open-source
community is self-selecting for personality types to
whom a certain way of working is the obvious way
to work. Reading media accounts of how other peo-
ple in open source do things, what strikes me most
is that I find everything completely obvious, while
the journalist writing it often expresses wonder at
how things are done.)

16 XOOTIC MAGAZINE

Getting e-mail about afio

A big part of the maintenance process is dealing
with the e-mail I get about afio. I get on average
about 5 new mails related to afio each month. I can
answer about half of these mails with a single reply,
the rest lead to a series of message exchanges. On
average, handling the mail takes me about 10 hours
per month. I am very careful in archiving all the
mail, to make sure that I will account for all contri-
butions and bug reports when making the next re-
lease.

I try to reply to every new message within a week
– if I have no time in that week to address the mes-
sage I just send back a short reply that I am very
busy and that I will give a full response hopefully
within N weeks. I consciously work to give the im-
pression that something will really happen with the
mail people send me. The last thing I want is to
discourage people from sending me more contribu-
tions in future. Of course nothing bad will happen
to me when my correspondents get unhappy about
the way I treat their mail. But I am working from
the principle that everything worth doing is worth
doing well. As long as I choose to fulfill this role
as a maintainer, I want to keep up the same stan-
dards of service that I would like to see in any other
software project, be it commercial or open source.

I use an informal tone in my replies to e-mails, but
I consciously try to be polite and clear, even if I
think that the original question is stupid or wastes
my time. I actually get very few stupid questions,
and most of the mail I get comes, as far as I can
determine, from people who are already somewhat
experienced as a Linux or Unix system administra-
tor. In the last year I have started to get some mail
from commercial Linux system support companies,
who are asking me about problems reported by their
customers. Again I treat these the same as any other
mail.

Mail with questions

About half of the e-mail I get is some kind of ques-
tion: how can I do X with afio? What does this
error message mean? Is it available on platform Y?
I can usually address these questions with a single
reply. Sometimes I can only give a preliminary di-
agnosis and have to ask for clarifications or more
information. In about half of the cases, if I ask for a

clarification of a vague question, I do not get any re-
ply. Presumably the person asking solved the prob-
lem already. About half of the questions I get are
answered in some way by the manual page or re-
lease notes. I don’t know the complete manual page
by hart, so I usually have to look myself to see if
the answer is in the documentation – if I find it I
summarize what to do and then often cut-and-paste
from the manual page in the reply. About half the
questions I get uncover some weakness in the docu-
mentation, which I then often fix in the next release.

Mail with bug and problem reports

A second class of e-mail, about one fourth of the
total volume, reports some afio behavior that was
not expected by the user. The message I get can
be a detailed bug report, but most often I get a cut-
and-paste of the afio command line used, some er-
ror messages, and a partial description of the system
configuration on which afio was run. Sometimes
the observed behavior is actually correct according
to the manual, and the user just expected something
different. More often the behavior is something that
should really not happen. I always end replies to
such messages with some variant of ‘thank you for
this bug report’.

Sometimes I have seen a similar problem reported
before, and I can search back in my mail archives
and software change log to find a reply. If the prob-
lem is new, I try to reproduce it on my own machine.
I manage to reproduce it about one third of the time.
If I cannot reproduce it I will ask for more informa-
tion, or for the results of some specific tests. In the
end, about one third of the reported problems re-
mains unresolved – sometimes with suspicions that
the real source of the problem was a bug in the de-
vice driver of the backup device, but often with none
of us having a real clue about what went wrong.
Leaving something unresolved is frustrating, but at
one point I have to decide to stop trying. Often, my
correspondents are happy anyway when I tell them
that I have given up, because in additional tests they
ran the problem never occurred again.

Mail with contributions

A third class of e-mail, about one fifth of the to-
tal, contains a contribution to the afio code or docu-
mentation. Contributions to the documentation are

June 2002 17

fairly rare. I usually get code, in the form of patch
files. About one third of the code contributions are
bug fixes, about one third compatibility fixes to port
afio to a non-Linux platform, and about one third
are new features. When I get code for a new fea-
ture, it rarely includes any documentation that is
good enough to paste directly into the manual page.
I never ask contributers to write the missing docu-
mentation, I just write it myself. Many of them are
not native speakers of English anyway, and I would
not want to annoy them by drastically re-writing
their attempts before inclusion.

In a few cases I reject code for a new feature, saying
that I will not fold it into the release. This is either
because I believe that the function can already be
achieved in another way, or because I believe that
the feature is just a bad idea, that would take too
much of my own time to fold in and test. However,
overall I hardly ever reject anything, and as a re-
sult the number of command line options to afio has
grown from 36 in 1993 to 60 now, using all lower
case letters, all upper case letters, and most of the
numbers as option flags.

I always make sure that I give feedback to code sub-
missions, either with a statement that I won’t put
the code in, or more usually with a statement that ‘I
will probably add it to the next release, which will
come out in [time estimate in months]’. I write that
I will ‘probably add’, because at the time of reply-
ing I have not yet made a full evaluation of the con-
tributed code. I only take a very close look at the
code when I start to prepare the next release.

Other mail

I also get a few e-mails which do not fit any of the
above categories. Very rarely I get a ‘thanks for
afio’ message without any further questions or re-
quests. Very rarely, I get a plain request for a new
feature. Sometimes this feature is something that
can already be done with afio: if so then I write
back how to do it. If it cannot be done yet, I gener-
ally comment on whether and how it could be im-
plemented, and encourage the requester to send in
an implementation. Usually I do not get any. Some-
times, if I believe that the idea for the feature is a
good one anyway, I implement it myself at the time
of the next release.

Making a release

I do not release new afio versions often. In the
last few years, the release frequency has been about
once every 9 months. A few releases were prompted
by the discovery of critical bugs that should be fixed
urgently, but usually I release when I have a suffi-
ciently large number of patches and bug reports, and
when I can find the time to fold them all in. Making
a new release costs me about 40 working hours: I
work in evenings and weekends over a period of a
few weeks. During that time, I re-visit all archived
mail since the previous release, changing the afio
code and documenting the changes as I go along. At
the end I do regression testing, create a new source
archive, and upload it.

Afio is a mature backup program that people rely
on. My first order of business is not to introduce
any additional bugs, and this drives my release strat-
egy. For other open source programs, which are
early in their development lifecycle, the strategy is
to release very often, relying on the early adopters
to find the bugs in the new code. With afio I also
rely on users to find bugs, and this user testing adds
significant value, but the type of bugs people find
are the very obscure bugs that are left in a well-
aged program. For example, a recent bug report had
to do with the incorrect handling of Unix file sys-
tem symbolic links that have several hard links to
them. Other bugs that people find in afio are those
triggered by new use cases. Over the years, as hard-
ware capacity grew, I first got bug reports related to
making multi-tape archives larger than 2 GB (231

bytes), then about handling tapes that are individu-
ally larger than 2 GB, then about archiving single
files that are larger than 2 GB.

The release process

When making a new release, I carefully hand-check
and test all code contributions. Often I make sub-
stantial changes to contributed code to make it more
safe or general. The new idea behind the code, or
the finding of the bug that the code fixes, is often the
most valuable part of a code contribution. Review-
ing and testing new code takes significant work, but
it is needed to maintain the most important feature
of afio: its stability. This careful review of all code
is not unique to afio: I have also seen it in the main-
tenance of the Apache HTTP server, another mature

18 XOOTIC MAGAZINE

piece of open source software.

Coding is actually a very small part of making a re-
lease. I spend most of my time testing and updating
the documentation. When I add a new feature, I of-
ten spend more time updating the manual page than
updating the source code – writing a terse but com-
plete description of a new feature and its limitations
is surprisingly hard. I also spend significant time
updating the change log file that is bundled with the
afio sources – see figure 2 for a typical excerpt.

Version 2.4.7:

Fixed bug that sometimes caused ‘– compressed’
to be printed twice in verify operation. Has to
do with not flushing stdout, stderr before forking.
Bug reported by JP Vossen.

Added more material on how pattern matching
works in the -y option section of the manpage, and
added examples of selective restores to manpage.
Based on questions by Kjell Palmius and Stojan
Rancic.

Added text to BUGS section about afio not being
able to write into directories for which it has no
write permissions, except when running as root.
Problem reported by Kagan Kayal.

Figure 2: A part of the afio change log

The change log has two main functions. First, it
helps me and other contributers to keep track of
changes and solved problems. Having a very de-
tailed change log saves me significant time in an-
swering e-mails. The second function of the change
log is to record the names of all contributers to afio,
which I define as everybody who sent me any mail
that led to changes in the next release. The change
log gives visible evidence that even the smallest
contributions are welcome, and will have an effect.
I have a theory that this is very important in encour-
aging future contributions. I never record the e-mail
addresses of contributers in the change log, because
automatic publication of their e-mail address might
actually discourage people from sending me mail.

The last part of the release process is to make a
new source archive, upload it to the various repos-
itories, and write an announce message for the
comp.os.linux.announce newsgroup. This always
takes a surprising amount of time, because you do
not want to make any last-minute mistakes. I need
to spend some time for every new release to catch

up with recent changes in publishing Linux soft-
ware. Back in 1993 it was sources on FTP sites
and a message on an announce newsgroup. Now it
is mostly web sites and pre-packaged pre-compiled
binaries. However, I still don’t build pre-packaged
binaries, and I do not get deeply into the web site
stuff: I have decided that I’d rather spend my time
on other things. Because I don’t make pre-compiled
binaries, afio probably has less users than it could
have. But that is fine with me – I am not in this for
world domination, and have no obligation to spend
my time serving all Linux users optimally. My main
interest is to give to other programmers in the open
source community, who will be served about as well
with a source release. Somebody else, in the De-
bian Linux distribution effort, does in fact main-
tain a Debian binary release of afio, and we have
very friendly relations. When I am about to make a
new source release, I give him an advance warning.
When he gets a bug report about the binary release
that has to do with the source, he copies it to me.

What is the motivation for doing it?

Software maintenance is perhaps not a very obvious
thing to do in your spare time. My reasons for do-
ing it are partly historical. I started out mainly as an
open source author – I like writing software and if I
do it in my spare time I like to share it with others.
Over the years, I found that I had less and less spare
time which I wanted to devote to programming. So I
stopped writing new code and only did maintenance
on the old code in the projects that I happened to
run. By 1995 I was doing maintenance on 3 open
source projects: afio, tbackup, and futplex. Still I
had less and less time: I found that my release fre-
quency was dropping to below what I found rea-
sonable. So after 1995, I first stopped maintaining
futplex, which had never attracted a very active user
community anyway. Later still, I also stopped main-
taining tbackup, which did have a user community,
but one that generated much less feedback than the
users of afio. I still get messages about tbackup,
about one every two months. I always reply that the
software is now ‘dead’ and unsupported, and that I
recommend using another backup program even if
tbackup does still install.

Maintaining afio is not very creative work, though
there is occasionally an interesting puzzle. Do-

June 2002 19

ing the maintenance process is mainly rewarding,
I guess, in the same way that gardening is reward-
ing: there is usually no great pressure, you get to
do something immediately visible with your own
hands, and it is nice to make things more tidy. I also
find it rewarding to help complete strangers who e-
mail me. I am a heavy user of open source software
myself, and it feels good to be in a position where I
am not just taking, but also giving back to the open
source community. Occasionally, it is fun to con-
sider that I have achieved some degree of immortal-
ity through my work, because the code I wrote has
been pressed on lots of CD-ROMs. However this is
more of a fringe benefit, it is not a state of mind that
I can sustain indefinitely.

Starting an open source project

Starting an open source project is easy. Create some
software (but make sure that you do not incorporate
any third party code that is restricted or proprietary),
bundle the sources together with a file that identifies
you as the author/maintaner, and upload the result
to whatever the usual places are for your platform.
That is really all there is to it. A web page is op-
tional, but very much expected these days.

Of course there is no guarantee that a new project
will generate the level of interest that you expect.
In my own new projects, I never tried to predict or
optimize the level of interest beforehand. When my
code was at a stage where I thought it to be po-
tentially useful to others, I just wrote the amount
of documentation that I judged to be necessary to
support other users and developers, bundled it, and
made the first public release.

Though I did not try to guess levels of interest be-
forehand, the levels that I observe during a project
do influence my actions, in particular when choos-
ing which projects to stop.

Further reading

In recent years, the new economy has become
somewhat of a spectator sport, generating a match-
ing volume of mass media accounts and Internet
discussions. Microsoft litigation and open source
are particularly popular subtopics. On the Internet,
participating in discussions about open source has

become a legitimate full-time hobby all by itself.
Most of the written material can be safely ignored,
unless you happen to be a fan.

The Cathedral and the Bazaar by Eric Raymond [1]
is a classic and thought-provoking essay that con-
tains some good descriptions of the open source
process. The essay is thought-provoking because
it argues, with some actual proof, that very com-
plex software projects can be run successfully, even
optimally, without much central planning. I don’t
believe all claims of the essay, but that is exactly
what makes it thought-provoking. Don’t miss the
[EGCS] end note which is present in the more re-
cent releases of this essay. There are several fol-
lowup essays by the same author, but I find these
less thought-provoking.

Hackers by Steven Levy [2] is a well-written book,
written in 1984, about several open source cultures
that pre-date Linux, about their development pro-
cesses, and about their interactions with the market
economy.

A recent statistical survey of open source authors is
at [3]. Like many statistical surveys, it offers few
real surprises, but it does solidly contradict the view
that open source authors are an untrained mob of
young computer nerds out to destroy Microsoft.

References

[1] http://www.tuxedo.org/˜esr/writings/cathedral-
bazaar/cathedral-bazaar/

[2] Hackers, by Steven Levy. 1984.
http://mosaic.echonyc.com/˜steven/hackers.html

[3] http://www.osdn.com/bcg/

Koen Holtman is a re-
searcher at the California In-
stitute of Technology, where
he does architecture and co-
ordination work in devel-
oping the world-wide dis-
tributed data processing in-
frastructure of the CMS parti-
cle physics experiment. The current version of this
infrastructure relies heavily on Linux systems, and
several of the development partners publish their
middleware with an open source license.

20 XOOTIC MAGAZINE

Koen was anOOTI from 1995-2000, finishing with
a Ph.D. in software design for work performed
at CERN in Geneva, Switzerland. He also holds
an engineering degree in computing science from

the Eindhoven University of Technology. He has
been active in the Linux open source community
since 1993, and also contributed code to the Apache
server project.

June 2002 21

