
Component Technology

Component Technology
Wim Groenendaal

Application development is often treated as ‘original’ rather than ‘routine’. If it
would be possible to capture and organize solutions we already know, it would
increase both quality and productivity. The evolution of the client/server archi-
tecture has now reached a new stage: component technology as the ultimate
way to promote re-use. If we take a closer look at the “art of component based
development” there are a number of different aspects that need attention. This
article will address only some of these.

Components

Today, theword ‘Component’hasanimpact,which
can be comparedwith the term ‘Object Oriented’
a few yearsago. Every software vendorhas his
own ‘componentbaseddevelopment’ or ‘compo-
nenttechnology’products.Componentsis thebuzz-
word today, you cannotlive without components.
But if we talk aboutcomponents,whatdo we actu-
ally meanby theverbcomponents?

There are many different definitions on compo-
nents.For this article I will usea rathersimplebut
effective one:Componentsare executablepiecesof
software only accessiblethrough their interfaces.
Soin otherwordstiny applicationsholdtogetherby
middleware.

Whitebox and Blackbox re-use

Re-useis only one aspectin componenttechnol-
ogy, althoughnot unimportant. Componentsare
not new; in fact the expectedbenefitsof modu-
lar programmingwere already recognizedin the
early70’s.

This conceptof modular programminghas eval-
uatedthrough the yearsinto today’s components.
Componentsarein factnothingmorethansmallap-
plications,performingspecifictasksand,asthey are

isolated,they canbe (re)-usedin variousenviron-
ments. Although it seemsthat nothing much has
changedovertheyearsthereareat leasttwo big dif-
ferences:Today componentsare to be distributed
(run on differentmachines)andthe samephysical
componentcanbeusedby differentlogicalapplica-
tions at the sametime. Basicallycomponenttech-
nology is not the only way to achieve re-use.Ob-
jectorientationpromisesaboutthesameadvantages
whenit comesto re-use.Thedifferenceof compo-
nent technologycomparedto object orientationis
thatcomponentsarenotapartof thephysicalappli-
cationbut areautonomousentities.Bothcomponent
technologyand object orientationpromotere-use.
In thecaseof objectorientationthisis model/source
re-usewhich is in fact a form of whiteboxre-use.
You can actually see/touchthe code. Component
technologyusesblackboxre-use,meaningyoucan-
not seethe codebut only the functionalspecifica-
tion.

Componenttechnology usesblackboxre-
use

Thiselementin thecomponenttechnologymayalso
introducenew phenomenon.As the actualcodeis
hidden, there is no continuousview on the code
quality. Now almostany developeris convincedhis
way of coding is superior. As long as developers

10 XOOTIC MAGAZINE



know otherscan(re)view their code,they will au-
tomaticallytry to producehigh quality code.Com-
ponentsarebackboxesandoneshouldbeawareof
thefactthatcomponenttechnologyshouldneverbe
anexcusefor poorprogramming.

The need for an architecture

Oneway of dealingwith programmingquality is-
suesis to defineasoftwarearchitecture,whichsup-
portscomponenttechnology. Althoughcomponent
technologycanbe achieved without theuseof ob-
ject orientedtechniques,it canbenefitfrom thead-
vantagesof theobjectorientationworld. In factit is
my personalopinion that a good,flexible architec-
ture for componenttechnologyis bestserved with
anobjectedorientedapproach.

An architecturedoesnotonly bringqualityandcon-
sistency into anapplication,it canalsoprovidepro-
ductivity andsomethingevenmoreimportant:ease
of maintenance.Thearchitecture’s ability of being
adaptive, extendableandscalableis probablymore
importantthanproductivity itself.

The virtual system

In orderto designflexible architecturesit is impor-
tantto understandtheessenceof anautomatedsys-
tem. It really doesnot matterat what level; appli-
cation,componentor object,onelooksat a system,
thenbasicallyit comesdown toavariantof thesame
model I call the virtual system. As this article fo-
cuseson componenttechnologytheremainingpart
of thearticlewill usethis term,but again,thesame
rulesapply to any entity in a system.Any compo-
nent consistsof a numberof processesand flows
of informationbetweentheseprocesses.A process
itself hasinterfacesto the outside(real) world. If
onetakesa closerlook at the type of interfacingit
is possibleto distinguishfour typesof interfaces.
Theuserinterface,whichdealswith all interactions
with the userincluding referencesto the operating
system. The internal interface, wherethe system
communicateswith other(sub)-systemsin theorga-
nizationsuchasanaccountingsystem.Theexternal

interface,handlingrequestsfrom/tosystemsoutside
the own organization,suchas variousmail inter-
facesandfinally thedatastorageinterface,provid-
ing datamanipulationfunctionality to (relational)
databasesandflat files.

A componentwill have at leastoneof theseinter-
facesandat leastoneflow of datagoingin andone
goingout. Therecannotbeacomponentwhereonly
data is going in, then in that casewe have a so-
called ‘sink’. A similar rule is valid for the other
way around: a processwith only datacomingout
is alsoillegal. This type is normally referredto as
a ‘magic bubble’. The presenceof interfaces,and
we just concludedcomponentscannotlive without
them,is acrucialfactorin thesoftwarearchitecture.
Fromanidealpointof view, acomponentshouldbe
unawareof thephysicalcharacteristicsof theoper-
ationalenvironment,andthenchangesto associated
elements,outsidethecomponent,couldhave influ-
enceonthecomponentbehavior. Thisisalsoknown
asthe‘ripple effect’. By eliminatingthis ‘ripple ef-
fect’ componentsbecomemoreflexible andmain-
tainable.

Whyaretherestill architectural monsters
beingdeveloped?

Dependingon the natureof the interface(user, in-
ternal,externalor data)therearevariousobjectori-
entedtechniquesavailable to deal with this chal-
lenge. Techniquesderived from the ‘design pat-
tern’ literatureform the foundationfor thesekind
of flexible implementations.Whatever solution is
chosen,it all comesdown to onegoldenrule: inter-
faceobjectsshouldalwayshandlecommunications
to theoutsideworld. InterfaceObjectsdo not only
provide a single point of referenceto the outside
world; they are also capableof connectingother-
wise incompatibleformats. Softwarearchitectures
in theformatof componentframeworkswouldpro-
vide guidanceto applicationdevelopersandwould
improve the flexibility, quality and re-usabilityof
components.

If we understandthis and agreeon this, why are
therestill architecturalmonstersbeingdeveloped?

January, 1999 11



Wim Groenendaalis seniortechnical consultantin CMG’s research center
for client/servertechnology. Throughtheyears hehasbeeninvolvedin the
designof software architecturesfor varioussoftware development
environments.In oneof thecurrentresearch projects,codename:CODA
(CorporateDesignArchitecture) all theseexperiencesin client/server
technology aregatheredand(re)-modeledin a CASEtool in order to designa
environmentneutral client/serverarchitecture baseduponthedesignpattern
theory.

Obstacles

Althoughthe importanceof a softwarearchitecture
is generallyaccepted,therearea numberof candi-
dateobstacles.Someof the most importantonce
are:

Skill
developersneedto understandtheconceptof de-
signingarchitectures.

Priority
The implementationof componentsbecomes
more pragmaticas a project deadlinestarts to
loom.

Cost
Architectureis oftenregardedaspointlessluxury
onceasystemis aboutreadyto getshipped.

Perception
Membersof a projectteamhave differentobjec-
tivesthansystemarchitects.

From experienceI found that the bestway to deal
with theseand other relatedobstaclesis to have
a specializedteam for designingthe architecture.
This way you have at leastthe right skills, priority
andperceptionin thesameteam. What remainare
the costs. The designof a flexible softwarearchi-
tectureis time consumingandthusexpensive. Fur-
thermorethereis noobviousdirectreturnon invest-
ment. But if onethinks a goodarchitectureis ex-
pensive, try building on abadarchitecture.

More challenges

Evenwith aspecialengineeringteam,management
commitmentandbudgetthereis another, often for-
gotten,elementwhich caneasilydisturbthe strive
for re-use. It is simply not enoughto develop re-
usablecomponentsif co-developershavenoknowl-

edgeof theexistenceof thesecomponents.Dueto
this lack of componentmanagementthey will just
built it againandthatis exactlywhatwedonotwant
to do.

Thedesignof a flexiblesoftwarearchitec-
ture is time consumingand thus expen-
sive

If re-useis anobjective thenit is alsoobvious that
theremustbe an infrastructureto supportthe pro-
cess.Too often componentmanagementfails asa
resultof variouscircumstances.If we take a closer
look at the problemsthat occurwhenre-useis in-
volved, the major obstaclesare the following: ac-
cessibilityof availablecomponents,lack of version
control, lack of a propersearchengine,andlack of
properusageguidelines.Thebestway to dealwith
thesecircumstancesis the useof supportingsoft-
ware,preferablerunningon the intranetin orderto
reachall developersin theorganization.

What is missing?

I realizethat thereare much more interestingas-
pectsin usingcomponenttechnology, suchashow
doesone recognizesa componentduring applica-
tion analysis. And what aboutautomatedtesting?
Test tools today are designedto test applications,
not components.And then the aspectof applica-
tion maintenance,how do we managethe imple-
mentationof new andchangedrequirements.And
last but not least the componentoperationalen-
vironment itself with a still continuingbattle be-
tweenthe variouscomponentmodelsand the sta-
bility/functionality of the connectingsoftware: the
middleware.

12 XOOTIC MAGAZINE



Conclusion

Themainfocusof thisarticlewasaboutthecompo-
nentitself andI concludethatalthoughcomponent
technologydoesnotrely onobjectorientationit can
certainlybenefitfrom the availabletechniques,es-
peciallythetheoryondesignpatternsandweakcou-

pling. It is also true, that promoting‘develop for
re-use’ is a difficult task to accomplishbecausea
developer’s intention is to write codeandthe lack
of propercomponentmanagement.And even then
therearea lot of challengesleft to overcomebefore
this technologyis really mature.

January, 1999 13


