
Multidisciplinary Development

Software Engineers doing Hardware
Lessons learned while building a robot from scratch

Emile van Gerwen

Being a software company working in the advanced machine building indus-
try, many of our employees come across exotic hardware and the hardware
engineers that build them. The project addressed in this paper is completely
different. Instead of blaming the hardware engineers for their faulty work, just
as they routinely blame our software, we have to build the whole package our-
selves, including the hardware. The challenge is to build a robot for the TNO
Robot Competition 2003[1]. Although the main goal is to have fun and all the
work is to be done in spare time, it has all elements of a “real” project: a fixed
set of requirements (rules), a fixed end date, and a fixed budget. At the moment
of writing, all 19 teams have participated in a test mission. Our robot was one
of the four robots, and the only robot that took part for the first time this year,
that completed the mission successfully. It is tempting to write a “the secret of
our success” kind of story, but with the real tournament ahead of us we need
to be a bit careful. Nevertheless, we learned some important lessons that we
think might be valuable for other software engineers doing hardware.

Rules of the Game

To get some feeling of the scope of the project, we
will briefly describe what the robot competition is
about. With a budget of 2500 Euro, a team has
to build a single autonomous mobile robot that can
accomplish 5 different missions. The robot, max-
imum size 60x60 cm, must complete the mission
within 3 minutes to get 10 points awarded. The top
3 robots with fastest time in a single mission get
bonus points. The robot that gathers most points
over all missions, including the points gathered at a
test round held two months before the competition,
wins. The missions are:

1. Escaping out of a known maze;
2. Getting out of an unknown maze;
3. Finding and touching a soccer ball on a grass-

like field;
4. Moving a soccer ball out of the playing field;

5. Driving to the end of an elevated race track with-
out falling off.

All missions, except the last, take place in a 6 x 4
meter playing field.

Where to begin? (Definition)

Not having any reference to previous hardware
projects, we decided to see how we could make use
of our software project experience in this particu-
lar multi-disciplinary project. Being a CMM Level
2-almost-3 company, procedures and best practices
for making software are well-known to us. But how
could they be of any use for building a robot from
scratch? As a start, the title of the documents we
were going to make definitely had to change to re-
flect our new line of business. The table below
shows the revised titles.

November 2003 5



Old (software) New (multi disciplinary)
Customer Requirements Rules of the Game
Software Requirement SpecificationBattle Plan
Architecture and Design Construction Manual
Project Management Plan Bill of Materials, Planning (see text)

Table 1: Document title translation

Let’s discuss these documents in more detail.

Thecustomer requirements specificationor rules of
the game were issued by the TNO jury. Just as in
ordinary project, however careful written down, all
specifications are subject to different interpretation.
The jury in this case anticipated no different and
would answer any questions related to the rules. All
questions and answers would be distributed to all
other teams in as “Frequently Asked Questions”,
unless this would reveal a team’s secret strategy.
Many teams, including us, used that opportunity to
clarify the customer requirements.

Figure 1: Definition phase

A software requirement specificationtranslates cus-
tomer requirements into the domain of software, a
vision from where software design can start. In our
case, we needed a vision on how our robot could

accomplish all missions. The Battle Plan describes
what the robot must be able to do in order to com-
plete the missions. This already works towards to
a solution as there many different ways to complete
a mission. As an illustrative example, in last year’s
event, one team built a zeppelin kind of robot that
would just fly over all obstacles in the maze.

The construction manualthen describes how the
robot can perform the functions laid down in the
battle plan. This steers both hardware design (size,
wheels, power required) as well as software (how
“intelligent” must this be, what are timing issues).
In our case we figured that building a robot from
scratch requires a lot of work, so to be on the safe
side we decided to make the robot as simple as
possible. As our strength is building software, we
would make the mechanical part of the robot as sim-
ple as possible and solve any problems that would
cross our path in software. In hindsight, this turned
out to be a good decision but even so it was based
on a hidden assumption that was violated almost
weekly, namely that simple hardware always works.

Lesson 1
Things you buy never work as advertised.

One particular problem illustrating this is our I2C
bus. The I2C bus is the communication backbone
of our robot as it connects our tactics processor (an
on- board 80386 PC) to our motor controller (an
8051 based microprocessor). The 386 we bought
had built-in I2C support so the only thing we had
to do was to connect the wires. Wrong. It took
us a couple of weeks to realize that the I2C clock
frequency generated by the 386 firmware was too
high for the microcontroller to absorb. The fact that
the 386 firmware did not report a good status on
its functioning (it always reported success) made
things even more difficult to find1. The solution

1One can argue whether firmware must be regarded as software or hardware. I think any hardware engineer would say it is
software, but being “high level software engineers”, little black boxes that fail are a hardware problem.

6 XOOTIC MAGAZINE



came from the hardware supplier who suggested de-
creasing the processor speed when doing I2C com-
munication. As software engineers we are used to
asking for more processing power, more memory,
and more disk space. Intentionally slowing down
the processor sounded like a bad idea, but turned out
to be a good example of out-of-the-box (our box)
thinking.

But let’s go back to the definition phase. Part of any
project initiation is making aProject Management
Plan. The idea of being managed in the weekends
was not very appealing so we decided to settle for
a bill of materials with associated costs and a plan-
ning. The budget part we got nailed down fairly
quickly once the Battle Plan and the Construction
Manual were in their first revision. The planning on
the other hand quickly turned out to be extremely
off, both in effort and in duration. We can point
out various reasons for all that, but in the end two
lessons sum it all up nicely:

Lesson 2
If you think building a robot takes a lot of
time, it takes three times more.
If you think building a robot is easy, do
not start.

Lesson 3
If estimating duration is difficult, estimat-
ing duration for spare time activities is
near impossible.

After the first month of development, we decided
to stop tracking progress and stop re-planning. We
would just go ahead and see where that would get
us. As is not uncommon in these kinds of competi-
tions, most work is done the night before the event,
when the pressure is at its top. We were determined
not to get into that kind of situation but at this point
in time we are seriously taking such a scenario into
account!

Putting things together
(Construction)

Although all our five team members are software
engineer by profession, some of them have an ed-

ucation and hobby in mechanical design and elec-
tronics (which was one of the reasons they took part
in the project anyway). The challenge to build a
robot was not a complete jump in the dark, but we
clearly did not have the professional experience to
be able to design and calculate all relevant parame-
ters up front. We would just try and find out.

Figure 2: Our robot

Figure 3: Bottom view

In general this strategy worked out remarkably well,
but in one particular case it still causes troubles. To

November 2003 7



decide on the motor to wheel gearing, it is impor-
tant to know what the speed of the robot needs to
be. Obviously, to score many points, it has to be
as fast as lightning, but driving fast for example
means coping with excessive decelerations during
emergency stops. The idea was that by regulating
the power to the motor, in software, we would be
able to drive at different speeds. The optimal speed
was to be determined empirically during testing. In
practice, it turned out that our robot cornered too
fast to manage its behaviour consistently. Supply-
ing very low power to the motor means that robot
has low torque and that in turn means that on some
surfaces, our robot would not turn at all. So, a gear-
ing decision at the beginning of development still
causes our robot turning behaviour to be very much
dependent on the surface texture of the playing field.
Solving this issue would be to replace some pulleys
and drive belts, but such a big overhaul would take a
lot of valuable time and the risk of doing harm to an
otherwise good working robot would be too great.
We will have to deal with its shortcomings in some
other way.

Lesson 4
Refactoring hardware is much more dif-
ficult than refactoring software. This
implies that a hardware-related decision
will have great impact on the rest of the
project.

What you see is what you get
(Testing)

From the very beginning it was clear to us that with-
out experience in robot building we could easily
think of great solutions that would turn out to be
useless in practice. To compensate for our lack of
experience at the start of the project, the idea was to
quickly build up this experience by thorough proto-
typing and testing. We put a lot of effort in build-
ing a full scale test environment, in fact, the test en-
vironment was ready even before all robot compo-
nents had arrived.

Figure 4: Test environment for mission 1

Figure 5: Test environment for mission 3

Was it worth the effort and money? Having seen
robots perform during the test mission we tend to
think so. One of the most heard exclamations was a
desperate “what is it doing now?” That sounded fa-
miliar to us. The difference is we had those during
our in-house testing, when there were no precious
points at stake.

Lesson 5
In hardware, testing really pays off.

All software engineers know that “program” testing
can be a very effective way to show the presence of
bugs, but is hopelessly inadequate for showing their
absence [2]. This pearl of wisdom is often used as
an argument to put less effort in testing, and to de-
velop proven correct programs to start with instead.

8 XOOTIC MAGAZINE



In this case, however, where the complexity of real
world could not be modelled adequately (by us at
least), testing indeed proved to be a very effective
way to find bugs. Actually seeing the robot per-
form in its environment makes you realize your er-
ror within seconds.

Lesson 6
In the real world, analysing is good, pro-
totyping is better.

So testing and debugging were considered essential
in our project from the start. The very first soft-
ware module created was indeed a diagnostics mod-
ule that could log all kind of events and values to a
terminal or a file if required. However, the very first
time we asked a hardware-knowledgeable colleague
to help us with some hardware problems, his first re-
mark was “where are the measuring pins, where can
I attach my oscilloscope?” Now who would think of
that?

Lesson 7
Doing hardware implies using hardware
debugging tools.

Evaluation

Looking back at all the things we have learned,
there is one thing that sticks out. In our daily work
we develop software for large, complicated ma-
chines, where we take all the hardware for granted.
By building a robot from scratch, our respect for the
hardware engineers has definitely increased.

Interestingly, we met teams with a more mechani-
cal background with similar experience. They built
the most beautiful robot but after 3 minutes driving
around seemingly randomly made them realize that
there is more to writing software than typing a few
lines of code.

Have we done the right things, or are there more
lessons in store for us? We will see on Competition
Day, November 22!

References

[1] http://www.tno.nl/instit/fel/felnews/nl/
robotcompetitie.html
(in Dutch).

[2] The Humble Programmer, Edsger.W. Dijkstra,
Communications of the ACM 15 (1972).

About the author

After graduating from the Technis-
che Universiteit Eindhoven in 1990,
Emile van Gerwen joined KPN
Research where he developed opti-
cal character reading software, spe-
cialising in reasoning with uncer-
tainty. In 1998 he joined the Na-

tional Aerospace Laboratory where he worked on
multi sensor data fusion and real-time decision sup-
port systems. He now works as a senior software
engineer and consultant for Imtech ICT, where he
develops software for advanced machines. Emile
can be reached at emile.vangerwen@imtech.nl.

November 2003 9


