
Software Architecture

Software Architecture Assessment
FrançoisVonk

Currently, software architectures are regarded as very domain or system spe-
cific. As a result, the majority of effort that is spent on developing an archi-
tecture focuses on system details. However, this leaves very little room or no
room at all to deal with more fundamental quality criteria for architectures like
layering, coupling, and cohesion. Also, documenting an architecture is often
neglected, leading to many problems during the remainder of the project. This
article describes why these quality criteria are of great importance to the archi-
tecture and the software development process.

Introduction

Architecturein generalis analreadyancientnotion
thatmostpeopleassociatewith theartof construct-
ing buildings. An importantaspectof architecture
in this respectis shape,becauseit is thefirst thing
that peoplenotice when they look at a building.
However, architecturealsoplaysan importantrole
in many otherdisciplinesandalthoughthe defini-
tion will not alwaysbethesame,shapewill always
playanimportantrole.

Within thedisciplineof softwareengineering,shape
indeedplays an importantrole. A crucial part of
a software architectureis the decompositionof a
large and complex systeminto a suitablenumber
of smallersubsystems.This decompositionhasto
bedescribedandmotivatedclearlyandcompletely.
The descriptionof the decompositiondepictsthe
shapeof the softwarearchitecturevia entitieslike
subsystems,abstractions,andrelations.

Why is anarchitectureso important?Systemsthat
have to be realisedin software nowadayscan no
longerbe developedby a small numberof people.
Mostly, large softwareprojectsrequirean effort of
aboutfifty to sixty manyear. Thismeansthatalarge
teamof peopleis requiredto finishthejob within an
acceptableamountof time. Sucha teamcanonly
function when eachpersoncanwork on a limited

andwell definedpartof theentireproject.This can
only be realisedby having an architecturethat de-
composesthecompletesysteminto subsystemsthat
canbebuilt by a smallnumberof teammembers.

Another advantageof decompositionis a reduc-
tion of thecomplexity for theresultingsubsystems.
Eachsubsystemhasto realisea smallerpartof the
entire problem and the decompositionitself will
tacklea numberof difficulties. This way eachteam
memberwill beassigneda portionof work thatcan
be realisedandmanagedeasierandmorereliably.
Also, theoversightandcontrollabilityof theoverall
complexity will improve asa resultof the decom-
position.

Oncea systemis in use,it will not stayunchanged.
At forehand,usersdo not alwaysknow what they
want or can expect, but also influencesfrom out-
side the systemmay result in a needto changeit.
Again,thearchitectureplaysanimportantrolehere,
becauseit givesaglobalinsightin thewayof work-
ing of the system. By inspectingthe architecture
closely, theentrypointsto makechangesto thesys-
temcanbefoundrelatively easy.

Apart from theadvantagesmentionedbefore,more
reasonsexist to have an architecture. One exam-
ple is thereductionof thelearningcurve for people
thatareaddedto aprojectduringits ramp-up.How-
ever, the mostbasicreasonto have an architecture

March, 2000 19



is money! It is the goal of eachcompany to make
reliablesoftwarewith theleastpossibleeffort. Reli-
ablesoftwarebecausethis reducesthemaintenance
costandlittle effort becausethis reducesthedevel-
opmentcost.Dueto thesizeandcomplexity of the
systemsthat have to be realisednowadays,this is
only possiblewhen a systemis basedon a sound
andwell documentedarchitecture.

Quality of software architectures

Having anarchitectureis onething,having a sound
architectureanother. The betterthe quality of the
architecture,the more likely the systemwill be a
success.However, how doesonemeasurethatqual-
ity? Or evenmoreimportant,how doesonecreatea
soundinitial architecture?

First, thecriteriathatdeterminethequalityof anar-
chitecturehave to befound. As discussed,minimal
costandeffort while realisinga reliablesystemis
themaingoal. This meansthatwe have to beable
to build andtestasystemrapidly, find andsolve er-
rors in the systemquickly, and extend the system
easily. This resultsin thefollowing generalquality
criteriafor anarchitecture:clarity, testability, main-
tainability, andextendibility.

Surprisingly, thesecriteriaarenotspecificto aprob-
lemthatmustbesolvedby asystem,while architec-
turesin generalareconsideredto be very problem
specific.It is certainlytruethata significantpartof
an architecturedealswith problemspecificissues,
for examplemodellingsystembehaviour. However,
the generalquality criteria also require attention,
which is often forgotten. Mostly, all time is spent
on solving the problemspecificissueswhile these
only contribute partially to the quality of an archi-
tecture.

Measurable quality criteria for ar-
chitectures

The four previously mentionedgeneralquality cri-
teriaof anarchitecturehave a somewhatglobalna-
ture andthey arehardto measure.Therefore,it is
importantto find other, measurable,quality criteria
of an architecturethataffect the four generalones.

Fiveof thesemeasurablecriteriaare: layering,cou-
pling, cohesion,documentation,andviews.

Layering

Layeringis a suitableway to hide for examplethe
hardwareof a systemfrom anend-uservia various
coherentlevels of abstraction.Layering is hierar-
chical by nature,which meansthat layersare lo-
catedabove andbelow eachother.

The conceptof layering in software architectures
is generallyacceptedandapplied,see[POSA] and
[SA]. Therulesfor usingservicesfrom otherlayers
oftenvarysignificantlyandaresubjectto discussion
many times.Thestrictestsetof ruleslookslike this:

� It is not permittedto useservicesfrom layers
locatedhigherin thehierarchy.

� Whenservicesfrom a layerlocatedlower in the
hierarchyareused,this layer must be directly
below thelayerusingtheservices.

Thenumberof variationson theserulesis not only
in theory large, but also in practice. This is not
necessarilybad,but it is importantthatrelaxingthe
rulesis notdonetoomany timesandonly for apur-
pose,for exampleperformance. Furthermore,all
exceptionsto therulesshouldbewell documented.

Themostsuitablenumberof layersdependson the
sizeof thesystemthathasto berealised.Thelarger
the system,the morelayersarerequiredin the ar-
chitecture. However, it is important to limit the
maximumnumberof layersto seven or eight, be-
causemorelayersintroducetoo muchimplementa-
tion andperformanceoverhead.An exampleis the
OSI model,that is sometimesdescribedasunman-
ageablewith its sevenlayers.To obtaintheoptimal
numberof layers,superfluouslayershave to be re-
movedandmissinglayershave to beadded.Super-
fluouslayersarecharacterisedby a largenumberof
servicesthatdo no morethanpasson information.
Suchservicesand the layerscontainingthem will
oftenbeskippedin designandimplementation,thus
violatingtherulesfor layering.Missinglayershave
to be addedwhenthepurposeof a serviceandthe
layer containingit differ. Also, whensomelayers
containsignificantlymoreservicesthanthe restof
thelayers,they have to besplit.

20 XOOTIC MAGAZINE



Coupling

Decomposinga systemis an importantrole of an
architectureand layeringcanbe a first stepin the
decompositionprocess.The next logical stepis to
decomposethe layersfound and so on. The final
result hasto be a numberof services,also called
modules,that have to be implemented. The goal
is to find modules,that canbe realisedby a small
numberof teammembers.

A module will not be an autonomouspart in an
architecture,but will have relationsto other mod-
ules. Thenumberof relationsandthe typeof rela-
tion betweentwo modulesdeterminehow muchthe
modulesdependon eachother. This dependency is
calledcoupling and plays an importantrole when
trying to determinethequality of a softwarearchi-
tecture.Theweakerthecouplingbetweentwo mod-
ules,themorebeneficialthis is to thearchitecture,
becausethe impact of changesto weakly coupled
modulesis smallerthan to strongly coupledones.
Furthermore,moduleswith few dependenciesare
easierto testandre-use.The total amountof cou-
pling is determinedby its typeandsize.Weakcou-
pling is achievedwhenthetypeis weak,seebelow,
andthesizeis small. Thedependency betweentwo
modulesincreaseswhentheamountof couplingin-
creases.

Threetypesof coupling canbe distinguished,see
[SD]:

� datacoupling: a moduledoesnot influencethe
behaviour of amoduleit is relatedto,but merely
passeson data.

� control coupling: a module influencesthe be-
haviour of adependentmoduleby sendingasig-
nal; no datais communicated.

� hybridcoupling:theintegrationof dataandcon-
trol coupling,i.e.,onemoduleusesdatato con-
trol thebehaviour of anothermodule.

Theweakesttype is datacoupling,becausea mod-
ule sendsinformation to anotherone without be-
ing concernedhow this datais manipulated. The
strongesttypeis hybrid coupling,becauseit is mis-
leading. A modulesendsdatato anotheroneand
is concernedhow the data is manipulated. How-
ever, theothermoduleis not awareof this,because
it receives dataand not a control signal. Control

couplingis strongerthandatacouplingbecausethe
influencingnature,seeFigure1 andFigure2. This
doesnot meanthat control coupling is inherently
bad,but it hasto be appliedonly whennecessary.
For exampletriggersto a device driver canbestbe
modelledvia controlcoupling.However, whencon-
trol couplingis chosen,the reasonfor usingit has
to bevalid andwell documented.

C

B

A

y2 = C.x2

y1 = B.x1

x2

x1

Figure1: Datacoupling

else

If ctrl then
E.v = w1

E.v = w2

E

w2

w1

v

ctrl

D

Figure2: Controlcoupling

Whentheresultof B is y1 while y2 is expected,the
causeof theproblemwill probablybe found in A.
WhenE resultsin w1 insteadof w2, the causeof
theproblemcanbein eitherD or E. D cansendthe
wrong control signal,but it is alsopossiblethat E
containsanerrorin theif-statement.An evenworse
scenariois that both D andE containtheerror de-
scribed.This will result in a systemthat functions
correctly, but containstwo errors.Only whenD and
E areusedseparately, theerrorswill surface.

Thesizeof thecouplingbetweentwomodulesis de-
terminedby thenumberof relationsbetweenthem
and the sizesof theserelations. The sizeof a re-
lation is determinedby the amountof information
thatis exchangedvia thatrelation.Keepingthesize
of thecouplingsmall is beneficialto thequality of
anarchitecture.

Sincecouplingis oftendepicted,thenumberof re-
lations can be determinedbut not the size of the
relations. Therefore,the interface descriptionfor
eachrelationalsohasto bepartof thearchitecture

March, 2000 21



in orderto determinethesizeof thecoupling.This
descriptioncontainsadetailedexplanationof all in-
formationthat is communicatedvia a relation. Via
the numberof relationsbetweentwo modulesand
thesizesof theserelations,thetotal sizeof thecou-
pling canbedetermined.

Decreasingtheamountof couplingcanberealised
in thefollowing ways:

� try avoiding hybridcoupling,
� usecontrolcouplingonly whenneeded,
� donotsendinformationfrom moduleA to mod-

ule B via moduleC whenthis informationcan
alsobe sentdirectly from A to B anda depen-
dency alreadyexistsbetweenthem,

� do not exchangeinformation that can also be
calculatedfrom data that is already received
(unlessthis is necessaryfor exampleto increase
theperformance),

� merge small modulescontainingfunctionality
thatis stronglyrelated,seenext section.

Cohesion

Cohesionis anotionthatappliesto individualmod-
uleswithin anarchitecture.Eachmoduleoffersser-
vices that are in someway relatedto eachother.
The type of this relation determineshow coher-
ent the servicesarewithin a module. Servicesco-
herestronglywhen the relationbetweenthemhas
a functional nature,this is called functionalcohe-
sion.Functionallycoherentserviceswill oftenhave
a lot of interaction,so distributing themover mul-
tiple moduleswill increasethe couplingwithin an
architecture.Apart from functionalcohesion,other
typesexist, see[SD]. A type that is often usedis
logical cohesion,becauseit depictstheway people
think. An exampleof logical cohesionis doingall
initialisation in onemodule.Usinga typeof cohe-
siondifferentfrom functionalis notnecessarilybad,
but thereasonsfor its introductionhave to bevalid
andwell documented.

Thefollowing exampleshowswhy functionalcohe-
sion is mostly preferableover for examplelogical
cohesion:

Input A
Input B
Input C

Proc A
Proc B
Proc C

Output A
OutputB
OutputC

Figure3: Logical cohesion

Input C; Proc C; Output C

Input B; Proc B; Output B

Input A; Proc A; Output A

Figure4: Functionalcohesion

SupposefunctionA representsaddition,functionB
multiplication, and function C division. Whenan
error is found in the outcomeof the division, the
solutionof Figure3 hasthreeeligible modulesthat
cancontaintheerror. Possibly, threemoduleshave
to beinspected,changed,andreviewedasaresultof
theerror. In thesolutionof Figure4, theerroris lo-
catedin thelowermodule,whichis theonlyonethat
hasto be inspected,changed,and reviewed. Fur-
thermore,the modulesin Figure 3 have coupling,
whichisnotthecasefor theonesin Figuer4. There-
fore, thesolutionin Figure4 is easierto testandits
modulesaremoresuitablefor re-use.

Documentation

Not only creatinganarchitectureis important,also
describingits shapeis crucial and often gets too
little attention. The descriptionof an architecture
shouldbepartof thatarchitecture.Theinitial archi-
tectureis commonlydevelopedby a groupof sys-
tem architectsafter which it hasto be deployed to
the restof the project team. This is only feasible
when the architectureis well documented,other-
wisetheteammemberscannotrealisethesoftware
in theway thearchitectureintended.

Thefollowing issuesareimportantwhendescribing
anarchitecture:

� use clear and unambiguoussentencesor use
mathematicalexpressionswhenpossible,

� distinguishvariousviews,seealsothenext sec-
tion,

� usesuitableandknown modellingtechniques.

Measuringthequality of documentationis perhaps
oneof themostdifficult exercises.No documenta-

22 XOOTIC MAGAZINE



tion is obviously a signof badquality, but anabun-
danceis alsounwanted.Whentoo muchdocumen-
tationis generated,it will bereadbadlyor notatall.
Furthermore,the review time will increaseexpo-
nentiallywhentheamountof documentationgrows.
Having gooddocumentationmeansthatall planned
documentsarewritten and that they conciselyde-
scribeall relevant issuesusingthe appropriateand
agreeddiagrammingtechniques.

Finally, it is importantto realisethatthedescription
of an architectureis primarily madefor the team
membersthat have to develop the system. They
have to be able to understandthe architectureby
readingits description.Therefore,it is importantto
payattentionto this whenreviewing thedocumen-
tation,possiblyby involving a numberof engineers
in thereviews of thearchitecture.

Views

To keepanarchitecturaldescriptionclear, it is use-
ful to describethedifferentissuestreatedby thear-
chitectureseparatelyin so-calledviews, for exam-
ple theviews asusedin theSONImodel.Thisway,
every issuecanbetreatedin themostsuitableway
making it easierto understand,for examplemod-
elling anobject-orientedmoduleinterconnectarchi-
tecturevia objectdiagrams.Furthermore,views al-
low thearchitectureto be reviewed in parts,so the
attentionof a review canfocuson theessentialsof
thatparticularview.

Thenumberof views thathave to be distinguished
in the descriptionof an architecturestrongly de-
pendson the systemthat hasto be realised. The
morecomplex a system,for examplereal-timeem-
beddedor parallelapplications,themoreviews are
necessaryin the architecturaldescription. Nor-
mally, theinitial numberof views will never betoo
big, becausepeopletend to describetoo little in-
steadof too much. Missing views are causedby
not describingcertainissuesof the architectureor
by describingmultiple issuesin oneview. Finding
missingviews canbe doneby looking at architec-
turesof comparablesystemsandby checkingthat
all partsof a view’s descriptionserve that view’s
purpose. When the latter is not the case,the part
thatdoesnot fit thepurposeeitherhasto belocated

in anotherexistingview or in acompletelynew one.

Whenusingmultiple views to describeanarchitec-
ture,thereis boundtobeduplicationof information,
for examplethenamesof modulesandrelationsthat
arerelevant in morethanoneview. Duplicationof
informationcan lead to inconsistencieswithin the
architecturaldescription. To avoid duplicationas
muchaspossible,the maximumnumberof views
hasto be limited to four or five. Furthermore,in-
consistenciescanbe avoidedby reviewing andus-
ing tools.

From measurable to general quality
criteria

Theeffectsof themeasurablequalitycriteria(layer-
ing, coupling,cohesion,documentation,andviews)
are directly proportional and strongly related to
eachother. A layeris in facta specialkind of mod-
ule,dueto its hierarchicalnature.Furthermore,us-
ing functionalcohesionwithin moduleswill mostly
reducethecouplingbetweenmodules.Documenta-
tion andviews arerelatedto all othercriteria, be-
causethey are usedto describethem and provide
a meansto deploy thearchitecture.Whenan opti-
malnumberof layers,weakcouplingbetweenmod-
ules,functionalcohesionwithin modules,sufficient
views, and good documentationcan be achieved,
thegeneralqualitycriteria(clarity, testability, main-
tainability, andextendibility) of anarchitecturewill
benefit.

Testability is a criterion that deserves somemore
attention. Not only becauseit is often neglected,
but also becauseweak coupling, functional cohe-
sion, andgooddocumentationalonearenot suffi-
cient to increaseit. In order to testefficiently and
effectively, it is necessaryto have facilitiesfor auto-
matictesting.Incorporatingthesefacilitiesin asys-
temafter its architecturehasbeendeployedmostly
createsproblems,becauseseriouschangeshave to
bemadeto thearchitecture.Therefore,facilitiesfor
automatictestinghave to bebuilt into theinitial ar-
chitecture.

Re-usabilityis a generalquality criterion that was
mentionedbut notelaboratedon. Creatingre-usable
modulesor layersin an architectureis not directly

March, 2000 23



beneficialto thecurrentproject,but it maybeto the
company. Re-usablemodulescandecreasethede-
velopmenteffort in futureprojectsthatrequirethese
module,thusdecreasingthecostfor thoseprojects.
Fortunately, themeasurablequalitycriteriahave the
sameeffectonre-usabilityasthey haveontheother
generalquality criteria.

Conclusion

Despite the fact that an architectureis partially
problemspecific,it is possibleto constructgeneral
guidelinesto assessthe quality of an architecture.
This article proposesa numberof suchguidelines,
but a moredetailedsetof rulesanddomainknowl-
edgeis requiredfor anactualassessment.

In essenceasoundarchitectureis onethathasfunc-
tional coherentmodules,has weak coupling be-
tween modules, and is well documented. This
makesanarchitectureclear, testable,maintainable,
andextendible.

The measurablequality criteria mentionedin this
article are not solely suitablefor assessingan ex-
isting architecture,but canalsobeusedto createan
initial architecture.Many times,aninitial architec-
ture is constructed,reviewed, anddeployed. How-
ever, why not assessit beforeit is deployed? Such
anassessmentcanbemadepartof thereview phase.
By assessingan initial architecturein a numberof
iterationsbeforedeploying it, thequalitycanbeim-
provedsignificantly.

References

[POSA] Pattern Oriented Software Architecture F.
Buschmann,R. Meunier, H. Rohnert,P. Som-
merlad,M. Stal.ISBN 0-471-95869-7

[SA] Software Architecture Perspectives on an
Emerging Discipline M. Shaw, D. Garlan.
ISBN 0-13-182957-2

[SD] Structured Design E.Yourdon,L. Constantine.
ISBN 0-138-54471-9

About the author

François Vonk is currentlyworking for Alert AutomationServicesb.v. as a
SeniorTechnicalDesignerin thefield of embeddedsoftware. On theside,he
is involved in SoftwareProcessImprovementby giving a coursein Personal
Software Process.This article is the result of a study into the discipline of
softwarearchitecturesthatwasstartedby Alert AutomationServices.François
holdsanM. Sc. in ComputingScienceanda Masterof TechnologicalDesign
in SoftwareTechnology, bothfrom theEindhovenUniversityof Technology.

24 XOOTIC MAGAZINE


