
Free the Software

Linux inside your TV?
Ruud Derwig

The Internet has enabled ’open-source’ software development, a process that
uses independent peer review and rapid evolution of source code to improve re-
liability and quality. Open-source licenses allow software modification, (re)use,
and redistribution, giving users perpetual, full access to software, indepen-
dence, choice, and control. This ’collective’ ownership motivates people to
contribute to the code base. The GNU/Linux operating system is an example
of a successful product of the open source community. During the past years
Linux has gained a strong position in the (Internet) server domain. Whether
Linux and other open-source software is an option for consumer electronics
products like television sets, DVD players and set-top boxes is the topic of this
article.

Introduction

Consumer electronics equipment found in people’s
homes today contains more and more software. The
functionality and complexity of home products in-
crease steadily and the size of the software needed
to realize these products is growing exponentially.
Whereas a few years ago the sizes of embedded
TV and set-top box software were measured in tens
or hundreds of Kbytes, today’s high-end products
contain Mbytes or tens of Mbytes. And all these
Mbytes have to be filled by (expensive) program-
mers. Wouldn’t it be nice to obtain large parts of
that software from third parties, and wouldn’t it be
even more nice to get it for free? This promise -
and a dose of Microsoft antipathy - is what lead to
many designers and companies in the consumer do-
main taking an interest in Linux and open-source
software. In order to discuss the possibilities of
developing consumer products with Linux inside,
first we present a number of trends and associated
features that will be introduced in new products
the coming years. Furthermore, some of the im-
portant requirements of the high-volume electronics
domain are explained. Then we delve into a num-
ber of technical issues that are relevant for deciding

on the feasibility of Linux inside your TV or other
consumer product. Next to the technical issues,
however, it might turn out that non-technical issues
like support, licenses, and development process are
even more important. After discussing these non-
technical issues this article is concluded with the
answer to the question: Linux inside your TV?

Tomorrow’s products

Trends

The Internet is entering the living room. Although
not spreading as fast as people thought - or hoped
- some years ago, new features that require Internet
connectivity are being introduced right now. Many
commercials being broadcast at Dutch television al-
ready present a URL pointing to a web page with
more information about a certain product. Instead
of running to the study, booting your PC, trying to
remember the URL, typing it into your browser and
finally getting to the content, wouldn’t it be nice to
push a button on your remote control and get the in-
formation on your TV screen? Several digital TV
service providers already have a web browser inte-
grated into their high-end digital receivers. But web
browsing on TV is not the only feature that needs an

June 2002 23



Internet connection. A network connection can also
be used for getting data that is not web-related like
e.g. the information needed for an electronic pro-
gram guide. Or it can be used for streaming audio
or video content, like for instance in an audio set
supporting not only traditional AM and FM bands,
but also IM - Internet Modulation - for receiving In-
ternet Radio stations.

Figure 1: Connected consumer devices form in-home
networks.

The Internet is not the only network entering the
home. Whereas today devices are operating stand
alone, with at most a cable connecting the VCR or
DVD player to a TV, in the future devices in the
home will be connected - either wired or wireless -
to form in-home networks. Instead of always having
to watch satellite channel movies in the living room,
because there the set-top box is connected to the TV,
the set-top box could redirect the movie through the
home network to the bedroom and the bedroom TV
could forward remote control commands back to
the set-top box. The same scenario applies to other
devices like for instance a storage device. While
watching the forwarded movie in the bedroom, for
instance, you get too sleepy to continue watching.
Instead of getting out of bed, sleepwalk to the VCR
and program it, a storage device connected to the in-
home network could be controlled from any place
in the house. Although a fully connected home net-
work is probably not going to be there in the near
future, the first digital receivers supporting a second
TV will enter the market soon.

Another development that is important for the Linux
discussion is the (r)evolution of hard-disk technol-
ogy. Storage capacity of hard-disks is growing ex-
ponentially, even faster than Moore’s law. Using
compression, it is possible to store about an hour of
high quality video in a Gbyte. This means that a 60
Gbyte hard-disk can store 60 hours of video. Be-
cause hard-disk bandwidth is high enough to sup-
port several video streams simultaneously, a hard-
disk enables new features like a pause button for
live broadcasts. The first hard-disk based video
recorders are available today.

The last trend we mention is the fact that consumer
systems are becoming more open, like PC plat-
forms. This means that new, third party applica-
tions can be downloaded and executed on existing
products. An example from the digital video broad-
casting domain is the Multimedia Home Platform
(MHP) standard. MHP defines a Java based execu-
tion platform for interactive applications. Next to a
subset of standard Java APIs it defines a number of
APIs to control the digital receiver features of a set-
top box, like tuner, service information database,
and video decoder. MHP applications range from
simple teletext like information services as a stock
ticker to e-commerce solutions for home shopping.

Requirements

From the trends and features described above a
number of new functional product requirements can
be derived. Future products must support various
forms of networking and connectivity. Furthermore,
various mass storage media - both optical and mag-
netic - and file systems must be supported. But be-
sides these new functions that seem to make con-
sumer products more PC like, the traditional re-
quirements from the high-volume consumer elec-
tronics domain still hold. People expect a high level
of robustness and ease of use from TVs and DVDs.
Frequent user reboots of a TV, because of system
crashes, are no option. Given the huge product
volumes and strong price erosion, the bill of mate-
rial of mainstream consumer products is under con-
stant pressure. This translates into a limited CPU
cycle budget and a limited memory footprint that
make efficient resource management very impor-
tant. In combination with the required robustness
and the real-time nature of audio and video, this

24 XOOTIC MAGAZINE



leads to the need for efficient, deterministic, pre-
dictable CPU scheduling and memory allocation.
Traditionally, small and efficient real-time kernels
were the only solution for meeting these timeliness
and predictability demands in a cost effective, re-
source constrained way. These small kernels like
CMX, pSOS and VxWorks, however, do not offer
the rich set of features that ”fat” operating systems
like Windows and Linux do. Since future consumer
products will depend more and more on a rich set of
networking, connectivity, and storage features, the
”fat” operating systems are entering the consumer
products market.

Technology

To what extend can Linux and other open-source
software meet the requirements of today’s and to-
morrow’s products? To answer this question we dis-
cuss three topics: real-time performance, memory
footprint and functionality.

Real-time performance

The standard Linux kernel pro-
vides soft real-time support ac-
cording to POSIX 1003.1b. A
priority based preemptive sched-
uler is available, with schedul-
ing latencies varying on a stan-
dard PC from a fewµs to 100 ms
or even more. Although average latency is usually
very low, responses in the order of 10 ms occur fre-
quently. Compared to for instance 20 ms deadlines
for a 50 Hz. video frame rate, it is clear that - un-
less a lot of expensive buffering is applied - plain
Linux cannot cope reliably with the requirements
from the video domain. This does not mean that
you cannot play DVD movies on a standard Linux
PC. Such a standard PC uses several Mbytes for
buffering audio and video. And even then, when
starting a web browser or receiving an e-mail while
playing the movie, on many occasions the video
is not displayed smoothly at a constant frame rate.
Therefore, from a real-time requirements perspec-
tive, the only way to build a robust consumer device
based on a standard Linux distribution is by solv-
ing all real-time requirements with extra hardware.
This can either be more memory for buffering, but

a more reliable strategy is adding an extra proces-
sor that takes care of the real-time control tasks. In
such a dual processor system the processor running
Linux can be seen as an application co-processor for
performing the non real-time best effort application
tasks.

Figure 2: Real-time Linux, a hybrid solution.

But Linux is open-source. So for each problem or
lacking feature somewhere in the world someone
can be found working on it. Although this is not
true for all lacking features, it does hold for the real-
time performance of Linux. And - following an-
other open-source tradition, the Darwinian survival
of the fittest - it is not a single person or project that
is providing a solution for improving the real-time
performance of Linux. A number of (sometimes
competing) alternative solutions exist. These solu-
tions can be classified in two groups, either enhanc-
ing the real-time performance of the Linux kernel
itself or enhancing system performance by combin-
ing Linux with a small real-time kernel.

Enhanced Linux

The greater part of the large worst-case scheduling
latency of standard Linux is caused by its mono-
lithic kernel design. Although user space activi-
ties are scheduled preemptible, kernel space activ-
ities are not. This means that operations like system
calls, ”bottom half” interrupt handlers and process
scheduling are completed once started, even if an
other higher priority activity is triggered (e.g. by
an external interrupt) and ready to be executed. To
reduce preemption delay in kernel space two solu-
tions are being worked on. The first one, called low-
latency patch, shortens the non-preemptible kernel

June 2002 25



paths by introducing explicit reschedule points in-
side the kernel. The second one, called preemp-
tion patch, exploits kernel extensions for support-
ing symmetric multi-processor architectures (spin-
locks). Instead of allowing preemption at specific
points inside the kernel, like the low-latency patch
does, the preemption patch enables preemption for
the complete kernel space, except for specific crit-
ical sections that should not be entered by more
than one thread concurrently. Most of these criti-
cal sections are already protected by spinlocks for
the multi-processor version of the kernel. By im-
plementing the spinlocks with mutexes in the sin-
gle processor build - instead of skipping the spin-
locks like the standard kernel does - the kernel be-
comes re-entrant. Of course the complete solution
is somewhat more complex than described here, but
a detailed discussion of both patches is not the goal
of this article. Although it is difficult to give accu-
rate worst case scheduling latency numbers for both
patches - numbers depend on different versions of
the patches, different hardware and different bench-
marks - it is generally assumed that both patches
can reduce maximal latency to sub ms numbers in
the order of hundreds ofµs.

Another approach to enhancing the real-time per-
formance of Linux targets the scheduler. The stan-
dard Linux scheduler is optimized for throughput
and fairness, not for real-time responsiveness and
predictability. Although the scheduling policy for
application processes can be set to the traditional
priority based preemptive scheduling offered by
real-time kernels, the implementation of the Linux
scheduler still can be improved for better and deter-
ministic performance. Other improvements to the
scheduler include new scheduling policies like the
budget based scheduling found in resource kernels.

Hybrid solutions

RTLinux and RTAI are two approaches to achieve
hard real-time behavior, generally referred to as
’real-time Linux’. Essentially, these projects are
constructing their own real-time kernel. This ker-
nel runs Linux as its lowest priority task. All the
standard services of the Linux kernel and Linux ap-
plications are available (although without the real-
time guarantees), yet real-time threads and han-
dlers can run with minimal, hardware limited, la-
tencies. Real-time Linux solutions can guarantee

interrupt latencies of severalµs and scheduling la-
tencies in the order of 10µs The major drawback of
these solutions is that the improved real-time perfor-
mance only holds for the real-time kernel part. Stan-
dard Linux device drivers do not become real-time
drivers by using a real-time Linux variant. Drivers
may disable interrupts for up to hundreds ofµs and
violate other standard real-time design rules. In or-
der to use those drivers in the real-time domain, they
have to be rewritten.

Footprint

Although the memory available in consumer de-
vices is growing, memory remains a scarce re-
source. The main reason is that the larger part of the
Mbytes that are available in high-end digital prod-
ucts are used for buffering and rendering audio and
video data. Also graphics consume more and more
memory. Besides a framebuffer (sometimes dou-
bly buffered) a considerable amount of memory is
spent on built-in fonts and bitmap graphics. Finally,
new features like a web browser or Java virtual ma-
chine have a large impact on the remainder of the
memory that is not used for audio and video data.
Traditional real-time kernel sizes are in the order of
100 Kbytes or 10 Kbytes for small kernels. A min-
imal desktop Linux system requires several Mbytes
of memory, without a graphical user interface like
X. Of course not all libraries and modules that are
needed on a desktop PC are needed on a TV or set-
top box. By selecting specific features and disabling
others, standard Linux distributions are reasonably
scalable. Some commercial embedded Linux dis-
tributors even provide special tooling for configur-
ing and scaling down Linux. However, assuming
Linux is chosen in favor of a real-time kernel be-
cause of its rich set of features, it is fair to state that
a minimal embedded Linux solution requires sev-
eral Mbytes of memory.

And that is just the kernel. When adding applica-
tions and services like a desktop window system,
web browser and Java virtual machine, total mem-
ory requirements are in the order of tens of Mbytes..

But Linux is open-source. Just like on the real-time
performance, several projects are working on reduc-
ing the memory footprint of Linux based systems.
We name two examples here.

The standard GNU C library that most applica-

26 XOOTIC MAGAZINE



tions dynamically link to requires about 1.3 Mbytes.
That’s a lot of memory, especially if only a few
functions are used - printf does not always make
sense inside a TV. When linking statically to the li-
brary, code that is not needed can be stripped, re-
sulting in a minimal size of about 300 Kbytes. But
then, each application duplicates this code. Several
small and scalable C library implementations, like
’uClibC’, ’DietLibC’, and ’newlib’ have been or are
being developed for embedded applications, reduc-
ing the memory requirements to several Kbytes.

Graphical user interfaces and window systems that
are used in standard Linux versions do not meet the
requirements of the embedded consumer domain.
Besides a large footprint, standard solutions are
not optimized for interlaced TV displays or small
LCD screens. There are many open-source (and
commercial) projects that deal with those issues.
Again, we name two examples. The ’MicroWin-
dows’ project works on a small modern graphi-
cal windowing environment for embedded applica-
tions. It supports an API based on Win32 GDI,
with a footprint below 100 Kbytes. ’Qt/Embedded’
is a solution that is scalable from 800 Kbytes to 4
Mbytes. It aims, among others, at consumer devices
like set-top boxes and PDAs.

Functionality

The technical motive for choosing Linux is not its
real-time behavior or memory footprint. It is the
rich set of features that ease development and en-
able a short time to market. Linux supports most
of the new functions that we see entering consumer
products in the coming years. It is a fully featured,
high-end operating system that supports multiple
processors, processes and users, that supports net-
working and many file systems, and that provides
memory protection and security options. Apart
from generic services and implementations of stan-
dard protocols, specific support can be found for a
wide range of processors and peripherals, including
standard (wireless) network cards and IDE drives,
but also including a/v consumer domain specific pe-
ripherals like (digital) TV cards, IEEE 1394 high
speed digital interface, and BlueTooth devices. Ad-
ditionally, since sources of all drivers are open, the

effort required to realize a new driver for not yet
supported hardware is less than it would be when
starting from scratch.

Next to the features that are built into the Linux ker-
nel, many utilities, middleware and applications ex-
ist. Although most of them are targeted at desk-
top or server systems, a large number of them can
be put to account for the consumer domain be-
cause of the convergence of PC and consumer func-
tionality. Furthermore, because of the big mo-
mentum for embedded Linux solutions, more and
more middleware and applications become avail-
able that are specifically targeted at embedded de-
vices. One just has to take a quick look at a site like
www.linuxdevices.com to realize this. We mention
a few examples that are relevant for the consumer
domain. Many projects deal with web browsing
on embedded platforms. Both open-source solu-
tions, like ’viewML’, ’Konqueror/Embedded’, and
commercial solutions like the ’Opera’ web browser
that runs on top of the ’MicroWindows’ environ-
ment are available. Other open-source projects and
commercial companies are building (digital) TV
receivers including electronic program guides and
hard-disk video recording on top of Linux. Ac-
tivities range from open-source initiatives like the
’vdr/LinuxTV’ project - developing ’personal video
recorder’2 software -, via associations like the ’TV
Linux Alliance’ - standardizing platform interfaces
-, to companies like ’TiVo’, that offers a personal
video recorder service and set-top box on subscrip-
tion basis.

Figure 3: The TiVo personal video recorder.

2Personal video recorder is the phrase used for indicating hard-disk based video recorders that support functionality like a
pause-button and automatic recording of all broadcasts of your favorite soap series.

June 2002 27



Non-technical issues

How free is free software? Throughout this article,
we deliberately use the term open-source instead of
the term free software that is commonly adopted
too. The free part of free software refers to the free-
dom towards users that is ensured by licenses. And
although the business models associated with open-
source software are usually not based on paying for
the actual software and intellectual property that the
software represents, free software is not free of cost.
In order to use open-source software in software
intense high-volume electronics products, for in-
stance, professional support and training are impor-
tant too. Today, the support you can get from com-
panies specialized in embedded or real-time Linux
is comparable to what you get from traditional real-
time kernel vendors. Quality is good and prices are
fair, among others because of the competition be-
tween different suppliers that do not hold technol-
ogy locks on their customers with specific real-time
solutions or tools.

Another cost factor that people tend to forget when
talking about free software is licensing. Since there
are several important licensing related issues, it de-
serves a section on its own.

Licenses

The idea of open-source software dates back to the
software-sharing community of the MIT Artificial
Intelligence Labs. When this community dissolved,
one of these people, Richard Stallman, continued
to write what he called free software. He later
formed the Free Software Foundation that is respon-
sible for many of the GNU applications. Several
open-source licenses exist nowadays, like e.g. the
GNU General Public License (GPL) and Library (or
Lesser) General Public License (LPGL), the BSD or
Berkeley license, and more recent variations such as
the Netscape and Mozilla Public Licenses and the
Sun Community Source license. The term ’copy-
left’ is also used, especially with the GNU licenses,
because the central idea is to give everyone per-
mission to run, copy, and modify the program, and
to distribute modified versions. It is, however, not
permitted to add restrictions. With many of the
licenses modified versions of the software must,
upon redistribution, provide the same freedom to
users, including availability of the modified source

code. One of the differences between these licenses
is in the terms for combinations with proprietary
software. For example, linking proprietary closed-
source applications with GPLed libraries is not al-
lowed, but linking them with LGPLed libraries is.
Linking binary modules into the Linux kernel is
generally allowed due to an explicit license exemp-
tion granted by Linus Torvalds.

The availability of modified source code that GPL
and GPL-like licenses require, has both advantages
and drawbacks. It enables open-source communi-
ties and projects and has helped Linux to become
the feature rich operation system that it is today. For
high-volume consumer electronics manufacturers it
means lower bill of material costs, since no run-time
license fees are due. But it can also mean that the
manufacturer’s specific intellectual software prop-
erty and added value is no longer protected when
specific enhancements and additions to the copyleft
licensed source code have to be opened up. And
when this intellectual property is also protected by
patents, the situation becomes very unclear from
a legal point of view. By incorporating GPL li-
censed software into a product, the manufacturer
grants users the right to freely use and distribute
the manufacturer’s modifications and additions. On
the other hand, patent laws disallow the free use
of these modifications and additions when they are
protected by patents.

Because of the fact that open-source licenses have
never been tested in court, companies that con-
sider incorporating open-source licensed software
into their product should make a trade-off between
the time to market and cost advantages and the le-
gal intellectual property risks. Next to this legal
risk, also the public image of the company should
be considered. In the spirit of freedom of use and
sharing, the open-source community has little re-
spect for companies that only use software for their
own commercial benefit. Furthermore, the princi-
ples and ideas behind open-source software are not
in line with traditional patent protection. On the one
hand many members of open-source communities
feel that software patents, that restrict the free use
of software, hinder innovation. On the other hand,
patent-minded people feel that the protection and
possible financial rewards stimulate companies to
invest in innovation. Without proper protection of
intellectual property rights, the huge research and

28 XOOTIC MAGAZINE



development investments that are needed for break-
through innovations would not be affordable.

To overcome some of the disadvantages of GPL,
companies like Sun have introduced semi-open-
source licenses to exploit the open-source advan-
tages while simultaneously protecting their intellec-
tual property and taking benefit from community-
constructed add-ons. The dual licensing of Qt’s
graphical windowing environment is another ap-
proach. It can either be used free of charge, but pro-
tected by GPL, or companies can choose to com-
mercially license the same software that can be
combined with own applications without restric-
tions.

Process

The final subject we discuss does not concern the
products of open-source, but the way these products
are developed. Given the fact that traditional devel-
opment processes do not scale up very well to cope
with the large team sizes that are needed for com-
plex products, open-source development processes
can be an interesting alternative.

Re-use of software is often seen as the solution for
coping with the increasing complexity and strong
time to market requirements. Software re-use, how-
ever, turns out to be very challenging in practice. It
is very difficult to take an arbitrary software com-
ponent from one product and put it to use in an-
other product. Reasons vary from strong context
dependencies of a component, quality problems and
lacking documentation, to architectural mismatch.
One way of eliminating these obstructions for re-
use, is to centrally enforce a common architecture
and common processes for documentation, quality
control, etc. However, when development projects
grow in size - a modern, high end TV requires over
100 man years of software - or are executed over
different locations and time zones, the overhead of
centrally enforcing and checking the architectural
and process rules grows exponentially, if possible at
all.

The other way of dealing with the re-use obstacles
is the open-source way. The distributed nature of
open-source projects, with many contributors that
communicate through the Internet, scales much bet-
ter than a centralized approach. The basic idea is
very simple. When programmers can read, redis-

tribute, and modify the source code for a piece of
software, it evolves. People improve the code, adapt
it, and fix bugs. And this can happen at a speed that,
in comparison to the pace of conventional software
development, may seem astonishing. Several com-
panies are experimenting with open-source like de-
velopment processes. Either through projects that
are truly open to the public community, or through
so-called ’inner-source’ projects that aim at creat-
ing and leveraging communities inside a company.
Main challenge for these experimental development
processes and organizations is to find the right bal-
ance between centrally managed and distributed de-
velopment activities. Without some central guid-
ance and direction, software will not evolve into the
right (commercial) directions.

Conclusions

Linux is gaining a lot of mo-
mentum in the consumer elec-
tronics domain. Although real-
time behavior and memory foot-
print do not yet allow Linux to
be used in all mainstream con-
sumer products, the rich featur-

ing makes Linux a serious candidate for today’s and
a very serious candidate for tomorrow’s high-end
products.

Using Linux and other open-source software can be
very tempting from a technical and time-to-market
point of view. The freedom that open-source ad-
vocates, however, is mainly freedom to end-users
and does not necessarily match with the intellectual
property business interest of consumer electronics
manufacturers. Given the legal uncertainty - open-
source licenses have never been tested in court - at-
tention must be paid to reducing the risks, for in-
stance by avoiding linking to GPL software or only
linking binary modules into the Linux kernel.

Open-source software influences the consumer
products of tomorrow. If not by being incorporated
into products, then by adopting certain aspects of
the open-source development process that promotes
sharing and re-use of software. This leads us to our
final conclusion. Linux inside your TV? Probably
sooner than you think!

June 2002 29



Ruud Derwig
(Ruud.Derwig@philips.com)
is working at Philips Re-
search on software platform
architectures for resource
constrained products in the
consumer electronics do-

main. Key areas of expertise
are real-time kernels and op-
erating systems, resource aware component archi-
tectures, and heterogeneous software architectures.
Before joining Philips Research he followed the
post-masters Software Technology program (OOTI)
at the Eindhoven University of Technology.

30 XOOTIC MAGAZINE


