
A multidisciplinary model-based test and
integration infrastructure 1

Will Denissen

Current market trends like shorter time to market, faster return on investment,
flexible product families, first time right etc., will put strong requirements on
the development process of manufacturing companies. In this article we will
present a test and integration infrastructure that supports the development
process in these changing markets.

Introduction

ASML[4] is the carrying industrial partner within
the Tangram[5] project and needs support for their
test and integration challenges. Because no single
solution to this problem exists a broad approach
is taken in the form of four different lines of at-
tentions, each defined to tackle a different part of
the test and integration problem. These lines of
attention are: test strategy, model based testing,
model based diagnostics, and test and integration
infrastructure.

In this article we will concentrate on the last line
of attention and present a multidisciplinary model-
based test and integration infrastructure. It is devel-
oped and used within the Tangram project and must
support the other lines of attention.

The article is organized as follows. In the first sec-
tion terminology is introduced that will help the
communication between the different disciplines
for which the test and integration infrastructure is
developed. In the second section, different kinds
of testing are presented which serve as use cases
for the test and integration infrastructure. The third
section describes the early integration concept for
multiple disciplines. Then the design of the test and
integration infrastructure is given.

Terminology

An extra challenge in multi-disciplinary testing
w.r.t. mono-disciplinary testing is that each dis-
cipline uses its own terminology and some terms
overlap and therefore might be misinterpreted. The
disciplines we distinguish are:system, software,
electrical, mechanical, and optical engineering.

To identify when and wheretesting activities can
take place we have to concentrate on thedevelop-
ment process(the classical v-model) as used within
ASML. Figure 1 shows the differentdevelopment
levels and differentdevelopment phasesthat can
be identified in the ASML product development
process.

For a new product a typical sequence of activities
will follow the curved arrow representing the time
axis. Going from a single system designdecompos-
ing it into several sub-systems up until an array of
unit level designs. For each unit level design a re-
alisation is constructed. Unit realisations arecom-
posedinto subsystems and finally into a single com-
plete system realisation.

The two sided arrows depict for each development
level and development phase that atesting activity
can occur. From our perspective a testing activity
is no more than checking the consistency between
two entities. These entities are eitherdesigns(in the

1This work has been carried out as part of the TANGRAM project underthe responsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

December 2005 35



Methodology

Part
Model

Whole 
��

part model

System

Sub
system

Unit

Design Realisation

D
evelo

p
m

en
t L

evels

Development phases

Models 
��

Realisation

Aspect
Model

Parts 
��

Whole realisation

Part Whole

Mental 
��

Formal model

Formal
Model

Mental
Model

Requirements

Simulator

Testing = checking consistency

Indirect Testing

SUT
Model

Env
Model SUT

SUT = system under test

Figure 1: Different kinds of testing at different development levels andphases

form of documents, models, executable models) or
realisations (in the form of libraries, executables,
hardware or a combination of both). We will de-
liberately not talk about validation and verification
because both approaches assume that one of the en-
tities is correct and the other is incorrect. In prac-
tice both entities might need a correction. That’s
the reason why testing is depicted as a two-sided ar-
row. The definition and characteristics of each test-
ing activity together with some examples is given in
a separate section.

Development levels

At each development level a different level of ab-
straction is used to describe the system. The dif-
ferent development levels range from the high-level
system level, via one or moresubsystem levelsup
to the most low-levelunit level. Going from high-
level to low-level development levels the amount
of information increases, describing more details of
the system. The same holds for the amount of de-
signs, realisations, and people involved.

At each level, possibly different groups of experts,
playing a different role, cooperate in making a de-
sign for that level. At each level the design contains
as much detail as relevant for that level. To cope
with complexity the design at a certain level (the
whole-design) is decomposedinto a set of designs

(thepart-designs) at the next lower level. The ex-
perts at a certain level expect that the experts who
are filling in the part-designs do not violate their
whole-design. Each expert will develop his or her
own mental model of the design they work on as a
group. Thewhole-realisation, which iscomposed
from theparts-realisationwill be tested at the same
level of abstraction as the whole-design. Both the
designand therealisation fulfill the same set of re-
quirements.

System level

At system level there can, by definition, be only one
design and one realisation. There is no level above
the system level. The group of people involved is
typically small and theirrole is that of asystem en-
gineer. Based on their skills, experience, and com-
mon practice they will create or select a proper de-
sign. The design will typically deal with identify-
ing and naming the subsystems and identifying and
naming their interactions asinterfacesand allocat-
ing budgets over these subsystems, without filling
in the details of these sub-systems.

Sub-system level

A subsystem level is, by definition not the system
level and not the unit level. There can be zero or

36 XOOTIC MAGAZINE



more subsystem levels. At subsystem level each
part-design of its next higher-level whole-design is
filled in. The group of people involved is typically
of medium size and originate from different disci-
plines.

Unit level

A unit level is, by definition, the most detailed level
of design and realizations. There are no levels be-
low a unit level. Over all units, a lot of people are
involved from different disciplines. For a given unit
the experts originate from a single discipline. The
designs are typically so detailed and complete that
subcontractors can make (e.g. Electronics: PCB
manufacturers) or tools can generate (e.g. Software:
compilers, Mechanics: CNC-machines) realisations
out of it .

Development phases

Two development phases can be distinguished, ade-
sign phaseand arealization phase.

Design phase

In the design phase all kinds of information about
the system’s structure, behavior or operating con-
straints are collected and archived. Some informa-
tion will end up in documents and others in models.

A design can contain severalmodels. There are two
types of models:structural models (e.g. a class di-
agram in UML[10], or a mechanical model in Un-
igraphics) andbehavior models (e.g. an activity
diagram in UML, or a 3D kinematic model). A be-
havior model is called anexecutable modelwhen
asimulator can execute it. The simulator simulates
the executable model according to a certainpara-
digm (e.g. discrete event DE, communicating se-
quential processes CSP, Continuous time CT, Hy-
brid (DE + CT)). A simulator has a notion of logical
time that can either run faster or slower than wall
clock time. Every simulator is based on the same
implementation pattern. A modeler can specify a
model as relations between modeling entities form-
ing a set of equations. The simulator will solve this
set of equations for the current logical time, calcu-
lates the logical timestep, and advances the logical
time with this timestep. This sequence is repeated
until the end of logical time is reached.

Each model will only model a specificaspect(e.g.
temperature distribution, resource scheduling) of
the system. In the design phase interactions be-
tween models will be identified. Aninterface de-
scribes and names such an interaction.

Realisation phase

In the realisation phase the different realisations
come to completion, part realisation will be assem-
bled, tested and integrated into whole realisations.

A realisation is something that consumes resources
(materials, space, time, memory footprint etc.). Re-
alisations have commercial value; they are costly to
build and/or to maintain. Realisations have identity.
Two realisations can be identified by their product
numbers, but both can be build from the same de-
sign.

In a realisation all kinds of different aspects are in-
trinsically combined and will influence each other
in the form of interactions. Some interactions are
known at design time and can have a model coun-
terpart in the form of model interfaces and might
be realised asreal interfaces (e.g. electronic con-
nectors, software function calls, optical light paths)
but others might yet still be undetected (hidden in-
teractions) (e.g. physical aspects due to the small
nanometer scale of operation).

The discipline interfaces within a realisation are
typically layered as shown on the right side in Fig-
ure 3. The interactions between disciplines occur
only at the given interfaces. A interaction, for in-
stance, between an optical lens and a software state-
ment is hard to imagine without an electronic inter-
face in between.

Kinds of Interfaces

In both the design phase and the realisation phase,
interfaces between sub-systems or units exist but
their nature of interaction are quite different. There-
fore, two kinds of interfaces can be distinguished;
model interfacesandreal interfaces. The charac-
teristics of each of them will be described below.

Model interfaces

Model interfaces model the flow of abstract in-
formation between models. The information flow

December 2005 37



between models are a kind of data streams. At
each logical clock increment, which are discrete
moments in time a simulator will send/receive a da-
tum to/from one or several other simulators. The
logical clock of each involved simulator needs to
be synchronised with other logical clocks. This can
be done directly by a separate logical time manager
or indirectly by configuring all participating simula-
tors such that all logical clocks start at the same log-
ical time with the same logical increments. Model
interfaces are visualised in Figure 3 as a line crossed
by a dotted line.

Real interfaces

Real interfaces incorporate both data and control
flow of an interaction at unit level. Real interfaces
are visualised in Figure 3 as a line crossed by a bold
line, and can be annotated with its type. Currently
we distinguish only real software, electronical, and
physical interfaces. Both the real software and real
electronic interface has a notion of direction. The
flow of information takes time to travel from the
producer to the consumer.

For real software interfacesthe information flow-
ing through the interface is the exact function call
with all its parameters properly filled in, in the ex-
pected order, atdiscrete moments in timewithout
knowing when the actions will actually take place.

For real electronical interfaces the information
flows through electrical wires. The interface de-
scribes the signals, their shapes, duration, and con-
nector with the proper mechanical dimensions. Dig-
ital interactions can take place only at discrete
events (at the clock ticks). Analog interactions take
place in continuous time.

Forreal physical interfacesthere is no notion of in-
formation flow or causality, the interface just identi-
fies an interaction between two or more entities and
take place incontinuous time. Some interaction
might exist in real life but not been detected/known
by the developers. An example of a real physical
interface is a collision between two mechanical en-
tities which occurs instantly and continuously.

Different kinds of testing

Now that we have introduced our terminology we
can concentrate on describing the different kinds

of testing that can take place in the development
process (i.e the two-sided arrows in Figure 1). The
testing process needs to be described because it pro-
vides the use cases and requirements for the test and
integration infrastructure that we have designed and
build. In the following subsections we will describe
each kind of testing as depicted in Figure 1 around
the development process.

Mental ↔ Formal model testing

At each development level adesigner is involved
that needs to come up with adesign that fulfills
the requirements. Given the requirements a lot of
designs can be found that all fulfill the same re-
quirements. This set of designs, is called thede-
sign spacefor the given requirements. While mak-
ing a design new parts will identified and their re-
lations. Some parts might be designed as com-
mon/commercial off the shelf (COTS) parts. Others
might be a commonly used interface in the form of
a design pattern. But whatever the design will be it
will impose new/more detailed requirements on its
parts (i.e the next lower development level). It is the
designer’s role to find such a design that fulfills the
requirements at his level and minimises the lower
level requirements and maximises theirdesignabil-
ity .

Because a designer has a freedom of selecting a de-
sign from a design space, he/she needs to get some
feeling of how his design will look like (structure)
or behaves. Preferably a designer will use a com-
puter added design (CAD) tool to support his de-
sign activities. With such a CAD tool the designer
builds up amental modelon the structure and be-
havior of his design. In order to use his CAD tool he
needs to express his design in aformal model. The
formal model that expresses the design is commu-
nicatable among other developers because of its un-
ambiguous semantics. His mental model however
is not transferable because, it will never be as com-
plete, accurate, or unambiguous as a formal model.
A developer can also never cope with the different
versions of designs that might pop up and all the
implications that the combinations of these designs
might have.

The mental model of the developer is kept
aligned/synchronised/consistent with the formal
model. The developer will learn from the formal

38 XOOTIC MAGAZINE



model and adjusts his mental model accordingly.
The formal model becomes more detailed until it
mimics the behavior from the mental model.

Whole↔ Part model testing

Testing whole models with part models all have to
do with decomposing a design in a set of sub de-
signs. This decomposition of whole designs into
parts designs is typically aligned with the whole re-
alistion and its parts realisation. There is typically a
one to one relation between whole and parts models
and realisations at each design level.

Decomposing a whole model into parts models is
nothing new within a single discipline, and is the
basic pattern to handle complexity. For instance,
a system engineer can decompose his budgets in a
hierarchical manner. A software engineer can de-
compose his software program in a set of subpro-
grams. An electrical engineer can decompose his
electrical model into a set of sub models. Some sub
models might be standardised into a library of mod-
els (e.g. software: mathematical library, electron-
ics: counters, clock dividers, mechanics: robot arm,
gearbox).

The testing activity inwhole ↔ part testing con-
sists of checking that the developers who will come
up with the part designs do not violate the require-
ments imposed on the whole design and vice versa.
Once a discrepancy is detected either the whole or
the part models need to be modified such that they
together are consistent again.

Part ↔ Whole realization testing

Part↔ whole realisation testing occurs the moment
the different part realisations are assembled together
(a.k.a. integration phase). The kind of problems you
observe, are typically related to resource conflicts or
unknown interactions. For instance, assembling to-
gether different software realisations (e.g. libraries,
executables) might show that the memory footprint
of the whole exceeds the available memory.

Assembling mechanical parts might uncover in-
compatibilities. The shared resource could be the
space the parts may occupy at a given moment in
time. Something similar occurs in electrical engi-
neering. The fan-in and fan-out of the active electri-
cal parts must match when assembled into a whole

otherwise the quality of the electrical signals will
degrade.

Resources might be shared by different disciplines.
For instance, a certain volume might be blocking an
optical light path by a mechanical component. Or
the mechanical materials used might outgass such
that the optical lenses get polluted. Typically struc-
tural interactions (without a time dependency) are
directly detected while assembling. Behavioral in-
teractions can only be detected when the whole re-
alisation can be executed/used/employed according
to its use cases.

Normally most of the interactions are expected be-
cause the were already known by experience or
from previous similar systems, these interactions
are then also modeled in the design phase. Un-
known interactions are typically detected in this
testing activity. Judging whether the whole realisa-
tion is functioning correctly is done indirectly. First
the part realisations are tested with their part models
on conformity, then the whole realisation is tested
on its conformity with its whole model.

Model ↔ Realization testing

Model ↔ realisation testing is normally known as
conformance testing. The to be build realisation is
described by models, each capturing a different as-
pect. For each model the realisation must conform
in structure and behavior. Both the models and the
realisation areopen, i.e. the interaction with their
environment is modeled. The interfaces and their
kind (software, electronics, physical) are identified.
The behavior of the environment is modeled as a set
of use cases. A realisation conforms to its models
when both the observations of the model and the re-
alisation are identical when the same set of use case
are applied to them.

Testing a given aspect of a realisation is typically
done in an indirect way as depicted in the upper
right part of Figure 1. Given a model an environ-
ment model (in the form of atest suite, a set of
tests or use cases) is constructed against which the
(system under test (SUT)is tested.

In manual Model ↔ Realization testing the test
designer derives manually, the test suite from a
model of the SUT. The test developer than imple-
ments an autotester that hard codes this test suite,
that the SUT must pass.

December 2005 39



In model based Model↔ Realization testing
however, the test cases are automatically derived
from the SUT model. The model based autotester
interprets the model of the SUT and derives on the
fly test cases from it. The model based autotester
controls the SUT and observes its reactions. The
model based autotester can judge, based on the ob-
servations of the SUT, whether the SUT is reacting
correctly or not.

Early integration

Looking at Figure 2, we can see how a system is
decomposed into two subsystems, how each subsys-
tem gets designed and implemented in several ver-
sions. Due to the fact that models and realisations
reach completion at different moments in time there
is no clear point in time where we cross the design
and realisation phase.

We therefore distinguish three integration phases,
indicated by vertical dotted lines. Themodel inte-
gration phasestarts a soon as there are part-designs
of the system design available, which share at least
one design interface. It stops as soon as the first
unit realisation is available. Themixed integra-
tion phasestarts a soon as the first unit realisation
is available and stops as soon as the last unit realisa-
tion is available. Therealization integration phase
starts a soon as the last unit realisation is available
and stops as soon as the system realisation is avail-
able.

Although the system architects are fully aware
of the interdiscipline/interproject interfaces be-
tween the subsystems (they have identified them in
the first place), they become poorly managed during
the red marked time interval.Errors made, either
design errors(detailing designs that violate the in-
terdiscipline/interproject design interfaces) orreal-
isation errors (realisations that violate the interdis-
cipline/interproject realisation interfaces) in each of
thoseswimlaneswill only be discovered after the
composition of the subsystem realisations into the
system realisation.

Because of the possibility to introduce interdis-
cipline/interproject interface violations very early
(i.e. after decomposition) and the fact that these can
only be detected very late (i.e after composition) in
the development process, together with the fact that
late detection results in costly repairs, we think tool-

ing can perfectly help in managing these interdisci-
pline/interproject interfaces, especially when a lot
of subsystemss and versions are flowing around.

The brick wall in Figure 2 symbolises the behav-
iour that occures when responsibilities are distrib-
uted over serveral projects and/or different disci-
plines. Either side of the wall might feel that he
is the owner of the interface and starts to define one.
The other party is hardly involved because they have
not yet reached the point where they need to work
with the interface. As a consequence they get in the
end confronted with an interface which is defined
from only one perspective.
Another scenario might be that both define an inter-
face in the beginning but this interface is expressed
in there own development environments and start to
deviate from each other during both developments.
Nobody guarantees that both interface descriptions
are equal. Better would it be when there is only
one interface description owned by a system archi-
tect from which specific interface descriptions are
derived.
The fact that there is such a brick wall makes it
easy to export your problems to someone else by
just throwing it over the wall. Both parties might
even insist on having such a brick wall just because
of this. We think that especially tooling might help
in solving these kinds of problems.

In the next subsections we will elaborate on the dif-
ferent integration phases because they impose dif-
ferent requirements on our test and integration in-
frastructure.

Model integration phase

In the model integration phase only model inter-
faces exist. The integration environment that is
needed during themodel integration phase is one
that can support model interfaces between different
structural and behaviour models and is called asim-
ulation environment. The simulation environment
can manage the dependencies between models by
facilitating communication between simulators that
run these models.

Mixed integration phase

In the mixed integration phase a mixture of model
interfaces, real interfacs exist. The integration envi-

40 XOOTIC MAGAZINE



Development process

Decompose Integrate

Time

Subsystems from 
different disciplines

or projects

Model integration Mixed integration Realisation integration

Integration phases

Sub
Syst B
Ver. 0

Sub
Syst B
Ver. 1

Sub
Syst B
Ver. 2

Sub
Syst A
ver. 0

Sub
Syst A
ver. 1

Sub
Syst A
ver. 2

System
System
model Test

Sub
Syst A
Ver. 0

Sub
Syst A
Ver. 1

Sub
Syst A
Ver. 2

Sub
Syst B
ver. 0

Sub
Syst B
ver. 1

Sub
Syst B
ver. 2

Simulation env Test env Real-time env

Figure 2: Early integration phases

ronment that is needed during themixed integration
phase is one that can manage both model interfaces
between different (structural and behaviour) models
and real interfaces between realisations and is called
a test environment. It must be capable of bridging
information flowing through model interfaces into
information flowing through real interfaces.

Realisation integration phase

In the realisation integration phase only real inter-
faces exist. The integration environment that is
needed during therealisation integration phase is
one that can manage the real interfaces between dif-
ferent realisations and is called anreal-time envi-
ronment. A real-time environment is part of the
system and is as such developed in the development
process. The real-time environment must manage
the control dependencies between realisations in
real time.

Test and integration infrastructure

Figure 3 shows the test and integration infrastruc-
ture. Four different environments can be identified:
Simulation, Prototype, Test, and Real-time. Each
environment will be described in the following sub-
sections.

For the complete test and integration infrastructure
the following requirements must hold.

• The same test and integration infrastructure
must be used: In each development phase, for
each development level, for each discipline.

• All existing parts (simulators and realisations)
need to be integrated as is, without any modifi-
cation.

• All newly designed parts of the test and integra-
tion infrastructure must be based on open stan-
dards, commonware or COTS tools, to avoid
vendor locks.

• The test and integration infrastructure must be
open for future extensions or unforeseen inter-
actions between environments.

• The test and integration infrastructure must be
applicable for other High Precision Equipment
Manufacturers. Therefore the ASML specific
parts will be isolated as much as possible from
the rest of the integration and test infrastructure.

Simulation environment

A simulation environment allows co-simulation of
several models from different disciplines at the
same time. The following aspects must be taken
into consideration when designing the simulation
environment.

• In Mental ↔ Formal model testing, each dis-
cipline uses their own simulators, which have
proven their usability within that discipline.
Commonly used simulators are: Simulink[7],
Visual Elite[11], LabView[2], Unigraphics[13],
and SystemC[12]. The developers are familiar
with these simulators and have invested consid-
erable effort in building specific models. The
simulation environment must therefore fully in-
tegrate and support these simulators as they are.

December 2005 41



Control bus

Prototype env.

Language binding
• C/C++
• Java/Python
• Matlab*

Data bus

Tangram Tools
Common Busses

Existing models

Realisations

Real time env.

Model binding 
• UML
• Simulink
• Visual Elite

Data
EL

bridge

Test
env.

TTCNAdaptor

Data
SW

bridge

Simulation env.

Operating systems
• Solaris
• VxWorks
• Linux
• Windows

Real interface Model interface

Optics Mech.

Electronics

Software
Control

SW
bridge

sw sw

el

op me

Figure 3: test and integration infrastructure

• In Whole ↔ Part model testing, the whole
model might run on a different simulator and/or
platform than the part models. The simulation
environment must therefore support a distrib-
uted simulation.

• To facilitate the interface management, the in-
formation describing the model interfaces need
to be centralised and owned by a system archi-
tect.

• To allow a modeler to stay within his/her own
discipline, all interaction with the outside world
go through a so calledmodel connector. This
can be a graphical/textual representation that
can be imported from a model library.

• Models containing logical time need to be syn-
chronised according to their semantics.

• The simulation environment must support ad-
dition of model animations that show, for in-
stance, the state of the SUT at the proper design
level.

Prototype environment

A prototyping environment allows execution of pro-
totype realisations.Prototype realisationsare re-
alisations that implement real interfaces but their
behaviour is only rudimentary implemented. The
following aspects must be taken into consideration
when designing the prototype environment.

• The prototyping environment must allow substi-
tution of prototype implementations with reali-
sations.

• For early integration, the developer must be
capable to build prototype implementation in
the most suitable (rapid prototype) progamming
language. Commonly used languages are: C,
Matlab, Python, and Java

• The prototyping environment must support dif-
ferent operating systems (e.g. Solaris, Vx-
Works, Linux and Windows). The prototyping
environment must support different hardware
platforms (e.g. PC, Sun workstation, IBM).

Test environment

A test environment allows a test designer to spec-
ify a test suite (a set of tests) that can be executed
agains a SUT. Each test can either pass or fail. The
test environment must fulfill the following aditional
requirements:

• For test generation purposes and to save man-
hours, the test environment must allow auto-
matic execution of tests.

• The test environment must have a notion of time
to allow timed testing. Therefore the test en-
vironment must be able to control the actual
moment of stimulus to the SUT and must also
have access to time-stamped observations of the

42 XOOTIC MAGAZINE



SUTs reactions.
• To test or diagnose the SUT in its real time envi-

ronment the test environment needs full control
and observability over its interfaces. Currently
the SUT must be controllable and observable
over three types of interfaces: a software con-
trol bus, a software data bus, and an electronical
control/data bus.

• The test environment must be connected to the
simulation environment to allow a partly simu-
lated environment for the SUT while testing.

• The test environment must handle both synchro-
nous and a-synchronous interactions with the
SUT.

We selected the TTCN3[6] test language and tool-
ing for the test designer to write his test suite. The
selection is based on the following rationale:

• TTCN3 is based on decades of experience in
testing reactive systems

• TTCN3 is designed for and by test developers
• TTCN3 is an open standard
• TTCN3 abstracts away all SUT specific details
• TTCN3 allows uniformly testing over different

real interfaces.
• Robust and mature IDE’s exist that help the test

developer in writing, debugging and managing
his test specifications.

• Several Tool vendors provide TTCN3 tools.
• A vast user community exists around TTCN3:

Automotive, Telecom companies

The test developer now has the opportunity to write
an executable test to test the SUT on functionality,
performance, interoperability, or conformance.

The progamming model of the TTCN test language
is a fully programmable closed language and is
based on communicating sequential processes CSP.
Test cases can run in parallel. The SUT is access-
able through ports. The test cases can be connected
to these ports with buffered channels.

Real time environment

The real time environment is the environment in
which the system operates. The SUT within Tan-
gram will be the ASML Twinscan machine (see
Figure 4) or parts of it. Most of the software in-
teractions are not time critical. Some interactions

close the electronics have strict real time require-
ments. The real electronical interface of the SUT is
mostly generic in the sense that generic data aqui-
sition devices can be bought that connect to this in-
terface. The real software interface of the SUT is
ASML specific w.r.t. the client/server architecture,
the interface descriptions, the message format, the
protocol used, and the server address model, and the
application programmers interface.

Standard busses

For scalability reasons, the test and integration in-
frastructure is based on a bus topology. Using a bus
topology with n participants, onlyO(n) connec-
tions need to be developed compared toO(n2) peer
to peer connections. An open standard bus avoids
vendor lock (i.e. no single vendor can control the
future development of such a bus) and assures inter-
operability between the participants.

Control bus: CORBA

The prototype, test, and real time environments are
all attached to a control bus. OMG’s CORBA[8]
is used as standard that describes its functionality.
OmniOrb a freeware Orb is used as commonware
that implements such a control bus. Within Tan-
gram we will concentrate on connecting these three
environments to this control bus. The rationale for
selecting CORBA is:

• CORBA is based on decades of experience in
driving reactive systems

• CORBA is designed for and by software devel-
opers

• CORBA is an open OMG standard
• CORBA abstracts away all transport specific de-

tails.
• CORBA is based on the proven proxy pattern

(i.e allows uniform calling of services over dif-
ferent progamming languages, operating sys-
tems, and communication hardware)

• Several Tool vendors provide CORBA and
CORBA service implementations.

• A vast demanding user community exists
around CORBA: Defense, Aerospace, and Man-
ufacturing companies

December 2005 43



Key figures:
50 processors
400 sensors, 
500 actuators, 
12,5 MLOC
Language: C (Java, Python, Matlab)

Figure 4: The system under test: The ASML Twinscan machine

Data bus: DDS

The simulation, test, and real time environments are
all attached to a data bus. OMG’s data distribution
service[9], a CORBA service, is used as standard
that describes its functionality. RTI’s NDDS[1] a
commercial product is used as commonware that
implements such a data bus. Within Tangram we
will concentrate on connecting these three environ-
ments to this data bus. The rationale for selecting
DDS is:

• DDS is based on decades of experience in
driving real-time reactive systems

• DDS is designed for and by software developers
• DDS is an OMG standard
• DDS is based on the proven publish/subscribe

pattern.
• DDS describes a simple application program-

mers interface (API) with an array quality of
service (QoS) configurations.

• DDS abstracts away all transport specific de-
tails.

• Several Tool vendors provide DDS tools.
• A vast demanding user community exists

around DDS: Defense and Aerospace compa-
nies

Bridges

Because we try to use proven and existing simula-
tors and commonware we can concentrate on con-

necting environments together. The technique for
that is based on bridging. A bridge allows bidirec-
tional flow of data and control between two worlds.
A bridge does not add extra functionality to a sys-
tem it just reformats information from one world
into the other and vice versa. The bridges that
can be identified within the test and integration in-
frastructure will be discussed separately in the fol-
lowing subsections.

CORBA to SUT Software bridge

The CORBA to SUT SW bridge opens up the SUT
for control over the software control bus. Fortu-
nately the software control interface implemented
by the ASML execution environment greatly resem-
bles the interface of the CORBA control bus. The
ASML specific interface descriptions, expressed
in so called ddf files, can be translated into the
standard CORBAinterface description language
(IDL). Using these IDL files a bridge can be gener-
ated automatically. Therefore, the bridge can follow
each interface modification for each build of each
release. This bridge can intercept function calls at
each selected software interface. Participants on the
CORBA bus can act as clients of the SUT, or as a
server for the SUT, or both at the same time.

TTCN to CORBA bridge

By building a TTCN3/CORBA bridge we suc-
ceeded in attaching Telelogic’s Tau Tester[3] to the

44 XOOTIC MAGAZINE



CORBA control bus. The bridge can be generated
from the same IDL descriptions that were used in
the CORBA to SUT bridge. From a testers point
of view the complete software interface to the SUT
is described in TTCN interfaces: types, functions,
interaction ports etc.

TTCN to DDS bridge

The TTCN to DDS bridge allows an information
flow from the TTCN3 test environment to the test
data bus and vice versa.

DDS to SUT Electronics bridge

The DDS to Electronics bridge connects the DDS
data bus to the electronics interface of the SUT. Na-
tional Intruments’ Labview[2] will be used as ’com-
monware’ to implements this bridge.

Model to real interface adaptor

When connecting models to realizations the sparse
information that flows over a model interface must
be converted into an information rich data and con-
trol flow that a realisation interface needs. When
timing is an issue the adaptor needs to convert log-
ical time into real-time and vice versa (e.g. trigger-
ing calls at some point in real time, and timestamp-
ing replies). Aninterface adaptor is just doing
that. An interface adaptor is connected both to the
DDS data bus and the CORBA control bus and is
progammable.

When converting model interfaces into real inter-
faces extra information is added to the real inter-
face. This extra data are calledtest vectors. When
converting real interfaces into model interfaces only
portions of the data flow needs to be filtered out of
the information rich data coming from the real inter-
face. Every programmable application that is con-
nected to both the control and data bus can act as an
adaptor, like TTCN3 for instance.

Case studies

With the help of concrete case studies the applica-
bility, usability, and robustness of our test and in-
tegration infrastructure will be assessed. The cases

must preferrably cover the 4 different kinds of test-
ing, for each development phase and level. The mo-
tivating examples will be sorted according to the im-
portance as perceived by the ASML developers. As
a first case we are thinking of testing the hardware
software interface, where the interface is described
as a memory map.

Future work

Future work might include: management tools (e.g.
a time manager for the simulation environment,
integration of requirement management tools, and
versioning systems), diagnostic tools (like UML
model animators and code instrumentation), and
test tools (test case generators and extensions for
timed testing).

Conclusions

We have presented a generic test and integration in-
frastucture based on COTS products. Some parts
are already glued together with relatively low ef-
fort. In our own first experiments we could already
appreciate the flexibility of the infrastructure. Real
ASML case studies must show the added value of
the infrastructure. This will be the main remaining
challenge for the rest of project.

Acknowledgements

We gratefully acknowledge the feedback from the
discussions with our TANGRAM project partners
from ASML, Eindhoven University of Technology,
Embedded Systems Institute, Delft University of
Technology, Twente University and the University
of Nijmegen.

References

[1] Ndds, http://www.rti.com, Real-Time Innova-
tions, 2005.

[2] labview, http://ni.com/labview,
National Instruments.

December 2005 45



[3] Tau tester, http://www.telelogic.com/
products/tau/tautester/index.cfm,
Telelogic, 2000.

[4] ASML, http://www.asml.com.

[5] TANGRAM, http://www.esi.nl/tangram/,
2003.

[6] TTCN-3 standard. http://www.etsi.org/
ptcc/ptccttcn3.htm, 1998-2003.

[7] matlab/simulink, http://www.mathworks.com/
products/, Mathworks.

[8] CORBA, http://www.omg.org/technology/
documents/formal/corbaiiop.htm,2003.

[9] Data distribution service for real-time sys-
tems. http://www.omg.org/technology/ docu-
ments/formal/datadistribution.htm, 2005.

[10] UML 2.0, Unified modeling language 2.0,
http://www.uml.org/, 2005.

[11] Summits visual elite,
http://www.summit-design.com.

[12] System c 2.1, http://www.systemc.org/, 2005.

[13] Unigraphics, http://www.ugs.com/products/nx/.

Contact Information

Will Denissen

TNO Science and Industry
P.O. Box 155, NL-2600 AD Delft
The Netherlands
Will.Denissen@tno.nl

46 XOOTIC MAGAZINE




