A multidisciplinary model-based test and
Integration infrastructure *

Will Denissen

Current market trends like shorter time to market, faster return on investment,
flexible product families, first time right etc., will put strong requirements on
the development process of manufacturing companies. In this article we will
present a test and integration infrastructure that supports the development
process in these changing markets.

Introduction Terminology

An extra challenge in multi-disciplinary testing

ASML[4] is the carrying industrial partner withinW..t. “mono-disciplinary testing is that each dis-
the Tangram[5] project and needs support for th&#Pline uses its own terminology and some terms
test and integration challenges. Because no sing¥erlap and therefore might be misinterpreted. The
solution to this problem exists a broad approaéhsciplines we distinguish aresystem, software,

is taken in the form of four different lines of at£electrical, mechanical, and optical engineering
tentions, each defined to tackle a different part ®6 identify when and whergesting activities can
the test and integration problem. These lines take place we have to concentrate on dewelop-
attention are: test strategy, model based testingent procesqthe classical v-model) as used within
model based diagnostics, and test and integrat®8ML. Figure 1 shows the differemtevelopment
infrastructure. levels and differentdevelopment phaseghat can

In this article we will concentrate on the last lin®€ identified in the ASML product development
of attention and present a multidisciplinary modefOC€ss.

based test and integration infrastructure. It is dev&ler a new product a typical sequence of activities
oped and used within the Tangram project and muwtl follow the curved arrow representing the time
support the other lines of attention. axis. Going from a single system desiggrompos-
The article is organized as follows. In the first sed2d it into several sub-systems up until an array of
tion terminology is introduced that will help theunit level designs. For each unit level design a re-
communication between the different disciplinedisation is constructed. Unit realisations amm-

for which the test and integration infrastructure @osedinto subsystems and finally into a single com-
developed. In the second section, different kin@éete system realisation.

of testing are presented which serve as use cashe two sided arrows depict for each development
for the test and integration infrastructure. The thildvel and development phase thaeating activity
section describes the early integration concept fwan occur. From our perspective a testing activity
multiple disciplines. Then the design of the test arigl no more than checking the consistency between
integration infrastructure is given. two entities. These entities are eitliesigns(in the

1This work has been carried out as part of the TANGRAM project underresponsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry ohBmic Affairs under grant TSIT2026.

December 2005

Methodology
Indirect Testing

Mental <-> Formal model Models €= Realisation

Requirements;

Env -
. Model %%
N g
Mental Formal I\/Isopdeec\1
odel Model E
4 7

SuT

™ Development phases Model
Y
”Am} Design Realisation

SUT = system under test
Q@ D <:> i System
5,)

Y, 1%
Whole €->part model
: \@@@@ L /
system
&

e P\ - T
o

Figure 1: Different kinds of testing at different development levelsamakes

Parts €-> Whole realisation

sjona uawdojaaaq

form of documents, models, executable models) @he part-designg at the next lower level. The ex-
realisations (in the form of libraries, executablesperts at a certain level expect that the experts who
hardware or a combination of both). We will deare filling in the part-designs do not violate their
liberately not talk about validation and verificatiomhole-design. Each expert will develop his or her
because both approaches assume that one of theomm mental model of the design they work on as a
tities is correct and the other is incorrect. In pragroup. Thewhole-realisation which iscomposed
tice both entities might need a correction. Thatfsom theparts-realisation will be tested at the same
the reason why testing is depicted as a two-sided kwvel of abstraction as the whole-design. Both the
row. The definition and characteristics of each testesignand therealisation fulfill the same set of re-
ing activity together with some examples is given iquirements.

a separate section.

System level

Development levels _—
P At system level there can, by definition, be only one

At each development level a different level of aplesign and one realisation. There is no level above
straction is used to describe the system. The dfie System level. The group of people involved is
ferent development levels range from the high-leviPically small and theirole is that of asystem en-
system level via one or moresubsystem levelsip gineer. Based on their skills, experience, and com-
to the most low-levelnit level. Going from high- MoN practice they will create or select a proper de-
level to low-level development levels the amour§i9n- The design will typically deal with identify-
of information increases, describing more details tyg and naming the subsystems and identifying and
the system. The same holds for the amount of deaming their interactions asterfacesand allocat-

At each level, possibly different groups of expert'sr,] the details of these sub-systems.

playing a different role, cooperate in making a de-

sign for that level. At each level the design containsyp-system level

as much detail as relevant for that level. To cope

with complexity the design at a certain level (thA& subsystem level is, by definition not the system
whole-design is decomposednto a set of designslevel and not the unit level. There can be zero or

XOOTIC MAGAZINE

more subsystem levels. At subsystem level eaEach model will only model a specifaspect(e.g.
part-design of its next higher-level whole-design temperature distribution, resource scheduling)

filled in. The group of people involved is typicallythe system. In the design phase interactions be-

of medium size and originate from different discitween models will be identified. Amterface de-
plines. scribes and names such an interaction.

Unit level Realisation phase

A unit levelis, by definition, the most detailed leveln the realisation phase the different realisatio
of design and realizations. There are no levels k&sme to completion, part realisation will be asser

low a unit level. Over all units, a lot of people arg|ed, tested and integrated into whole realisations

involved from (_Jlifferent disciplir_1es. Fo_r a_giYe” unik realisation is something that consumes resourc
the _experts orlg.mate from a ;mgle discipline. Thﬁnaterials, space, time, memory footprint etc.). R
designs are typically so detailed and com_plete "akations have commercial value; they are costly
subcofntractors can rrl1ake e.g. Electronlgs:ft PG ild and/or to maintain. Realisations have identit
manufacturers) or tools can generate (€.9. SOftWagg,, roajisations can be identified by their produ

compilers, Mechanics: CNC-machines) realisatioHambers, but both can be build from the same de-

outofit.

NS
n-
D.

eS
e-
to
Y.
ct

sign.
In a realisation all kinds of different aspects are in-
Development phases trinsically combined and will influence each other

Two development phases can be distinguishel-a in the form ofinteractions. Some interactions are

sign phaseand arealization phase terpart in the form of model interfaces and migh

_ be realised aseal interfaces (e.g. electronic con-
Design phase nectors, software function calls, optical light path
: . . . but others might yet still be undetectdddden in-
In the design phase all kinds of information abo%‘éractions) (e.g. physical aspects due to the sma
the system’s structure, behavior or operating con: ometer séaie of operation)
straints are collected and archived. Some informa- '

tion will end up in documents and others in mode
A design can contain severalodels There are two
types OT modelsstructural models_ (e.g. acla;s di- only at the given interfaces. A interaction, for in
agram in UMLJ[10], or a mechanical model in Un- .
.~ 'stance, between an optical lens and a software st
igraphics) andbehavior models(e.g. an activity . . .) o

. k . . ment is hard to imagine without an electronic inte
diagram in UML, or a 3D kinematic model). A be-)

; : face in between.

havior model is called aexecutable modelwhen
asimulator can execute it. The simulator simulates
the executable model according to a cerfaama- Kinds of Interfaces
digm (e.g. discrete event DE, communicating se-

typically layered as shown on the right side in Fig

ghe discipline interfaces within a realisation are

ure 3. The interactions between disciplines ocdgur

known at design time and can have a model coun-

nt

all

]_

ate-
r

quential processes CSP, Continuous time CT, H{- both the design phase and the realisation phase,

brid (DE + CT)). A simulator has a notion of |Ogicajnterfaces between sub-systems or units exist

time that can either run faster or slower than wall€ir nature of interaction are quite different. Thers
clock time. Every simulator is based on the sanf@®, two kinds of interfaces can be distinguishe
implementation pattern. A modeler can specify rgodel interfacesandreal interfaces The charac-

model as relations between modeling entities forgristics of each of them will be described below.

ing a set of equations. The simulator will solve this

set of equations for the current logical time, calcyodel interfaces

lates the logical timestep, and advances the logical

time with this timestep. This sequence is repeatbtbdel interfaces model the flow of abstract in-
until the end of logical time is reached. formation between models. The information flo

December 2005

put

D
]

between models are a kind of data streams. @it testing that can take place in the development
each logical clock increment, which are discrefgocess (i.e the two-sided arrows in Figure 1). The
moments in time a simulator will send/receive a d#esting process needs to be described because it pro-
tum to/from one or several other simulators. Theades the use cases and requirements for the test and
logical clock of each involved simulator needs timtegration infrastructure that we have designed and
be synchronised with other logical clocks. This camuild. In the following subsections we will describe
be done directly by a separate logical time manageach kind of testing as depicted in Figure 1 around
or indirectly by configuring all participating simula-the development process.

tors such that all logical clocks start at the same log-

ical time with the same logical increments. Model

interfaces are visualised in Figure 3 as a line crosggiéntal < Formal model testing

by a dotted line.

At each development level @esigneris involved

that needs to come up with @design that fulfills
therequirements. Given the requirements a lot of
Real interfacesincorporate both data and contraflesigns can be found that all fulfill the same re-
flow of an interaction at unit level. Real interfaceguirements. This set of designs, is called te

are visualised in Figure 3 as a line crossed by a bslign spacefor the given requirements. While mak-
line, and can be annotated with its type. Currentligg a design new parts will identified and their re-
we distinguish only real software, electronical, arldtions. Some parts might be designed as com-
physical interfaces. Both the real software and reabn/commercial off the shelf (COTS) parts. Others
electronic interface has a notion of direction. Thaight be a commonly used interface in the form of
flow of information takes time to travel from thea design pattern. But whatever the design will be it
producer to the consumer. will impose new/more detailed requirements on its
For real software interfacesthe information flow- Parts (i.e the next lower development level). Itis the
ing through the interface is the exact function cditesigner's role to find such a design that fulfills the
with all its parameters properly filled in, in the ex(€duirements at his level and minimises the lower
pected order, adiscrete moments in timewithout |€vel requirements and maximises theasignabil-
knowing when the actions will actually take placet -

For real electronical interfaces the information Because a designer has a freedom of selecting a de-
flows through electrical wires. The interface deéign from a design space, he/she needs to get some
scribes the signals, their shapes, duration, and cf#gling of how his design will look like (structure)
nector with the proper mechanical dimensions. Di§t behaves. Preferably a designer will use a com-
ital interactions can take place only at discrefdter added design (CAD) tool to support his de-

events (at the clock ticks). Analog interactions tai@gn activities. With such a CAD tool the designer

place in continuous time. builds up amental modelon the structure and be-

Forreal physical interfacesthere is no notion of in- havior of his deS|gn_. n order fo use his CAD tool he
. . . L needs to express his design ifoamal model. The

formation flow or causality, the interface just identi-

fies an interaction between two or more entities aﬁcgmal model that expresses the design is commu-

. nicatable among other developers because of its un-
take place incontinuous time Some interaction 9 P

might exist in real life but not been detected/know.%mblguous semantics. His T”e’.“a' model however
iS, not transferable because, it will never be as com-

by the developers. An example of a real physic :

interface is a collision between two mechanical e lete, accurate, or unambiguous asa forma! model.

tities which occurs instantly and continuously. de_veloper can also never cope with the different
versions of designs that might pop up and all the
implications that the combinations of these designs

Different kinds of testing might have.

The mental model of the developer is kept
Now that we have introduced our terminology waligned/synchronised/consistent with the formal
can concentrate on describing the different kindsodel. The developer will learn from the formal

Real interfaces

XOOTIC MAGAZINE

model and adjusts his mental model accordinglytherwise the quality of the electrical signals will
The formal model becomes more detailed until degrade.

mimics the behavior from the mental model. Resources might be shared by different disciplines.
For instance, a certain volume might be blocking an
optical light path by a mechanical component.
the mechanical materials used might outgass suich

Testing whole models with part models all have #§at the optical lenses get polluted. Typically struc-
do with decomposing a design in a set of sub deétal interactions (without a time dependency) are
signs. This decomposition of whole designs infdrectly detected while assembling. Behavioral in-
parts designs is typically aligned with the whole rderactions can only be detected when the whole fe-
alistion and its parts realisation. There is typically@isation can be executed/used/employed according
one to one relation between whole and parts mod#dts Use cases.
and realisations at each design level. Normally most of the interactions are expected be-

Decomposing a whole model into parts models §@use the were already known by experience |or
nothing new within a single discipline, and is thEom previous similar systems, these interactiops
basic pattern to handle complexity. For instanc@e then also modeled in the design phase.
a system engineer can decompose his budgets fN@wn interactions are typically detected in this
hierarchical manner. A software engineer can d&sting activity. Judging whether the whole realisa-
compose his software program in a set of subprtdpn is functioning correctly is done indirectly. Firs
grams. An electrical engineer can decompose fie part realisations are tested with their part models
electrical model into a set of sub models. Some s8B conformity, then the whole realisation is tested
models might be standardised into a library of mo@ its conformity with its whole model.
els (e.g. software: mathematical library, electron-

ics: counters, clock dividers, mechanics: robot arri{}Iodel
gearbox).

The testing activity invhole < part testing con- Model < realisation testing is normally known a
sists of checking that the developers who will com&nformance testing The to be build realisation is
up with the part designs do not violate the requirgescribed by models, each capturing a different as-
ments imposed on the whole design and vice vergact. For each model the realisation must conform
Once a discrepancy is detected either the wholejfistructure and behavior. Both the models and the
the part models need to be modified such that thgygjisation arepen i.e. the interaction with their
together are consistent again. environment is modeled. The interfaces and thejr
kind (software, electronics, physical) are identified.
The behavior of the environment is modeled as a set
of use cases. A realisation conforms to its models

Part— whole realisation testing occurs the mome#then both the observations of the model and the fe-
the different part realisations are assembled togetRéigation are identical when the same set of use case
(a.k.a. integration phase). The kind of problems y@i€ applied to them.
observe, are typically related to resource conflicts desting a given aspect of a realisation is typically
unknown interactions. For instance, assembling ene in an indirect way as depicted in the upper
gether different software realisations (e.g. librariesght part of Figure 1. Given a model an environ-

executables) might show that the memory footprintent model (in the form of &est suite a set of
of the whole exceeds the available memory. tests or use cases) is constructed against which|the

Assembling mechanical parts might uncover ifsystem under test (SUT)s tested.
compatibilities. The shared resource could be the manual Model «+ Realization testingthe test
space the parts may occupy at a given momentdeasigner derives manually, the test suite from|a
time. Something similar occurs in electrical engmodel of the SUT. The test developer than imple-
neering. The fan-in and fan-out of the active electrinents an autotester that hard codes this test suite,
cal parts must match when assembled into a whateit the SUT must pass.

Whole «— Part model testing

— Realization testing

Part — Whole realization testing

December 2005

In model based Model«— Realization testing ing can perfectly help in managing these interdisci-
however, the test cases are automatically derivglthe/interproject interfaces, especially when a lot
from the SUT model. The model based autotesigrsubsystemss and versions are flowing around.

interprets the model of the SUT and derives on th&e brick wall in Figure 2 symbolises the behav-
fly test cases from it. The model based autotesig{ir that occures when responsibilities are distrib-
controls the SUT and observes its reactions. T{gd over serveral projects and/or different disci-
model based autotester can judge, based on the §ithes. Either side of the wall might feel that he
servations of the SUT, whether the SUT s reactifgthe owner of the interface and starts to define one.
correctly or not. The other party is hardly involved because they have
not yet reached the point where they need to work
with the interface. As a consequence they get in the
end confronted with an interface which is defined

Looki Fi 2 h from only one perspective.
OoKing at Figure 2, we can see how a system 3, ,iher scenario might be that both define an inter-

decomposed into two subsystems, how each SUbsfﬁtcf'e in the beginning but this interface is expressed

tem gets designed and implemented in several Vi there own development environments and start to

sions. Due to .the fac.t that models a”‘?' r?al'sat'oaéviate from each other during both developments.
reach compleyon_ at_dlfferent moments in time th?f\‘?obody guarantees that both interface descriptions
IS no cle.ar pomt in time where we cross the de5|%r|]e equal. Better would it be when there is only
and realisation phase. one interface description owned by a system archi-
We therefore distinguish three integration phasgget from which specific interface descriptions are
indicated by vertical dotted lines. Timeodel inte- derived.

gration phasestarts a soon as there are part-desigffe fact that there is such a brick wall makes it
of the system design available, which share at Ie@gsy to export your problems to someone else by
one design interface. It stops as soon as the fifgt throwing it over the wall. Both parties might
unit realisation is available. Thmixed integra- even insist on having such a brick wall just because
tion phasestarts a soon as the first unit realisatiogf this. We think that especially tooling might help
is available and stops as soon as the last unit rea"ﬁﬁsolving these kinds of problems.

tion is available. Theealization integration phase In the next subsections we will elaborate on the dif-

starts a soon as the last unit realisation is availaple,, . integration phases because they impose dif-
and stops as soon as the system realisation is avi%'llént requirements on our test and integration in-

able. frastructure.
Although the system architects are fully aware

of the interdiscipline/interproject interfaces be-

tween the subsystems (they have identified themNpdel integration phase

the first place), they become poorly managed during _ _ _

the red marked time intervaErrors made, either !N the model integration phase only model inter-
design errors (detailing designs that violate the inf@ces exist. - The integration environment that is
terdiscipline/interproject design interfaces)real- Needed during thenodel integration phase is one
isation errors (realisations that violate the interdisth@t can support model interfaces between different
cipline/interproject realisation interfaces) in each §fructural and behaviour models and is callesina-
thoseswimlaneswill only be discovered after theulation environment. The simulation environment

composition of the subsystem realisations into t§8N Manage the dependencies between models by
system realisation. facilitating communication between simulators that

il . . .runth m Is.
Because of the possibility to introduce mterdls-u ese models

cipline/interproject interface violations very early

(i.e. after decomposition) and the fact that these cgifixed integration phase

only be detected very late (i.e after compaosition) in

the development process, together with the fact thatthe mixed integration phase a mixture of model
late detection results in costly repairs, we think toahterfaces, real interfacs exist. The integration envi-

Early integration

XOOTIC MAGAZINE

Integration phases

Model integration Mixed integration Realisation integration

Development process

System
model C

Time

Subsystems from
different disciplines
or projects

v

Simulation env Test env Real-time env

Figure 2: Early integration phases

ronment that is needed during timéxed integration e All existing parts (simulators and realisations
phaseis one that can manage both model interfaces need to be integrated as is, without any modifi-
between different (structural and behaviour) models cation.
and real interfaces between realisations and is callad All newly designed parts of the test and integra
atest environment It must be capable of bridging tion infrastructure must be based on open stan-
information flowing through model interfaces into dards, commonware or COTS tools, to avoid

~—

information flowing through real interfaces. vendor locks.
e The test and integration infrastructure must be
Realisation integration phase open for future extensions or unforeseen inter-

actions between environments.

In the realisation integration phase only real inters The test and integration infrastructure must be
faces exist. The integration environment that is applicable for other High Precision Equipment

needed during theealisation integration phase is Manufacturers. Therefore the ASML specific
one that can manage the real interfaces between dif- parts will be isolated as much as possible from
ferent realisations and is called aal-time envi- the rest of the integration and test infrastructure.

ronment. A real-time environment is part of the

system and is as such developed in the development

process. The real-time environment must manag@mulation environment

the control dependencies between realisations in

real time. A simulation environment allows co-simulation o
several models from different disciplines at the

.) . same time. The following aspects must be taken

Test and integration infrastructure into consideration when designing the simulation
environment.

Figure 3 shows the test and integration infrastruc-

ture. Four different environments can be identifieds In Mental < Formal model testing, each dis

Simulation, Prototype, Test, and Real-time. Each cipline uses their own simulators, which have

environment will be described in the following sub- proven their usability within that discipline.
sections. Commonly used simulators are: Simulink[7],

Visual Elite[11], LabView[2], Unigraphics[13],
and SystemCJ[12]. The developers are familiar
with these simulators and have invested cons|d-
e The same test and integration infrastructure erable effort in building specific models. Th
must be used: In each development phase, for simulation environment must therefore fully in
each development level, for each discipline. tegrate and support these simulators as they are.

For the complete test and integration infrastructure
the following requirements must hold.

December 2005

Language binding
¢ C/C++

« Java/Python

* Matlab*

+ Real interface

Prototype env.

Control bus

Tangram Tools
Common Busses
Existing models

* Model interface

Control
Sw 0
bridge

- -
Operating systems Test

« Solaris env.
* VxWorks

 Linux

« Windows

< Data bus
‘{Simula{ron en’d.‘
o) o) L)

Model binding
« UML

« Simulink

« Visual Elite

Data
Sw
bridge

el

Data
EL
bridge

op me

Real time env.

Figure 3: test and integration infrastructure

In Whole <« Part model testing, the whole e
model might run on a different simulator and/or
platform than the part models. The simulation
environment must therefore support a distrib-
uted simulation.

To facilitate the interface management, the in-
formation describing the model interfaces need
to be centralised and owned by a system archi-
tect. °
To allow a modeler to stay within his/her own
discipline, all interaction with the outside world
go through a so callechodel connector This
can be a graphical/textual representation that
can be imported from a model library.

The prototyping environment must allow substi-
tution of prototype implementations with reali-
sations.

For early integration, the developer must be
capable to build prototype implementation in
the most suitable (rapid prototype) progamming
language. Commonly used languages are: C,
Matlab, Python, and Java

The prototyping environment must support dif-
ferent operating systems (e.g. Solaris, Vx-
Works, Linux and Windows). The prototyping
environment must support different hardware
platforms (e.g. PC, Sun workstation, IBM).

Models containing logical time need to be SYPrest environment

chronised according to their semantics.

The simulation environment must support adk test environment allows a test designer to spec-
dition of model animations that show, for inify a test suite (a set of tests) that can be executed
stance, the state of the SUT at the proper desiggains a SUT. Each test can either pass or fail. The

level.

test environment must fulfill the following aditional

requirements:

Prototype environment .

A prototyping environment allows execution of pro-

totype realisationsPrototype realisationsare re-

alisations that implement real interfaces but their
behaviour is only rudimentary implemented. The
following aspects must be taken into consideration

when designing the prototype environment.

XOOTIC MAGAZINE

For test generation purposes and to save man-
hours, the test environment must allow auto-
matic execution of tests.

The test environment must have a notion of time
to allow timed testing. Therefore the test en-
vironment must be able to control the actual
moment of stimulus to the SUT and must also
have access to time-stamped observations of the

SUTSs reactions. close the electronics have strict real time require-
e To test or diagnose the SUT in its real time envinents. The real electronical interface of the SUT |i

ronment the test environment needs full contrgiostly generic in the sense that generic data aqui-

and observability over its interfaces. Currentlgition devices can be bought that connect to this

the SUT must be controllable and observablerface. The real software interface of the SUT |is
over three types of interfaces: a software coASML specific w.r.t. the client/server architecture,

trol bus, a software data bus, and an electronidhg interface descriptions, the message format, the

control/data bus. protocol used, and the server address model, and

e The test environment must be connected to tABPlication programmers interface.
simulation environment to allow a partly simu-
lated environment for the SUT while testing.

e The test environment must handle both synchrdtandard busses

nous and a-synchronous interactions with the
SUT. For scalability reasons, the test and integration i

frastructure is based on a bus topology. Using a &
We selected the TTCN3J[6] test language and to%pology with n. participants, onlyO(n) connec-
ing for the test designer to write his test suite. Thgns need to be developed compared)(@ﬂ) peer

=]
T

selection is based on the following rationale: to peer connections. An open standard bus avojds

)) endor lock (i.e. no single vendor can control th
e TTCN3 is based on decades of experlencev (Ingle v

testing reactive systems - .
) . operability between the participants.
TTCNS3 is designed for and by test developers

TTCNS3 is an open standard
TTCN3 abstracts away all SUT specific detailggnirol bus: CORBA
TTCNS3 allows uniformly testing over different

e

flture development of such a bus) and assures inter-

real interfaces. The prototype, test, and real time environments are

¢ Robust and mature IDE’s exist that help the teali attached to a control bus. OMG’s CORBA[8]

developer in writing, debugging and managinig used as standard that describes its functional

ty.

his test specifications. OmniOrb a freeware Orb is used as commonware

¢ Several Tool vendors provide TTCN3 tools. that implements such a control bus. Within Tan

e A vast user Community exists around TTCN3ram we will concentrate on Connecting these three
Automotive, Telecom companies environments to this control bus. The rationale for

selecting CORBA is:
The test developer now has the opportunity to write
an executable test to test the SUT on functionality®

performance, interoperability, or conformance. . i
. e CORBA is designed for and by software deve
The progamming model of the TTCN test language opers

is a fully programmable closed language and is CORBA i OMG dard
based on communicating sequential processes CSP. IS an open standar

CORBA is based on decades of experience
driving reactive systems

Test cases can run in parallel. The SUT is acces8- CORBA abstracts away all transport specific dg-

able through ports. The test cases can be connected@ils: _
to these ports with buffered channels. e CORBA is based on the proven proxy pattel
(i.e allows uniform calling of services over dif+

ferent progamming languages, operating sy

Real time environment tems, and communication hardware)

The real time environment is the environment in® Several Tool vendors provide CORBA and

which the system operates. The SUT within Tan- CORBA service implementations.

gram will be the ASML Twinscan machine (see® A Vvast demanding user community exist
Figure 4) or parts of it. Most of the software in- around CORBA: Defense, Aerospace, and Ma

teractions are not time critical. Some interactions ufacturing companies

December 2005

n

S
n-

Key figures:
50 processors

400 sensors,

500 actuators,

12,5 MLOC

Language: C (Java, Python, Matlab)

Figure 4: The system under test: The ASML Twinscan machine

Data bus: DDS necting environments together. The technique for
that is based on bridging. A bridge allows bidirec-
The simulation, test, and real ime environments &{gna| flow of data and control between two worlds.
all attached to a data bus. OMG’s data distributign bridge does not add extra functionality to a sys-
service[9], a CORBA service, is used as standagg, it just reformats information from one world
that describes its functionality. RTI's NDDS[1] gnto the other and vice versa. The bridges that
commercial product is used as commonware thaf pe identified within the test and integration in-

implements such a data bus. Within Tangram Wstructure will be discussed separately in the fol-
will concentrate on connecting these three envirogying subsections.

ments to this data bus. The rationale for selecting

DDS is: .
CORBA to SUT Software bridge
e DDS is based on decades of experience in _
driving real-time reactive systems The CORBA to SUT SW bridge opens up the SUT

e DDS is designed for and by software developef@ control over the software control bus. Fortu-
e DDS is an OMG standard nately the software control interface implemented

i ; .by the ASML execution environment greatly resem-
DD h lish ﬁ _
’ patt?erlr? based on the proven publish/subscr %(es the interface of the CORBA control bus. The

. . L ASML specific interface descriptions, expressed
e DDS describes a simple application program beciic | Ipt xp

mers interf APD) with an ar It *ﬁ so called ddf files, can be translated into the
ers interiace (.) T an array quallly O4andard CORBAnterface description language
service (QoS) configurations.

. (IDL). Using these IDL files a bridge can be gener-

e DDS abstracts away all transport specific dgje aytomatically. Therefore, the bridge can follow
tails. each interface modification for each build of each

e Several Tool vendors provide DDS tools. release. This bridge can intercept function calls at

e A vast demanding user community existgach selected software interface. Participants on the
around DDS: Defense and Aerospace COMP@ORBA bus can act as clients of the SUT, or as a
nies server for the SUT, or both at the same time.

Bridges TTCN to CORBA bridge

Because we try to use proven and existing simuBy building a TTCN3/CORBA bridge we suc-
tors and commonware we can concentrate on caeeded in attaching Telelogic’s Tau Tester[3] to the

XOOTIC MAGAZINE

CORBA control bus. The bridge can be generatedust preferrably cover the 4 different kinds of test-

from the same IDL descriptions that were used ing, for each development phase and level. The mo-

the CORBA to SUT bridge. From a testers poinivating examples will be sorted according to the im-

of view the complete software interface to the SUgortance as perceived by the ASML developers. As

is described in TTCN interfaces: types, functionsg, first case we are thinking of testing the hardware

interaction ports etc. software interface, where the interface is described
as a memory map.

TTCN to DDS bridge

The TTCN to DDS bridge allows an informatior-uture work

flow from the TTCN3 test environment to the test

data bus and vice versa. Future work might include: management tools (e.g.

a time manager for the simulation environmer

integration of requirement management tools, and
versioning systems), diagnostic tools (like UML

The DDS to Electronics bridge connects the DI:)rgodel animators and code instrumentation), ahd

DDS to SUT Electronics bridge

data bus to the electronics interface of the SUT. Nt§§t tools _(test case generators and extensions
timed testing).

tional Intruments’ Labview[2] will be used as 'com-
monware’ to implements this bridge.

Conclusions
Model to real interface adaptor

When connecting models to realizations the spalysvg have presented a generic test and integration

be converted into an information rich data and co re already glued together with relatively low ef
trol flow that a realisation interface needs. When
timing is an issue the adaptor needs to convert lo

ical time into real-time and vice versa (e.g. trigge ASML case studies must show the added value

ing calls at some point in real time, and timestamsj-e infrastructure. This will be the main remaining

ing replies). Aninterface adaptor is just doing challenge for the rest of project.

that. An interface adaptor is connected both to the

DDS data bus and the CORBA control bus and is
progammable. Acknowledgements

When converting model interfaces into real inter-

faces extra information is added to the real intef/e gratefully acknowledge the feedback from th
face. This extra data are callesst vectors When discussions with our TANGRAM project partner

converting real interfaces into model interfaces onf{P™ ASML, Eindhoven University of Technology
portions of the data flow needs to be filtered out

face. Every programmable application that is coff Niimegen.
nected to both the control and data bus can act as an
adaptor, like TTCN3 for instance.

References

Case studies [1] Ndds, http://www.rti.com, Real-Time Innova:
tions, 2005.

With the help of concrete case studies the applica-

bility, usability, and robustness of our test and in{2] labview, http://ni.com/labview,

tegration infrastructure will be assessed. The cases National Instruments.

December 2005

rt. In our own first experiments we could already
opreciate the flexibility of the infrastructure. Real

o

bedded Systems Institute, Delft University o
the information rich data coming from the real interl€chnology, Twente University and the University

t

for

n-

&astucture based on COTS products. Some parts

e

=+

[3] Tau tester, http://www.telelogic.com/ [10] UML 2.0, Unified modeling language 2.0,
products/tau/tautester/index.cfm, http://www.uml.org/, 2005.

Telelogic, 2000. L .
[11] Summits visual elite,

[4] ASML, http://www.asml.com. http://www.summit-design.com.

[5] TANGRAM, http://www.esi.nl/tangram/, [12] System c 2.1, http://www.systemc.org/, 2005.

2003.
[13] Unigraphics, http://www.ugs.com/products/nx/.

[6] TTCN-3 standard. http://www.etsi.org/

ptcc/ptectten3.htm, 1998-2003. .
Contact Information

[7] matlab/simulink, http://mwww.mathworks.com/
products/, Mathworks. Will Denissen

[8] CORBA, http://www.omg.org/technology/

documents/formal/corhiop.htm,2003. TNO Science and Industry

P.O. Box 155, NL-2600 AD Delft
[9] Data distribution service for real-time sysThe Netherlands
tems. http://www.omg.org/technology/ docuwill.Denissen@tno.nl
ments/formal/datalistribution.htm, 2005.

XOOTIC MAGAZINE

