
POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

X00TIC
December 2005-Volume 11-Number 2

magazine

TANGRAM

Contents

TANGRAM

editorial 3

An introduction to TANGRAM

Edited by Michiel van Osch 5

Test sequencing in a complex manufacturing sys-
tem

R. Boumen, I.S.M. de Jong, J.W.H. Ver-
munt, J.M. van de Mortel-
Fronczak and J.E. Rooda 9

Model-based testing withχ and TORX

Niels Braspenning, Asia van de Mortel-
Fronczak, Koos Rooda 17

A model-based approach to fault diagnosis of
embedded systems

Jurryt Pietersma, Arjan J.C. van Gemund
and Andre Bos 25

A multidisciplinary model-based test and inte-
gration infrastructure

Will Denissen 35

Advertorials

ESI . 4

Verum 24

Topic . 34

X TIC
magazine

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

Colofon

XOOTIC MAGAZINE

Volume 11, Number 2
December 2005

Editors
S. Estok
M.M. Lindwer
M.P.W.J. van Osch
L. Posta

Address
XOOTIC andXOOTIC MAGAZINE

P.O. Box 6122
5600 MB Eindhoven
The Netherlands
xootic@win.tue.nl
http://www.win.tue.nl/xootic/

SecretariatOOTI

Post-masters Programme
Software Technology
Eindhoven University of Technology, HG 6.57
P.O. Box 513
5600 MB Eindhoven
The Netherlands
tel. +31 40 2474334
fax. +31 40 2475895
ooti@win.tue.nl
http://wwwooti.win.tue.nl/

Printer
Offsetdrukkerij De Witte, Veldhoven

Reuse of articles contained in this magazine is al-
lowed only after informing the editors and with ref-
erence to “Xootic Magazine.”

2 XOOTIC MAGAZINE

TANGRAM
editorial

The history of Tangram goes back hundreds of years. The time when thepuzzle was invented is actually
unknown. The earliest known Chinese book on the game dates back to 1813. The origin of the word
Tangram is also unknown. Some stories suggest that it comes from the ”Tan” dynasty, others suggest
it comes from Chinese river people called ”Tanka”, and others suggest it comes from the English word
”Tramgram” which means puzzle or trinket.

The history of TANGRAM goes back to 2003. The Embedded Systems Institutestarted a project with
this name, with ASML and several university and industrial partners. Theorigin of the project name is:
”Test Approach based on iNtegrated product Generation and product Realization applied to Asml Ma-
chines”. The goal of the TANGRAM project is to research and validate techniquesfor lead-time and cost
reduction of embedded systems development. To achieve that, the TANGRAM project focusses on early
test and integration, test automation, and diagnoses, all using models.

This issue of the XOOTIC magazine is entirely devoted to the TANGRAM project, of which I am also
a member of. It contains a global introduction on the TANGRAM project and four in depth articles on
several areas the project has been, and still is, working on.

We wish you a joyful reading of this issue of our magazine.

Michiel van Osch, editor

December 2005 3

THE EMBEDDED SYSTEMS INSTITUTE IS LOOKING FOR
NEW RESEARCH FELLOWS

The Embedded Systems Institute (ESI) is a research center and a center of expertise for
embedded systems. It does industrial research in the area of complex, software-controlled
systems. The research projects at ESI are driven by problems from industry and are carried out
in teams in which researchers from ESI, from industry, and from universities cooperate. To
extend its own research staff ESI is now hiring Research Fellows.

Research fellows are candidates with industrial or academic backgrounds.
Candidates with industrial backgrounds must have experience in embedded systems design, and
they preferably hold PhD degrees. Academic candidates must hold PhD degrees in one of the
disciplines that are relevant to embedded systems, and they have actively shown interest in
embedded systems. Examples of relevant disciplines are software engineering, control theory,
systems engineering, and digital electronics.

Research Fellows are people with the ambition to become internationally recognized
experts in (aspects of) embedded systems design.
Since this a discipline that is still in its infancy, the Research Fellows have the challenge and the
opportunity to work actively in a new field that still has to be shaped. By participating in ESI
research projects they keep in touch with the latest developments. In the projects they often use
their expertise and experience to guide and coach other team members. Because ESI depends
on these projects for the buildup of its expertise, the Research Fellows play an active role in the
selection of new research projects.

Research Fellows transfer their expertise to others.
They give presentations at conferences, they publish in journals, and they give courses and
seminars. It can be very attractive to combine a 4/5 position as ESI Research Fellow with a 1/5
position as part-time (associate) professor at a university, or a 1/5 corresponding senior position
in industry.

ESI Research Fellows like to work in teams.
They especially enjoy working on problems that are at the cutting edge between industrial
applications and scientific research. They like to work in multidisciplinary teams with experts from
different technological disciplines. They like to listen to others, and they know that sharing of
expertise and experience is essential in teamwork.

How to apply

• The ESI website (www.esi.nl) contains all kinds of information about the institute and its
projects.

• The scientific director of the Embedded Systems Institute (ed.brinksma@esi.nl) may be
contacted for more information about the job contents.

• The director of opererations of ESI (reinier.van.eck@esi.nl) can give information about
benefits and conditions associated with the positions.

• Applications and inquiries can be e-mailed to office@esi.nl.
• The ESI is reachable by telephone at +31 (0)40 247 4720.

--
The Embedded Systems Institute is a foundation that is financially sponsored by its seven
founders (Océ, ASML, Philips, TNO, the universities of Eindhoven, Delft, and Twente) and by the
Netherlands Ministry of Economic Affairs. ESI is located at the university campus in Eindhoven.
It was founded in 2002. Besides its own staff of around 20 people, some 70 guest researchers
work at ESI. These numbers are expected to grow to 30 and 150 within a few years. ESI offers
competitive salaries and is flexible in its modes of appointment. ESI employees can use the
childcare facilities at the university campus.

An introduction to Tangram 1,2

Edited by Michiel van Osch

The Tangram project aims at a significant reduction of lead time and cost in the
integration and test phase of complex high-tech products. At the same time the
product quality should be maintained or improved. In this paper we give a brief
overview of the Tangram project.

Introduction

The performance demands on high-tech products
keep on growing; they should be faster, more ac-
curate, their uptime should be increased, etc. The
business demands on these products keep on grow-
ing as well; the time to get such products to the
market is getting shorter and the same goes for
the period in which the return on investment can
be obtained. So while engineers have to do their
utmost to deliver technology that sometimes has
not been invented yet, the market dictates them to
do it faster, cheaper and better. This challenge is
never more present than when system parts from
different projects and from different disciplines (op-
tics, mechanics, electronics and software) have to
be integrated and tested. The combination of this
’faster, cheaper and better’ issue and integrating
multi-disciplinary state of the art technology, gives
ample reason to want a breakthrough. It gives ample
reason to want TANGRAM.

Project Organization

Tangram has teamed up the expertise and compe-
tence required to establish a breakthrough. Three
universities: Delft University of Technology; Eind-
hoven University of Technology and Radboud Uni-
versity Nijmegen are involved. The institutes ESI
and TNO-TPD are involved. The industrial part-

ners involved are Science & Technology and finally
ASML as carrying industrial partner. The project
is partly subsidized by the Dutch Ministry of Eco-
nomic Affairs.

TANGRAM foresees research and development
along four Lines of Attention (LoA) that will be
constantly challenged by a real life industrial case:
a wafer scanner at ASML (See Figure 1).

Figure 1: TANGRAM Organization

• The LoA with focus on strategy develops mod-
els of integration- and test processes featuring
cost, parts to integrate, combinations to test,
time to spend and product quality to achieve, as
well as methods for test selection.

1This work has been carried out as part of the Tangram project underthe responsibility of the Embedded Systems Institute.
This project is partially sponsored by the Netherlands Ministry of EconomicAffairs under grant TSIT 2026.

2Most of the content of this article is already published on the TANGRAM project site at http://www.
embeddedsystems.nl.

December 2005 5

• The LoA that concentrates on test generation
& execution delivers model-based methods and
tools for generating, executing and evaluating
test cases as well as model-based simulations
for parts that are not yet available.

• The LoA that aims at model-based diagnosis de-
livers methods and tools that are capable of di-
agnosing the internals of a system by monitor-
ing its inputs and outputs.

• The infrastructure and early integration LoA de-
livers an environment that is capable of inter-
connecting the models and tools that result from
the other LoA’s, and develops methods and tools
for early integration and test with models.

LoA Strategy

The goal of this LoA is to define the optimal test
strategy for a certain product. An optimal test strat-
egy in terms of total test duration and/or final prod-
uct quality and cost is desired. The optimal test
strategy for a product is influenced by the objectives
of the test phase and the constraints that follow out
of that. For instance a test strategy for a time-to-
market driven environment (like ASML) is different
from a test strategy for a quality driven environment
(like aircraft industry). A good test strategy is there-
fore product dependent.

For complex systems an infinite number of test
cases can be derived. Executing all possible test
cases between the moment that a (sub-)system is
ready and the system is released is therefore im-
possible. Selecting the optimal set of test cases is
therefore a relevant question. This LoA investigates
the possibility to solve this selection problem with
test selection algorithms.

The third point of interest is the total duration of
the test period and the resources required to do so.
With total duration we mean the time it takes to ex-
ecute all test cases successfully, so including fix-
ing problems. Adding additional test resources is
the common thing to do. This results in detecting
more problems, which seems a good thing. But if
your real bottleneck is in the fixing of problems,
then adding test resources is not the best thing to do.
So this means that the initial quality of the system,
the available resources and the test cases to be exe-
cuted determine the architecture of your ’Test Fac-
tory’. Different configurations of ’Test Factories’

are modelled to investigate these effects and others
on the end result, total test duration and end quality.

This magazine contains an article by Boumen et.
al., in which they describe how to optimize test
sequences such that it takes less cost or time and
demonstrate this on an ASML TWINSCAN litho-
graphic machine.

The current approach is to define the determination
of the best test strategy into 3 phases: strategy se-
lection, test selection and test scheduling. Optimal
techniques for each phase are researched and devel-
oped. Additionally a simulator of the Test Factory
has been developed to simulate the effect of the dif-
ferent developed test strategies on the total test du-
ration and product quality.

LoA Test Generation and Execution

The objective of Line of Attention 3 is to im-
prove the efficiency and effectiveness of the testing
process by developing testing methodology, tech-
niques, and tools using a model based approach.

In model based testing a model of the system un-
der test (SUT) is developed. Models can be formal,
such as those written in languages as Chi, Lotos,
or Promela, or in semi-formal languages, such as
state diagrams or UML models. A model is the ba-
sis for the automatic generation of test cases using
a test derivation algorithm, and test results are auto-
matically analyzed and evaluated with respect to the
model. Moreover, a model can be used to simulate a
part of the system under test during integration test-
ing, if such a part is not yet available.

Starting points for Line of Attention 3 are models
based on transition systems, the so-called ioco-test
theory, and the prototype test tool TorX [3].

Via a case study driven approach we will work on
extensions of these incorporating real-time testing,
testing of complex data structures, testing of hybrid
systems, compositional and integration testing, and
testing of multi-disciplinary, non-software aspects.

There are several benefits of model based testing.
First, a model can serve as a precise and unambigu-
ous basis for testing, thus allowing formal valida-
tion of tests. Second, models make it possible to
automatically derive test cases and evaluate test re-
sults, thus considerably reducing the manual effort
of testing. In particular in case of modifications in

6 XOOTIC MAGAZINE

the system, a small adaptation in the model is suffi-
cient to generate a complete new set of test cases.
Although making models requires some effort, it
is expected that this effort is more than compen-
sated by the advantages of faster, more efficient, and
higher quality testing.

The challenge of this Line of Attention is to extend
the existing state of the art in model based testing
in such a way that, on the one hand, there is a solid
and well-founded theoretical basis, and on the other
hand it leads to high applicability for testing the
ASML systems.

This magazine contains an article by Braspenning
et. al., about a case-study on automatic model-
based testing with TorX usingχ as specification
language [2, 3]. As a result, they found interface
discrepancies between the laser unit (3rd party) and
controller of a lithography machine.

LoA Diagnosis

Throughout the design, integration, and operational
phase, systems are plagued by faults. Finding the
root cause of system malfunction typically con-
sumes many resources that could be spent much
more efficiently. This fault diagnosis process be-
comes even more problematic as system become
more complex. Model-Based Diagnosis (MBD) is a
computerized technique that considerably increases
the efficiency and accuracy of fault diagnosis.

Current MBD techniques, however, are still not ade-
quate to handle, complex, multidisciplinary systems
as found in ASML. Given an adequate MBD tech-
nique, in turn, a subsequent problem is model spec-
ification, which is a labor-intensive and error-prone
process. In this line-of-attention, we aim:

• to extend current MBD technology by including
features such as state, time, and probabilities in
order to provide the modelling capabilities re-
quired;

• to develop a technique to (semi-) automatically
derive/integrate (partial) fault diagnostic system
models from/within existing design specifica-
tions.

The MBD approach is based on decomposing the
diagnostic system (software) in two major compo-
nents:

• the system-specific reference model, describing
normative and fault behaviors, and

• a generic, diagnostic inference engine that ex-
ecutes the search process (the ’diagnosis al-
gorithm’), guided by comparing actual system
measurements with predictions from the refer-
ence model.

This diagnostic algorithm includes both exclu-
sion and deduction, reasoning probabilistically over
time. Consequently, development of diagnosis
software reduces to reference model specification,
which acts as a source code from which the diag-
nostic (embedded) software is automatically gener-
ated.

Aimed to provide proof-of-concept, in this line-of-
attention we conduct case studies where we de-
velop diagnostic models of relevant subsystems, ap-
ply them to realistic test data, and evaluate their
diagnostic performance by comparing their diag-
nostic output with the diagnosis found in practice.
Based on this feedback, we iteratively refine the
diagnostic models and algorithms in order to de-
termine a good trade-off between diagnosis effort
(manual and computational) and diagnostic perfor-
mance. The research is conducted by Delft Univer-
sity of Technology in cooperation with Science &
Technology BV.

This magazine contains an article by Pietersma
et. al., which describes the model-based diagnosis
methodology as a solution for the fault diagnosis
of an integrated system by inferring the health of
a system from a compositional system model and
real-world measurements

LoA Infrastructure and Early
Integration

Infrastructure

The modelling, simulation, testing, and diagnoses
techniques developed by the other LoA’s need to
be integrated in the ASML test and verification
methodology and tools. It will be investigated how
these modeling and simulation techniques can be in-
tegrated in the ASML test and verification method-
ology. For instance, in case the simulation models
do not reflect the reality correctly (anymore), the
models should be easily maintainable. Furthermore,

December 2005 7

we also want to integrate other existing test and
integration techniques, and tools, into the ASML
methodology.

Therefore, the main objective is the conception of
an integrated simulation and test environment that
has the following features:

• support for real implementations (software,
hardware) as well as simulation models;

• support for component integration;
• support for batch mode testing (e.g. for regres-

sion testing);
• support for automated test execution and

pass/fail verdict;
• support for (remote) model based diagnostics,

using same interfacing for models and real im-
plementations;

• support for hybrid (discrete event, continuous
time) models;

• support for real-time and simulation time exe-
cution.

Early Integration

In current practice testing is mainly performed after
completion of the product development and prior to
shipment. This implies that testing directly influ-
ences the shipment date. To test multi-disciplinary
components (e.g. combining software with elec-
tronics, mechanics or optics), all components need
to be available. For some (mechanical or optical)
components this results in a significant investment
to have the actual components available. When
time-to-market concerns limit the amount of testing
time, the rigor of testing is reduced. Consequently,
the risk increases that certain malfunctions are not
found prior to shipment. The resulting reduction in
availability directly impacts market share. Given
the above (three fold) problem statement, this re-
sults into the following observations:

Component dependencies (software, hardware) and
availability of those components directly limits the

test scheduling. This directly determines the time to
market and predictability of shipment date. Compo-
nents abstracting hardware cannot be tested with-
out the actual underlying hardware. This directly
results in the need to use expensive resources up
to complete production quality systems. Currently,
testing is mainly manual and the implementation,
documentation, and evaluation of test procedures
influences the product quality. The time to market
pressure dictates the amount and rigor (coverage) of
tests.

To address the above problems, the usage of mod-
elling and simulation techniques will be investi-
gated in this Line of Attention. With following this
approach:

• Testing can be started before all components are
completed,

• Testing of combined multi-disciplinary com-
ponents can be done with simulated hardware
components, and

• Testing can be made concurrent with system de-
velopment, allowing an increase in the total test-
ing rigor.

References

[1] TorX, http://www.purl.org/net/
TorX/,2005

[2] R.R.H. Schiffelers, D.A. van Beek, K.L.
Man, M.A. Reniers, J.E. Rooda,A Hy-
brid Language for Modelling, Simulation
and Verification, http://yp.wtb.tue.
nl/pdfs/5281.pdf, 2005

[3] D.A. van Beek, K.L. Man, M.A. Reniers,
J.E. Rooda, R.R.H. Schiffelers,Syntax and
Consistent Semantics of Hybrid Chi, CS-
Report 04-37, http://w3.wtb.tue.
nl/nl/people pages/?\&script=
showabstract.php\&outid=4880,
November 2004

8 XOOTIC MAGAZINE

Test sequencing in a complex
manufacturing system1

R. Boumen, I.S.M. de Jong, J.W.H. Vermunt, J.M. van de Mortel-Fronczak and J.E. Rooda

Testing complex manufacturing systems, like the ASML TWINSCAN [2] litho-
graphic machine, takes a lot of time and costs. Within the Tangram project,
methods are investigated to reduce this test costs. In this article, we describe
a method which is used to optimize a test sequence such that it takes the least
amount of costs, or time. With several cases we demonstrate that this method
can be used to optimize test sequences within the manufacturing of a TWIN-
SCAN lithographic machine such that cycle time is reduced.

Introduction

In today’s industry, time to market is extremely im-
portant. In their drive to reduce systems time-to-
market, many companies develop their systems con-
currently. The final phase within concurrent de-
velopment of systems is integration and test. This
phase is on the critical path, and therefore has great
influence on time-to-market (see [3]). The goal of
the Tangram project is to reduce the time and cost
spent on testing and integrating, and by that reduce
time-to-market and cycle time of a system. Within
the Tangram project, we look at test and integra-
tion strategy. A test and integration strategy de-
fines a test and integration phase which is optimal
in terms of time, costs and/or quality. In our work
we are looking at methods that select or optimize
test and integration strategies, taking into account
time, costs and quality.

In this article, we describe a method to create opti-
mal or near-optimal test sequences. A test sequence
is a key element of the test and integration strategy.
The basis of this method is described as Sequential
Diagnosis by Pattipati [4], who used this method for
the diagnosis of electronics. This method can also
be used for test sequencing problems related to the
manufacturing of complex systems.

System test problems are multidisciplinair (e.g.
electronics, software and mechanics), large (hun-
dreds of tests) and take a long time (up to several
weeks/months). A test and integration strategy for
systems is traditionally created by experts which
have a good knowledge of the systems architecture,
the risks and the test costs. Test sequencing and se-
lection is traditionally a risk-based decision. That
is, the elements with the highest risk are tested, un-
til time is up and the system is shipped. At that mo-
ment, the quality of the system is often unknown.

The semiconductor industry is a typical example of
a time-to-market driven industry. For companies
such as ASML, shipping your system before com-
petition is wanted, and thus dominates the test and
integration phase. Several cases within the man-
ufacturing process of a TWINSCAN machine are
presented in this article.

The structure of the article is as follows: first an ex-
ample test problem is introduced, then the test prob-
lem is formally described, then different solving al-
gorithms are mentioned, then the results of the dif-
ferent cases are shown, and finally conclusions and
future work are mentioned.

1This work has been carried out as part of the TANGRAM project underthe responsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

December 2005 9

Example test problem

To illustrate a system test problem, a telephone is
taken as system under test. This telephone consists
of three modules: the device, the receiver and the
cable connecting the receiver and the device. The
system is shown in Figure 1. There are two inter-
faces between the modules: one between the device
and the cable and one between the cable and the re-
ceiver.

DeviceReceiver

Cable

Figure 1: Telephone example

In this system under test, we can identify 5 possible
faults:

1. The device is broken.
2. The cable is broken.
3. The receiver is broken.
4. The cable cannot be connected to the device.
5. The cable cannot be connected to the receiver.

The first three faults are logical, the last two may be
less obvious. These two faults are interface faults,
which are typical system faults that occur through
concurrent engineering. All modules have been de-
veloped in parallel using interface specifications. If
these specifications are ambiguous, the assembled
system may not work as the specifications are inter-
preted differently for each module, which results in
interface faults. Each fault has a certain probability
that it exists. It is assumed that this fault probability
is 10% for each fault.

The goal of testing the system is to find out which
of the possible faults exists. 6 tests are available to
test this system:

0. Test the complete telephone
1. Test the device
2. Test the cable
3. Test the receiver
4. Test the device and cable
5. Test the cable and receiver

The costs of each test are defined in uniformcost
units. In real life, these costs can for example be
defined in money or in time. Test 0 costs 3, while
tests 1,2 and 3 each cost 1 and test 4 and 5 cost 2.

The objective is to create a test sequence with mini-
mal expected test costs. This optimal sequence log-
ically depends on the outcomes of tests applied, as
illustrated in Figure 2. According to this test se-
quence, a tester starts with test 0. If this test passes,
the tester knows no fault exists in the system and the
system works. If this test fails, the tester knows that
at least one fault exists and the tester has to perform
more tests to identify this fault. This way of work-
ing results in a test tree, which contains several test
sequences depending on the outcomes of tests. The
objective of calculating the optimal test sequence
actually means calculating the optimal test tree with
minimal expected test costs, identifying each possi-
ble fault.

The test costs of a test tree can be calculated as de-
scribed in the sequel for the example test tree of
Figure 2.To start with, test 0 is performed. This
test fails with a certain probability and if so test 3
is performed next. This probability depends on the
covered faults and their probabilities. The expected
test costs are therefore the test costs of test 0 plus
the test costs of test 3 multiplied by the chance that
test 0 fails, and so on. An optimal solution is a tree
with the least expected test costs. An optimal so-
lution for the telephone example is shown later in
this article. We continue in the next section with a
formal description of the test problem.

System

OK
Test 3

Test 2

Pass Fail

Pass Fail

FailPass

Test 0

Receiver

broken

Cable

broken........

Figure 2: Test tree with multiple test sequences

10 XOOTIC MAGAZINE

Test problem formulation

Formally, a test problemD can be defined as a five-
tuple:D = (T ,S, Tc,Sp,Rts), where:

• T is a finite set ofk elements, called tests.
• S is a finite set ofl elements, called fault states.
• Tc : T → R gives for each test inT the associ-

ated costs of performing that test
• Sp : S → R gives for each fault state inS thea

priori probability that the fault state is present.
• Rts : T → P(S) gives the subset of fault states

that are covered by a test.

The a priori probability is the absolute probability
that a certain fault is present. The test problem can
also be represented as a matrixA of dimensions
l × k, whereAij = 1 if test tj covers fault state
si, otherwiseAij = 0. The formal description is a
model of the test problem and is therefore called the
system test model. In Table 1, the system test model
of the telephone example is shown, represented as a
matrix.

Table 1: Telephone example system test model
S / T t0 t1 t2 t3 t4 t5 Sp

s1 1 1 0 0 1 0 10 %
s2 1 0 1 0 1 1 10 %
s3 1 0 0 1 0 1 10 %
s4 1 0 0 0 1 0 10 %
s5 1 0 0 0 0 1 10 %
Tc 3 1 1 1 2 2

In the following sections, different algorithms are
discussed to solve the test problem and hence cal-
culate the optimal test tree with minimal expected
test costs.

Solving algorithms

Continuing on the work of Pattipati, many different
solving algorithms using different heuristics have
been developed. A good overview is given by Shak-
eri et al in [1]. The assumptions of the test problem
solving algorithms are:

• binary outcome tests (only pass or fail),
• the fault states are independent of each other,
• the tests are 100% reliable,
• the tests are 100% sensitive and specific,
• a repair action 100% fixes the fault state.

The test problem solving algorithms consists of two
types: single and multiple-fault algorithms. The
single-fault algorithms have the assumption that at
most one fault state is present. The multiple-fault
algorithms do not have that assumption. Both types
of algorithms are explained in the sequel.

Single-fault algorithms

The single-fault algorithm has the assumption that
at most one fault state exists. This assumption re-
sults in some changes to the original test problem.
The possibility that no fault state exists (the system
is OK) must be modelled explicitly because the al-
gorithm assumes that at least one fault is present.
This is done by adding an extra state toS, nameds0

which represents the system OK state. ElementS of
the basic test problem is denoted byS for the single-
fault problem. Also, because at most one fault state
can be present, the sum of the fault state probabil-
ities must be 100%. Therefore, thea priori fault
probabilitiesSp are converted toconditional fault
probabilitiesSp using,

Sp(s0) =
1

1 +
∑

s∈S

Sp(s)
1−Sp(s)

(1)

and

Sp(si) =

Sp(si)
1−Sp(si)

1 +
∑

s∈S

Sp(s)
1−Sp(s)

for i = 1, · · · , l. (2)

The single-fault system model of the telephone ex-
ample is shown in Table 2.

Table 2: Telephone example single-fault system test
model

S / T t0 t1 t2 t3 t4 t5 Sp Sp

s0 0 0 0 0 0 0 - 64.28%
s1 1 1 0 0 1 0 10% 7.14%
s2 1 0 1 0 1 1 10% 7.14%
s3 1 0 0 1 0 1 10% 7.14%
s4 1 0 0 0 1 0 10% 7.14%
s5 1 0 0 0 0 1 10% 7.14%
Tc 3 1 1 1 2 2 - 100%

A solution to the single-fault test problem is an
AND/OR decision tree as shown in Figure 3. This
tree consists of three types of nodes: AND, OR and
leaf nodes. The OR nodes represent the suspected

December 2005 11

set of fault states, the AND nodes represent tests ap-
plied to the OR nodes and the leaf nodes represent
isolated faults states.

s0

Test 3

Pass Fail

Pass Fail

Test 0

s3
s1, s2, s4,

s5

s0, s1, s2,

s3, s4, s5

Test 1 Test 2Test 4Test 5 Test 3

s1, s2, s3,

s4, s5

Test 1 Test 2Test 4Test 5

OR node

AND node

leaf node

Figure 3: An AND/OR graph

Calculating an optimal AND/OR tree is NP-Hard
[5]. Therefore in literature, two types of solv-
ing algorithms are described: optimal algorithms
for small and near-optimal algorithms for large test
problems.

To calculate an optimal AND/OR tree, two optimal
algorithms can be used: Dynamic Programming and
AND/OR graph search [5]. The Dynamic Program-
ming technique is a recursive algorithm that con-
structs an optimal tree from the leave nodes up by
identifying larger subtrees until the optimal tree is
generated. The Dynamic Programming technique
has storage and computational complexity ofO(k3)
for the basic test problem. Therefore in this article,
we use the more efficient top-down algorithm based
on AND/OR graph search (AO∗).

The AO∗ algorithm constructs an AND/OR graph
as a directed graph with a root (or initial) node and
a nonempty set of terminal leaf nodes. The ini-
tial node represents the given problem to be solved,
while the terminal leaf nodes correspond to the sub-
problems with known solutions. An OR node is
solved if any one of its successor nodes is solved,
and an AND node is solved only when all of its im-
mediately successors are solved. During the search
within the AND/OR graph, the expected test costs
of visited OR nodes are saved to reduce computa-
tional effort: these costs do not have to be calculated
again.

For larger problems near-optimal algorithms are
necessary. Several near-optimal search algorithms
are known from literature [5], for example: theAO∗

ε

algorithm, the limited searchAO∗, and theAO∗

algorithm combined with a multi-step information
gain heuristics. The near-optimal one-step informa-
tion gain heuristics can be used during theAO∗ al-
gorithm to solve the larger cases presented in this
article.

The test tree shown in Figure 4(b) is an optimal tree
for the telephone example. The expected test cost of
this tree are 4.07. This means that on average, 4.07
test cost are necessary to identify one fault state in
the system.

To illustrate the different test sequences that can be
found for different fault probabilities, we reduce the
a priori fault chance of each fault state from 10% to
5%. The resulting tree can be seen in Figure 4(a). In
the third situation, thea priori fault chance of each
fault state is 50%. The resulting tree can be seen in
Figure 4(c). In the 5% situation, only test 0 is neces-
sary to check whether the system is OK, in the 10%
situation both tests 4 and 5 are necessary to check
whether the system is OK, while in the 50% situa-
tion tests 4, 3 and 5 are necessary to check whether
the system is ok.

Multiple-fault algorithms

When fault probabilities are high, the assumption
that at most one fault state is present in the system
is questionable. In these cases, it is still possible to
use the solution tree of the single-fault algorithm,
over and over again until all fault states have been
identified, but it is certainly not optimal. Therefore
multiple-fault algorithms are necessary.

Multiple-fault algorithms construct AND/OR
graphs in the same way as the single-fault algo-
rithms. However, instead of considering one possi-
ble fault state, they consider all possible combina-
tions of fault states. The OR node in an AND/OR
graph represents all possible subsets of suspected
fault states. Multiple-fault problems have a expo-
nential complexity ofO(2l) (see [1]). TheAO∗

multiple-fault algorithm used in this article, is de-
rived from theAO∗ single-fault algorithm. Com-
pared to the single-fault algorithm, the multiple-
fault algorithm considers fix actions of fault states.
If a fault state is isolated, it can be fixed immedi-

12 XOOTIC MAGAZINE

Tree cost = 3.67

Test 0

End

pass

Test 3

fail

Test 2

pass

Fix: [3]

fail

Test 1

pass

Fix: [2]

fail

Test 5

pass

Fix: [1]

fail

Fix: [4]

pass

Fix: [5]

fail

(a) 5% fault probabil-
ity

Tree cost = 4.07

Test 4

Test 5

pass

Test 2

fail

End

pass

Test 3

fail

Fix: [5]

pass

Fix: [3]

fail

Test 1

pass

Fix: [2]

fail

Fix: [4]

pass

Fix: [1]

fail

(b) 10% fault probability

Tree cost = 4.00

Test 4

Test 3

pass

Test 2

fail

Test 5

pass

Fix: [3]

fail

End

pass

Fix: [5]

fail

Test 1

pass

Fix: [2]

fail

Fix: [4]

pass

Fix: [1]

fail

(c) 50% fault probability

Figure 4: Telephone example optimal single-fault test trees

ately. After the fix action, isolated fault states are
removed and more tests are applied to find other
faults. The algorithm terminates when all faults are
excluded and the system is ok. The resulting graph
has one root node and one leaf node. An example
multiple fault tree is shown in Figure 5.

Besides test and fix actions, the algorithm also has
diagnosis actions. If a number of fault states is un-
der suspicion, but none have been isolated and ad-
ditional testing does not give more information, a
diagnosis action removes the suspected fault states.
This diagnosis action has high costs, but is neces-
sary to terminate the algorithm and solve the test
problem.

To reduce computational complexity, the same in-
formation gain heuristic is implemented as in the
single-fault algorithm. Most computational costs
are spent during the calculation of the pass and fail
probabilities of a test, as all subsets of fault states
must be taken into account. Therefore, estimators
are used to estimate the pass and fail probabili-
ties and reduce this computational complexity. If
a problem is still to large, it can be divided into
subproblems that can be solved optimal or near-
optimal. The subproblems by itself can then be se-
quenced with the same algorithm, or by hand. To
reduce storage complexity of saved OR nodes, the
implemented multiple-fault algorithm uses the com-
pact set notation (see [1]). The compact set notation
is a shorter notation for all possible subsets of fault
states.

An optimal multiple-fault tree of the telephone ex-

ample, shown in Figure 5, has been calculated with
the optimal multiple-fault algorithm.

Tree simulation

Both single and multiple-fault algorithms can be
used for system test problems. The advantage of
a single-fault algorithm is that the resulting tree is
smaller and better understandable. Also, the com-
putational effort is less. However, the resulting test
costs may be higher than in case of using solution
from a multiple-fault algorithm. By using a simu-
lation model of the test process, called the testFac-
tory, the difference between the average test costs
can be made clear. The testFactory is not discussed
in this article. The testFactory simulates the testing
of a number of predefined faulty systems either us-
ing a single-fault tree over and over again until all
faults are found, or using the multiple-fault tree. In
Figures 6(a) and 6(b) two histograms are shown of
the simulation of the single and multiple-fault 10%
fault probability trees. After 5000 simulation runs
(number of systems tested), the average test costs
of the single-fault tree were 5.7, while the average
test costs of the multiple-fault tree were 5.3. If all
tests would be performed, the test costs would be
10.

December 2005 13

Test 5

Test 3

fail

Test 4

pass

Fix: [3]

fail

Test 2

pass

Test 5

fail

pass

Fix: [2]

fail

Fix: [5]

passTest 0

Test 5

fail

End

pass

fail

Test 1

pass

fail

pass

Fix: [1]

fail

Fix: [4]

pass

Test 4

fail

pass

Figure 5: Telephone example optimal multiple-fault test
tree

Cases

Within the manufacturing department at ASML,
several test steps are performed during the produc-
tion of a TWINSCAN lithographic machine. These
test steps consist of performance, measurement and
fault-detection tests, and calibrations. The pre-
sented test sequencing method is applied to three
test steps, called job-steps, of different modules to
reduce the cycle time of manufacturing a TWIN-
SCAN machine.

The approach of the case is as follows:

1. Three models are created for 3 different job-
steps.

2. For each model the optimal single and multiple-
fault test trees are calculated.

3. The resulting test sequences are simulated us-
ing a test factory simulation model to show the
expected test time.

In Table 3 the properties of the 3 created models are
shown. The first column denotes the size of the ma-
trices for job-steps A, B and C. The second column
denotes the sum of all test costs, denoting the cur-
rent situation. The cost of a test is for this case de-
fined in time units. The third column shows average
fault probability. The fourth column indicates the
density of theA matrices, that is, how well ’filled’
these matrices are.

Table 3: Case system test model properties
Case k × l

∑

t∈T

Tc(t) Aver.(Sp) Dens.(A)

A 15 × 15 815 71.3% 38.2%
B 33 × 60 33 46.0% 15.2%
C 39 × 73 730 15.8% 10.4%

Now, the single and multiple-fault trees can be cal-
culated. In Table 4, the properties of the trees and
algorithms used are shown. The first single-fault
column denotes which methods have been used
to solve the single-fault problem: either the opti-
mal calculation or using the information gain (IG)
heuristic or by dividing (div) the problem in mul-
tiple problems. The second column shows the ex-
pected tree costs. The same columns are shown for
the multiple-fault algorithm.

The costs of the single-fault trees are much lower
then the multiple-fault trees. This due to the single-
fault assumption and the conditional probabilities
which are much lower in these cases then thea pri-
ori fault probabilities.

Table 4: Case test tree properties
Single-fault Multiple-fault

Case Method Costs Method Costs
A Optimal 202.9 IG 690.0
B IG 5.0 div(4) 25.8
C Optimal 144 div(4) 504

After the trees have been calculated, they are sim-
ulated in the simulation environment, as mentioned
previously. In Table 5, the simulation results are
shown. The first column shows the average single-
fault tree costs and the second column shows the
gain or loss in cycle time compared to the current
situation. The third and fourth columns show the
same for the multiple-fault test trees.

14 XOOTIC MAGAZINE

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000
Simulation histogram

Costs

R
un

s

(a) Single-fault simulation (5.7 average)

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000
Simulation histogram

Costs

R
un

s

(b) Multiple-fault simulation (5.3 average)

Figure 6: Telephone example tree simulation histograms

The average test costs of the single-fault tree are
much higher then the test costs of the current sit-
uation. This results from the assumption that only
one fault exists, while the average number of faults
present is large (larger then 10). The single-fault
tree is therefore only suitable when the average
number of faults is small, in the range of 1 through
5. For a larger number of average faults, the
multiple-fault algorithm performs better. The re-
sulting test trees are even better then the test trees
that are currently used.

Table 5: Case simulation results
Single-fault Multiple-fault

Case Sim. Delta Sim. Delta
A 1848 +126% 689.0 −15.5%
B 60.8 +84.4% 25.9 −21.5%
C 1608 +120% 504.2 −30.9%

Conclusions

The presented method describes the test problem in
a system test model. A single-fault algorithm calcu-
lates an optimal, with the least test costs, test tree,
consisting of multiple test sequences, based on this
system test model. This algorithm has the assump-
tion that at most one fault exists. Besides this al-
gorithm, a multiple-fault algorithm is described that
creates a test tree with the assumption that multiple-
faults can exist. This algorithm needs to take fixing
and diagnosis of faults into account. The single-
fault algorithm needs few computation to give an

optimal solution, however it is recommended that
this solution may only be used with test problems
that have no more then 5 faults on average present in
the system. The multiple-fault algorithm takes more
computation effort, but the calculated solutions can
also be used with problems that have more then 5
faults present.

We can conclude that the presented method is
suitable for system test problems, as seen within
ASML. There are two main benefits for using this
method in the test and integration phase of systems.
First, the test cost can be reduced by calculating the
optimal test sequence as is shown in this case. Even
test sequences that are judged to be quite good by
experts, can be improved and cycle time can there-
fore be reduced.

Second, more insight in the test coverage of faults is
gained when creating system test models. For large
systems little knowledge exists about the relation
between faults and tests: if a test fails it is difficult
to indicate why. The presented system test model
is a summary of these relations. Furthermore, the
available test set can be made more explicit. New
tests can be developed that cover faults which are
not covered by the current test set. Also new tests
can be developed that replace multiple other tests
but cover the same or even more faults.

December 2005 15

Future work

In the sequel of this project we will continue de-
veloping methods to optimize test and integration
strategies. Test and integration sequences depend
on each other. For example, the telephone consists
of three modules. If the development of a certain
module is delayed, tests using this module cannot
be performed, while tests concerning the other two
modules can be performed. Also, if the modules are
separated, parallel testing would be possible, which
probably reduces test time. In other words, the in-
tegration sequence of modules must be taken into
account to determine the optimal test sequences. Or
even further: the integration sequence must be op-
timized regarding time, costs and/or quality. Other
aspects of the test and integration strategy relevant
to our project are: scheduling tests over resources,
strategy decisions regarding cost, time and quality
and as already mentioned in this article, test and in-
tegration process simulations to determine the dif-
ference between certain test and integration strate-
gies.

References

[1] M. Shakeri, V. Raghavan, K. R. Pattipati and A.
Patterson-Hine,Sequential Testing Algorithms
for Multiple Fault DiagnosisIn IEEE Transac-
tions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, Volume 30, Number
1: 1-14, 2000

[2] ASML, http://www.asml.com

[3] M. Prins, Testing Industrial Embedded Sys-
tems - An OverviewIn Proceedings of the 14th
Annual International Symposium of INCOSE,
2004

[4] K. R. Pattipati, S. Deb, R. W. Dontamsetty and
A. Maitra, START: System Testability Analysis
and Research ToolIn IEEE Aerosp. Electron.
Syst. Mag.: 13-20, 1991

[5] K. R. Pattipati and M. G. Alexandridis,Appli-
cation of heuristic search and information the-
ory to sequential diagnosisIn IEEE Trans. Syst.
Man, Cybern., Volume 20: 872–887, 1990

Contact Information

Roel Boumen

Technische Universiteit Eindhoven
Department of Mechanical Engineering
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
r.boumen@tue.nl

Ivo de Jong

Technische Universiteit Eindhoven
Department of Mechanical Engineering
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
i.s.m.d.jong@tue.nl

16 XOOTIC MAGAZINE

Model-based testing withχ and TORX 1

A case study of the ASML laser subsystem

Niels Braspenning, Asia van de Mortel-Fronczak, Koos Rooda

Within the TANGRAM project, a case study on model-based testing of the ASML
laser subsystem has been performed. The approach used in the case study
is based on the proposed model-based testing framework, instantiated with
state-of-the-art tooling from the TANGRAM project partners: χ as specification
language and TORX as test tool. A χ specification model of the laser state
behavior and communication interface has been developed. After verification
and validation, the model has been used for automatic model-based testing
with TORX. Using this approach, discrepancies between the implementation
and specification of the laser subsystem have been found.

One research topic of TANGRAM is model-based
testing (MBT in short), that has already been a topic
of the XOOTIC MAGAZINE [1]. In model-based
testing, the behavior specification of a system un-
der test is given by a formal model, which is a pre-
cise, complete, consistent, and unambiguous basis
for testing. Using formal specifications for test-
ing enables automatic processing by means of tools.
Using a test derivation algorithm implemented in a
test tool, test cases are automatically derived from
the specification model and executed on the system.

One of the TANGRAM case studies concerns model-
based testing of the ASML laser subsystem using
the specification languageχ and the test tool TORX.
The objectives of this case study are to show the ap-
plicability of automated model-based testing using
TORX within ASML, to show thatχ models can be
used for model-based testing, and to investigate the
limitations and shortcomings of the approach used.

MBT framework

The proposed MBT framework is shown in Figure 1
and consists of the following elements:

• An informal specificationof the correct behav-
ior of the system under test expressed in a nat-
ural language (documentation) and present in
the minds of the designers (mental model).

• A (formal) specification modelof the correct be-
havior of the system under test expressed in an
unambiguous specification language.

• A formal test modelof the correct behavior of
the system under test expressed in a test formal-
ism that is suitable input for the test tool. Note
that the specification model and the test model
can be (but are not necessarily) the same.

• A test tool that is able to automatically derive
tests from the test model, to execute these tests
on the system under test, and to compare the test
results with the test model behavior.

• A test environmentthat provides access to the
interfaces of the system under test and enables
stimulation and observation of these interfaces.

• A system under test (SUT), which is the actual
implementation that is tested together with the
required context that is needed for testing.

1This work has been carried out as part of the TANGRAM project under the responsibility of the Embedded Systems Institute.
This project is partially supported by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

December 2005 17

(formal)

specification

model

formal

test

model
test tool

system under

test (SUT)
informal

specification

test environment

Figure 1: Model-based testing (MBT) framework

Tooling

When testing is to be performed automatically,
some form of tooling is required. Looking at the
MBT framework from Figure 1, the following tool-
ing is needed:

• A specification language and test formalism in
which the correct system behavior and the re-
quired test aspects can be expressed. The test
formalism must be suitable input for the test
tool.

• A test tool that is able to automatically derive
tests from the test model using a test derivation
algorithm and that is also able to automatically
execute the derived tests on the SUT and com-
pare the test results with the test model behavior.

• A test environment that connects the test tool to
the SUT and enables stimulation and observa-
tion of interfaces of the SUT.

Looking at the TANGRAM project partners, good
candidate tools for model-based testing would beχ

[2] and TORX [3]. Within the Systems Engineer-
ing Group at the Eindhoven University of Technol-
ogy, there is a lot of experience on the modeling,
analysis, control, and optimization of manufactur-
ing systems with the specification languageχ, for
both discrete-event and hybrid (i.e. including con-
tinuous behavior) systems. Using the high expres-
sivity of χ for model-based testing will be beneficial
in the future when the testing domain is extended
towards time, data, and hybrid testing, because the
current test formalisms are not expressive enough
(discrete-event only) for specifying these other as-
pects.

The test tool TORX, developed at the Formal Meth-
ods and Tools research group at the University of
Twente, is able to derive and execute tests on-the-
fly, based on theioco theory. Several case studies
show successful application of the tool. Test for-

malisms that are currently supported by TORX are
LOTOSand TROJKA, the latter one being a slightly
adapted version of PROMELA [4]. The test domain
of TORX is currently limited to the discrete-event
domain, however extensions towards the data, time,
and hybrid test domain are investigated within the
TANGRAM project and other projects.

As it is a specific goal of the laser case study to in-
vestigate whetherχ can be used for model-based
testing,χ is chosen as specification language. How-
ever,χ cannot be used as a test formalism, as it is
not a suitable input format for TORX. Because of
this, and the fact that a direct connection between
χ and TORX is considered as a future development,
one of the supported test formalisms of TORX has
to be selected to which theχ specification will be
translated. Because of the resembling structures
of χ and PROMELA and the existing experience in
translatingχ to PROMELA, TROJKA is chosen as
test formalism for the laser case study. The usage of
PROMELA also allows verification of certain prop-
erties of the model with the model checker SPIN.

Table 1: Properties ofχ, PROMELA, TROJKA
Language property χ PROMELA TROJKA

Simulation
√ √ √

(closed)
Verification X

√ √
(closed)

Testing X X
√

(open)

Modeling expressivity
������

Data
√

X X
Functions

√
X X

Time
√

X X
Stochastics

√
X X

Hybrid
√

X X

Easy to modify
������

The three specification languages mentioned above,
χ, PROMELA, and TROJKA, are compared to each
other according to certain properties in Table 1.

For the test environment, the current developments
within TANGRAM on test infrastructure, also ad-
dressed in this XOOTIC MAGAZINE issue, are used,
which provides easy access to the interfaces of
ASML software components.

18 XOOTIC MAGAZINE

Case: ASML laser subsystem

For each exposure of an area (e.g. one chip) on a
silicon wafer in a wafer scanner a beam of laser
light is needed, that is provided by the laser sub-
system. The laser subsystem is manufactured by
another company than ASML, and has to operate
together with the ASML wafer scanner to get good
exposure results. To this end, a lot of communica-
tion is used between the scanner and laser, like com-
mands, queries and responses, warnings and errors,
control data, timing and synchronization triggers.

One condition of the case study is that only func-
tional, untimed behavior is considered, so only
the communication concerning commands, queries,
and responses is taken into account. Although there
are multiple (serial and parallel) communication in-
terfaces between the wafer scanner and the laser,
only the RS232 serial interface is used in the ex-
periments, because this interface is easily accessible
through the test environment.

Taking these limitations (functional behavior using
the serial interface) into account and looking at the
operational sequences in the laser subsystem doc-
umentation, the number of serial commands that
can be tested is very limited. Many operational
sequences use parallel commands (i.e. commands
sent over the parallel communication interface) or
can only be executed in the ’expose’ state that re-
quires parallel commands to reach. Therefore, only
the laser state behavior (serial commands starting
with ’LS’) is considered, which limits the testable
functionality to changing the laser state to standby
and off, and to query the current state only. Never-
theless, this is still enough to show proof of concept.

Approach

From the informal specification in the form of doc-
umentation and mental models (revealed by talking
with the ASML people involved), aχ model of the
laser and an environment of the laser (necessary to
get aclosedsystem) is developed. To gain confi-
dence in the model, the model is verified and vali-
dated against the informal specification by means of
simulation.

Subsequently, theχ model is translated into
PROMELA. Because PROMELA has several limi-
tations concerning the modeling expressivity ofχ,

workarounds have to be found for the translation of
certainχ model constructs. By means of simula-
tion with SPIN, the PROMELA model is verified and
validated against the informal specification and the
simulation results of theχ model. Besides that, sev-
eral model properties are verified using SPIN.

When there is enough confidence in the model, the
PROMELA model is converted into the TROJKA test
model, which involves only a few small modifica-
tions. It is important to mention that now only the
laser part is converted, because testing is done us-
ing a system specificationwithoutenvironment (i.e.
anopensystem). Finally, when TORX is connected
to the TROJKA test model on one side and to the
test environment that accesses the RS232 serial in-
terface of the laser on the other side, the testing ex-
periments are performed.

It is important to mention that for the first experi-
ments, a hardware laser simulator (containing pro-
grammable electronics and cable connectors for the
actual serial and parallel communication interfaces)
is used instead of a real laser due to costs and safety
issues. This hardware laser simulator is connected
by cables to an ASML test rack, which is controlled
by software. The approach of the laser case study,
which is an instantiation of the MBT framework
from Figure 1, is visualized in Figure 2.

Figure 2: Case study approach

Modeling in χ

The χ specification model of the laser subsystem
contains both the environment side and the laser
side of the (serial and parallel) communication in-
terface. Theχ model, depicted in Figure 3, contains
the following processes, which are interconnected
by channels:

December 2005 19

• TheenvironmentEnv closes the system and can
be configured (using an external configuration
file) to generate specific command sequences
for behavior validation, for example the opera-
tional sequences of the wafer scanner (as found
in documentation).

• The I/O interfaceIO interfaces with the envi-
ronment and passes through commands and re-
sponses to and fromLC andLS.

• The laser communicationLC process handles
the commands from the environment (passed
through byIO), performs the necessary actions
(e.g. a state change), and creates the responses
corresponding to the configuration that is loaded
from an external file.

• The laser stateLS process keeps track of the
current laser state, in case the environment
queries the current state.

LC

Env

IO

LSconfig

Laser

Figure 3: Processes and channels of theχ model

Theχ model isconfigurablein a sense that the envi-
ronment command sequences and the laser behav-
ior can be changed easily in external files without
changing and recompilation of theχ model itself.
This easy changing of behavior already showed its
advantage when it became clear that a certain laser
type was not available in the laser simulator and an-
other laser type had to be specified. Furthermore,
the model containserror handling of ’unknown’
commands (commands not understood by the laser)
and ’bad context’ commands (known commands
that are not allowed in a certain state).

Figure 4 shows the behavior of the laser model that
is to be tested by TORX. In this figure, the nodes
depict the states of the model and the edges de-
pict both commands/input (solid) and results/output
(dashed). The central states at the top and bottom
denote the actual laser states ’off’ and ’standby’

(numbered ’00’ and ’03’, respectively). The ’trans’,
’error’, and ’query’ states are intermediate states be-
tween different LS (laser state) commands. Note
that a state transition command to the current state
results in a ’bad context’ error (’??=02’).

error
off

(00)
query

'LS=00'

'??=02'

error
stby
(03)

query

'LS=03' 'LS=00'

'LS?'

'LS=00'

trans trans

'LS=03' 'LS=00'

'??=02' 'LS=00'

'LS?''LS=03'

Figure 4: Laser behavior to be tested

The verification and validation of theχ model is
performed by means of simulation. Several in-
teresting scanner command sequences (e.g. op-
erational sequences from documentation and bad
weather (exceptional) behavior) are generated in
processEnv and the model is simulated. The simu-
lation results show the same behavior as in the doc-
umentation and also the error handling functionality
behaves as expected.

Translation to PROMELA

Becauseχ is not a suitable input for TORX,
the χ specification model has been translated to
PROMELA by hand, which is a laborious and error-
prone task. For most of theχ constructs, a trans-
lation scheme fromχ to PROMELA, developed in
the TIPSY project [5], can be used. However,
some specificχ constructs cannot be directly trans-
lated, for example lists, sets, (repetitive) selective
waiting, and functions (e.g. thepick function to
select one element from a set). For these cases,
workarounds have been found and applied. As
the translation is done manually according to some
translation scheme, it is certainly not guaranteed
that the translation is correct. Nevertheless, the
resulting PROMELA model resembles theχ model
as much as possible, which means that each state-
ment inχ is translated into one PROMELA statement

20 XOOTIC MAGAZINE

or into one block of PROMELA statements that is
preferably considered as one internal action (by us-
ing theatomic andd_step operators). The re-
sulting PROMELA code is certainly not optimal and
not the most efficient, which is due to the translation
from χ.

Modeling the laser subsystem in PROMELA right
away would probably result in a more elegant
model, so in this case the benefits of usingχ may
not be really clear. However, one of the objectives
of this case study was to investigate the possibility
of usingχ for MBT, and in this case the usable func-
tionality of χ is limited to the functionality that is
supported by PROMELA and TORX. So, the expe-
rience gained in this case study is beneficial when
data, time and hybrid aspects are to be included,
which are supported inχ, but not in PROMELA.

Table 2: Model properties ofχ, PROMELA, and TROJKA
Model property χ PROMELA TROJKA

Environment process Env
√ √

X
Laser processes IO/LC/LS

√ √ √

Serial interface
√ √ √

Parallel interface
√ √

X
Error handling

√ √ √

Configurable behavior ������

#lines for model 350 800 350
Time to build 3 weeks +3 weeks +1 week

Verification and validation with S PIN

Just like theχ model, the translated PROMELA

model is also verified and validated by performing
simulation runs, in this case with the model checker
SPIN. Again, several operational sequences and bad
weather command sequences are generated in the
environment and the results are as expected.

An advantage of having a specification model in
PROMELA, is that SPIN can be used to verify cer-
tain model properties. Several generic properties
like deadlock freenessandno unreachable statesare
successfully verified. Besides that, also some spe-
cific properties of translatedχ constructs and of the
laser behavior are verified and found to be correct,
for example that:

• the PROMELA translation of theχ function
pick (which takes an element from a set) al-
ways returns one set element;

• only certain state transition sequences are al-
lowed;

• only certain replies are allowed to a command.

Conversion to TROJKA

With verification and validation, the confidence in
a model grows. When there is enough confidence
in the model, it is used for model-based testing. To
this end, the PROMELA model needs to be slightly
modified, which results in a TROJKA model that is
suitable input for TORX. First of all, the TROJKA

model is anopensystem, i.e. it does not contain the
Env process from Figure 3. Another difference is
that in a TROJKA model the channels that areob-
servableto the outside world need to be defined,
which is done by giving them the special attribute
OBSERVABLE. Finally, the channel names have to
conform to a certain naming convention to enable
the connection of TORX to the system under test
through the test environment.

Corresponding to Table 1 that shows properties of
the specification languagesχ, PROMELA, and TRO-
JKA, a similar overview of laser model specific
properties is given in Table 2.

Testing with TORX

Now that the specification side of the MBT frame-
work (all elements on the left of the test tool in
Figure 1) has been set up, the test tool has to be
connected to the SUT. For the translation of the ab-
stract commands from the TROJKA test model into
the concrete commands of the SUT and vice versa,
an adapter component (implemented in PYTHON) is
used.

For each observable channel in the test model, a
PYTHON adapter function has been created that
handles the connection to the SUT, which involves
translation from abstract commands into real com-
mands, wrapping of specific command data (e.g. a
left justified string of 128 characters). The other
way around, also the real replies received from the
SUT have to be unwrapped and translated back into
the abstract replies as specified in the test model.

System under test: laser simulator

As already mentioned, a hardware laser simulator is
used as system under test instead of the real laser
due to safety and costs issues. This laser simula-
tor is connected to a software controlled test rack
and is developed by ASML to be able to test the
wafer scanner software and electronics in the test

December 2005 21

rack without a real laser connected to it. This saves
a lot of expensive cleanroom time and is less dan-
gerous. As the ASML wafer scanners are shipped
to customers with different laser types, also the laser
simulator can be configured for several (but unfor-
tunately not all, as we experienced) laser types.

With a configured laser simulator, connected by ca-
bles to the ASML test rack where the software,
electronics, and the test environment are up and run-
ning, the whole test setup as shown in the right bot-
tom part of Figure 2 (consisting of the TROJKA test
model, the TORX test tool, the test environment,
and the laser simulator as SUT) is prepared for ex-
perimenting.

Figure 5: TORX has found a discrepancy!

Experiments and results

With the test setup as described above, the laser sim-
ulator has been tested automatically. Serial com-
mands are selected from the TROJKA test model
by TORX and sent to the laser simulator. The re-
sponses from the laser simulator are observed and
compared with the behavior specified in the model.
During the experiments two major discrepancies be-
tween the test model and SUT concerning state be-
havior have been found. One of these discrepancies
is discussed in more detail below.

The specified laser behavior from Figure 4 shows
that a state transition command to the current
state (e.g. giving the command ’LS=03’ in the
’standby (03)’ state) should give a ’bad context’ er-
ror (’??=02’) as reply. However, the laser simulator

replies with the current laser state instead (’LS=03’
in this case). The TORX message sequence chart in
Figure 5 shows the commands and replies leading
to this discrepancy. Because the signs ’=’ and ’?’
are not allowed in PROMELA, they are replaced by
’eq’ and ’QM’, respectively.

Besides discrepancies in the implementation, also
some errors and inconsistencies in the specification
documents are found. Due to the general explana-
tion in words, these specifications are incomplete,
they can be interpreted in different ways, and some-
times they are even conflicting. Especially the spec-
ification of bad weather behavior (if it is specified
at all) is not clear. For example, a lot of (opera-
tional) command sequences are specified separately,
but nothing is explicitly stated about the remaining
(e.g. bad weather) command sequences. Even if it
is possible, it is very hard to extract this informa-
tion from the informal specification. When making
a specification model, the specification language ex-
plicitly forces a complete specification of all possi-
ble cases, for example in an if-elseif-else construct.

Conclusions

With the laser case study, a proof of concept is
delivered that automatic model-based testing with
TORX can be applied within ASML. Furthermore,
it is also shown thatχ models can be used for
model-based testing. In this case theχ model is
not directly used for model-based testing, however
the structure of theχ model is maintained during the
translation into the PROMELA and TROJKA models.

Developing a formal specification model starting
from an informal specification is a difficult task, es-
pecially when a modeler is new to the system. The
information is scattered over different documents,
can be interpreted in different ways, is incomplete,
and in some cases it is conflicting. Moreover, it is
possible that parts of the informal specification are
not documented, but stored in the minds of the de-
signers (mental models). Therefore, talking to the
people involved is very important to clear confu-
sion, to reveal the mental models, and to validate
your specification model.

The often heard argument that modeling a system
takes a lot of time is not completely true. It is not
the modeling (i.e. writing the specification down
in some specification language) itself that takes a

22 XOOTIC MAGAZINE

lot of time, but the development of anunambigu-
ous specification. The act of modeling itself forces
the modeler to think harder about the system speci-
fication, which will result in a better understanding
of the system and also in a more complete and less
ambiguous specification.

Concerning the specification model of the laser sub-
system inχ, the modeling is done according to the
current way of working within the Systems Engi-
neering Group at the TU/e. The configurability of
the model can be considered as a new way of speci-
fying behavior.

The translation fromχ to PROMELA is a very labo-
rious and error prone process that results in a loss
of modeling expressivity, readability, and modifia-
bility. Additionally, there is no certainty about the
correctness of the translation, as it is done by hand.

One question that can be asked is whether it is ben-
eficial to start modeling withχ instead of model-
ing directly in PROMELA. Currently the used func-
tionality of χ is limited to what is possible with
PROMELA and TORX, i.e. functional testing of
discrete-event systems. The expressive modeling
power of χ is yet untouched and all functional-
ity that is used in theχ model is maintained in
PROMELA and TROJKA (but certainly not in an op-
timal way). So for this case study, it would be rea-
sonable to start modeling in PROMELA right away.
However, when the data, time and hybrid test do-
main come into the picture (which will be the case
in the near future), PROMELA will not suffice any
more. Then the project can benefit from usingχ

and, therefore, this initial case study is useful and
valuable for future research.

The approach described in this report enables auto-
matic testing of the responses of the laser simula-
tor, for both good and bad weather. The initial ex-
periments concerning the laser state behavior tested
limited functionality (because the interface accessi-
bility was limited), however some discrepancies be-
tween implementation and specification of the laser
simulator have been found.

Future work

A direct connection betweenχ and TORX is defi-
nitely required whenχ specification models are to
be used for model-based testing. Therefore, the first
steps towards such a connection are being taken. To

utilize TORX within ASML in a more easy way,
the connection of TORX to the test environment
(which now is done through the manually developed
adapter component) will also be made more generic.

Besides that, more research is performed on model-
based testing, especially regarding theory and tool-
ing extensions towards the time, data and hybrid
domain. First experiments show that a timed ver-
sion of TORX is able to derive tests from a timed
automata specification to test the functionality and
some timing requirements (e.g. response time) of a
system under test.

References

[1] X OOTIC MAGAZINE’Testing’ issue, Volume 8,
Number 2, November 2000.

[2] D.A. van Beek, K.L. Man, M.A. Reniers, J.E.
Rooda, and R.R.H. Schiffelers,Syntax and
Consistent Semantics of Hybrid Chi, Computer
Science Reports 04-37, Technische Universiteit
Eindhoven, November 2004.

[3] J. Tretmans and E. Brinksma,TorX: Automated
model based testing, In 1st European Confer-
ence on Model-Driven Software Engineering,
December 2003.

[4] Gerard J. Holzmann,The model checker SPIN,
Software Engineering, 23(5):279–295, 1997.

[5] E. Bortnik, N. Třcka, A.J. Wijs, B. Luttik, J.M.
van de Mortel-Fronczak, J.C.M. Baeten, W.J.
Fokkink, and J.E. Rooda,Analyzing aχ model
of a turntable system usingSPIN, CADP and
UPPAAL, Journal of Logic and Algebraic Pro-
gramming, 65(2):51–104, November 2005.

Contact Information

Niels Braspenning

Technische Universiteit Eindhoven
Department of Mechanical Engineering
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
n.c.w.m.braspenning@tue.nl

December 2005 23

A model-based approach to fault diagnosis
of embedded systems1,2

Jurryt Pietersma, Arjan J.C. van Gemund and Andre Bos

The problems that arise from the integration of subsystems into complex, multi-
disciplinary embedded systems, are a potential obstruction for the expected,
exponential growth in embedded systems applications. Faults that occur be-
cause of the dynamic behavior of the integrated system are difficult to trace
back to individual subsystems or components. The Model-Based Diagnosis
(MBD) methodology offers a solution for the fault diagnosis of the integrated
system by inferring the health of a system from a compositional system model
and real-world measurements. In this article we present the initial results of our
MBD research as applied on the lithography systems of ASML. We explain our
methodology based on a modelling language LYDIA which is specifically being
developed for the purpose of MBD. Furthermore we discuss the results of our
first diagnosis test case.

Introduction

As the exponential increase in hardware
performance-per-cost ratio is expected to continue,
the number of embedded systems is to increase ac-
cordingly. The associated complexity crisis is a
potential show stopper for the continued pervasion
of embedded systems in our society. This is par-
ticularly true for complex, multi-disciplinary sys-
tems that are integrated from multiple subsystems.
While these subsystems might function well sepa-
rately, integrating them can cause unexpected faults.
Because of the dynamic interaction between these
subsystems, these faults take a lot of time and effort
to diagnose, let alone fix.

One of the solutions is to automate the fault diagno-
sis of these integrated embedded systems. The clas-
sical way of automated diagnosis e.g., by means
of application-specific code or, more generically,

by using expert systems, has disadvantages. The
mapping from symptoms to diagnosis is explicitly
coded in the software, which means that even a
minor design change of the system may require a
major redesign of the diagnosis software. It also
means that while trying to decrease system com-
plexity, we actually increase it by adding a lot of
diagnosis software.

A promising way of overcoming these problems is
to apply amodel-basedapproach to diagnosis. In
the Model-Based Diagnosis (MBD) approach [5],
knowledge about the system is expressed in terms
of a compositional model. A generic fault diag-
nosis engine, using AI search algorithms, consults
this model during run-time, while tracking the sys-
tem. Because information about the system design
is separated from the fault finding method, a design
change only requires a similar change in the model.
This curbs the increase in complexity.

1This work has been carried out as part of the TANGRAM project underthe responsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

2This article was originally presented at the ASCI Conference 2004.

December 2005 25

Within the TANGRAM project [5], a multi-
university research project aimed at model-based
testing and diagnosis of multi-disciplinary embed-
ded systems, the MBD approach is applied to litho-
graphy systems as produced by ASML. While the
ever increasing performance of these chip manufac-
turing systems actually provides us with the afore-
mentioned exponential increase of the hardware
performance-per-cost ratio, these systems them-
selves are by no means free from the complexity
crisis. Hence, MBD is seen as an important solu-
tion to decrease the cost of design, integration and
operation of these systems.

Despite recent advances in MBD [6, 10, 11, 13]
complex, multi-disciplinary systems as found in
ASML are currently beyond the state-of-the-art.
Furthermore, given an adequate MBD technique, a
subsequent problem is model specification, which
is a labor-intensive and error-prone process. Within
the TANGRAM project MBD research focuses on
extension of MBD technology with respect to time,
state and probability.

Our MBD approach is based on the modelling
language LYDIA (Language for sYstems DIAgno-
sis) [7]. LYDIA is model-based systems specifica-
tion language aimed at systems fault diagnosis and
simulation using the same model. In this article
we present the initial results of our MBD research
as pursued in the TANGRAM project. We demon-
strate how LYDIA can be used for diagnosis in gen-
eral. In addition, we describe how this methodology
has been applied in terms of a case study within the
TANGRAM context.

The article is organized as follows. In the first sec-
tion we introduce the principles of MBD with an
example. In the second section we present the LY-
DIA modelling language and accompanying tools,
including two examples on how to use these tools
for diagnosis. In the third section we present the
case study and discuss the resulting model and its
diagnosis. In the final section we draw our conclu-
sions from this initial research.

Model-Based Diagnosis

Diagnosis is the process of finding differences be-
tween models and reality. Model-Based Diagnosis
(MBD), first suggested by Reiter [12] and contin-
ued by de Kleer, Mackworth and Reiter [4], is the
process of finding faults in a system on the basis
of observations from reality and reasoning about a
model of the system. Formally, model-based diag-
nosis can be seen as finding faulty components that
explain the difference between behavior predicted
by a model and behavior observed in reality.

For example, consider an example of MBD using a
digital circuit, consisting of three inverters: A, B,
and C (Figure 1). Letw = 1. Theny andz should
be 1 as well. If observations indicate thaty = 0
and z = 1 then the diagnosis could be that com-
ponent B is faulty. Another option is that A and C
are faulty, as this also explains the symptoms. The
trivial solution, A, B, and C all faulty, also explains
the observations but is of no added value, as any
superset of{B} or {AC} explains the observations.
A subset of{B} or {AC} does not. That is why
{B},{AC} can be called theminimal fault set. This
diagnosis can be formalized, using a logical model,
as follows.

x

A

B

C

w

z

y

Figure 1: Three-inverters example

Let h indicate thehealthof a component. Ifh = 1
then the component is “healthy” and obeys cer-
tain behavioral rules. The three inverter example
has three components (A,B,C), so it has three such
rules:

hA → x = w

hB → y = x

hC → z = x

26 XOOTIC MAGAZINE

As the observations are:w = 1, y = 0, z = 1, it
follows (applying the rulep → q ⇔ p + q):

(hA + x) · (hB + x) · (hC + x) = 1 (3)

This can be rewritten to DNF-form:

hAhBhC + hAhBx + hAhCx +

hBhCx + hBx = 1

This formula reduces to the following prime impli-
cants:

hAhCx + hBx = 1

ThushAhC = 1 (A and C are faulty whenx = 1)
or hB = 1 (B is faulty whenx = 0).

Another possibility to calculate the faulty compo-
nents is by using conflict sets. Applying the resolu-
tion rule(p+q)·(r+q) → (p+r) and De Morgan’s
Laws, from equation (3) it follows:

(hA + hB) · (hB + hC) = 1

(hA + hB) · (hB + hC) = 0

(hA + hB) + (hB + hC) = 0

hAhB + hBhC = 0

sohAhB = 0, andhBhC = 0 which means{AB}
and {BC} are conflict sets. Finding the minimal
fault set, or minimal conflicts, can be done using
algorithms for the Hitting Set problem. This, of
course, also results in the sets{AC} and{B}. In
summary, in MBD of combinational systems the
model is solved forh using propositional logic. In
the next section we describe our tool for MBD.

Model-Based Diagnosis withLYDIA

LYDIA

In the following, we briefly present some of the ma-
jor features of LYDIA . Due to space constraints we
only present those constructs that are used in the
sequel. For a comprehensive introduction to LY-
DIA we refer to [7]. Each LYDIA statement is a

Boolean equation (proposition), and all statements
apply concurrently. Each variable, e.g.,x is a func-
tion of (continuous) time, i.e.,x(t). The time ar-
gument is omitted. All operators are functions that
operate on each time argument (i.e., element-wise
data flow). Thus,

op(x) <=> for all t: op(x(t)) = true
x op y <=> for all t: x(t) op y(t) = true

Roughly speaking, LYDIA can be placed in the
“functional” category of the functional (equational)
vs. imperative (state-transition) dichotomy. It re-
sembles synchronous languages [2], such as Lus-
tre [9] and Signal [8], with the major difference be-
ing the absence of synchronous time. Timed ac-
tions are asynchronous, i.e., signals (and events) are
not sampled at regular time intervals. State tran-
sitions may also be timeless (cf. timed and imme-
diate transitions in timed Petri nets [1]), with only
the transitions that are enabled at the same time be-
ing synchronous. In this respect, LYDIA resembles
a synchronous language with infinite clock resolu-
tion, which is implemented through a discrete-event
propagation scheme. Although based on a func-
tional approach, many of the LYDIA models are ex-
pressed in a state-transition style as syntactic sugar.
The reason for this is that the description of some
systems (e.g., state-machines) in a functional lan-
guage sometimes proves awkward, where a more
state-transition-oriented dialect offers a much more
natural model.

Combinational Operators

Apart from the usual operators, such as=, +, -, /,

*, and, or, not, >, <, >=, <=, sin, cos, tan,
sqrt, pow, log, exp, max, min, abs, etc., the
derived operators include!=, if, if-else, de-
fined as:

a != b <=> ! (a = b)

if (c) x <=> (! c) + x

if (c) x else y <=> (c * x) + ((! c) * y)

where!, +, *, are equivalent tonot, or, and, re-
spectively.

December 2005 27

Time Operator

Time delay is described by theafter function:

y = (x after delta default x0)

that defines a signal (variable)y that lags behind the
signalx according to

y(t) =

{

x(t − δ), t ≥ δ;
x0, 0 ≤ t < δ.

The default clause is optional.

Apart from the above constructs, LYDIA also fea-
tures state transition operators, the treatment of
which, however, is beyond the scope of this article.

LYDIA tools

Currently we have developed a number of tools that
operate on LYDIA models. There is a LYDIA com-
piler calledlydia that translates LYDIA models
into C source code for the purpose of simulation, or
into symptom-diagnosis lookup tables for the pur-
pose of diagnosis. The latter tables are generated
using propositional SAT solving and are consulted
by a diagnostic engine, calledscotty, that moni-
tors the system’s input and output, and returns a list
of possible diagnoses, in order of probability. Cur-
rently the C compilation mode only works for mod-
els that operate in the discrete time domain. A sec-
ond simulatorlsim has been developed which in-
terprets and simulates continuous-time LYDIA mod-
els.

Examples

This section describes some basic LYDIA exam-
ples. The first LYDIA system models an electronic
inverter with a 10ns propagation delay, after which
y becomes the inverted ofx. The second example
produces a clock signalc with a period of 1.0s. The
last example simulates a bouncing ball with height
h and velocityv. The velocity is reversed when
the velocity and height are less than zero. The ve-
locity and height are calculated using explicit first
order Euler integration as specified by the function
integrate.

Example 1:

system inverter (x: bool, y: bool)
{

t_p = 1e-08
y = (not x after t_p)

}

Example 2:

system clock (c: bool)
{

period = 1.0
c = ((not c) after period / 2)

}

Example 3:

system ball (h: float,
v: float,
g: float,
d_t: float,
c: float)

{
h = (integrate(h,v,dt)

after dt default 5.0)
v = ((if (b) (-c * v)

else
integrate(v,-g,dt))
after dt default 0.0)

b = ((v < 0.0) and (h < 0.0))
exit = (time > 10.0)

}

function integrate (y: float,
f: float,
dt: float) : float =

{
integrate(y,f,dt) = (y + f * dt)

}

Diagnosis of inverter model

Consider the inverter of the previous section, which
this time either inverts a Boolean signal if healthy,
or is stuck-at-zero, if at fault. The LYDIA model is
given by:

system inverter (x: bool,
h: bool,
y: bool)

{
t_p = 1e-08
y = if (h)

(!x after t_p default false)
else false

}

28 XOOTIC MAGAZINE

wherex, y denote input, output respectively, andh
denotes the so-called health variable. We can run
this model withlsim and a data input file, which
results in the following output:

time: x: h: y:
0.00000000 1 1 0
1.00000000 0 1 0
1.00000001 0 1 1
2.00000000 1 0 0
3.00000000 0 0 0

The first column indicates the simulation time, the
second and third column are the input variables
which are repeated from the input file. The result of
the simulation is shown in the last column and cor-
responds to the expected output,y is only true,
10ns after the moment the inverter is healthy and
the input isfalse.

It is instructive to note that the functional character
of LYDIA allows us to uselsim simulator as a lim-
ited diagnostic engine. Instead of providinglsim
with x andh we provide it with the observations
x andy from which it deducesh, as shown below.
TheU symbol indicates an unknown value.

time: x: y: h:
0.00000000 1 0 U
1.00000000 0 0 U
1.00000001 0 1 1
2.00000000 1 0 0
2.00000001 1 0 U
3.00000000 0 0 U
3.00000001 0 0 0

We observe that a diagnosis for this system is only
possible in two out of four cases, namely only when
the output of a healthy system, with a delay of 10ns,
does not coincide with the output of an unhealthy
system. Thus, for this system, only when the output
is true can we distinguish between anh that is true
or false.

Diagnosis of three-inverters model

Of course, the real goals for using LYDIA for MBD
is diagnosis of far more complex, real-life systems
than the one mentioned in the previous section. To
perform diagnosis of these systems we can compose
models out of simpler components. To illustrate
this, we expand our initial model of one inverter to a

model of the three-inverters example mentioned in
the first section:

#include inverter.sys
system inverter3 (w: bool,

hA: bool,
hB: bool,
hC: bool,
y: bool,
z: bool)

{
probability (hA = false) = 0.01
probability (hB = false) = 0.01
probability (hC = false) = 0.01

inverter (w, hA, x)
inverter (x, hB, y)
inverter (x, hC, z)

}

A diagnostic approach based on mere simulation
can no longer be used to diagnose this system be-
cause, as explained earlier, one combination of in-
put and outputs can be caused by different types of
failures. The simulator can only solve single equa-
tions for only one solution variable. To solve this
general combinational problem we use the special-
ized diagnostic enginescotty, mentioned in Sec-
tion 2, which can handle these combinatorics. At
this point, our diagnosis algorithm does not allow
time delay. Consequently in the following we con-
sider the inverter model without theafter state-
ment. To make the model more generic and compli-
ant with our logical three-inverters model, we also
leave out the specific stuck-at-zero fault mode. To
allow LYDIA to work with failure probabilities, we
introduce the keywordprobability, to indicate
a health variable that has a certain probability of be-
ing false or true. As an example, we run the di-
agnostic engine with the input/output combination
mentioned in the first section:w=1, y=0 andz=1.
The result of the diagnostic engine is given by:

(0.97049200) hA=true hB=false hC=true
(0.00980295) hA=false hB=false hC=true
(0.00980295) hA=false hB=true hC=false
(0.00980295) hA=true hB=false hC=false
(9.90197e-05) hA=false hB=false hC=false

The results correspond to the fault cases that can
be derived from the minimal fault set{B},{AC}
as calculated in the first section. The cases with
two faulty inverters all have the same probability
because all three inverters have the same individual
failure probability. From the results it is also clear

December 2005 29

that the trivial case of three failing inverters is ex-
tremely unlikely.

A current disadvantage of usingscotty instead of
lsim is the lack of support for time and state. As
mentioned in the introduction, extending the diag-
nostic engine to incorporate this, is one of the goals
of our ongoing research.

Modelling case study

Methodology

While the ultimate goal of our research is to diag-
nose lithography systems in the real world, our cur-
rent goal is to gain experience in the specification
of real-world models and our diagnosis algorithms.
For this we need as few uncertainties as possible,
which is why currently we only apply our diagnosis
on the simulation models and not on the real system.
Consequently, we proceed according to the follow-
ing approach. We derive a simulation model M1 of
the system under study. Its purpose is to:

1. document our understanding of the ASML sys-
tems including the possible failure modes of
each component;

2. serve as a starting point for the derivation of a
diagnosis model M2.

Our current experimental setup is shown in Fig-
ure 2. In this figure our simulation model M1 is on
the left. We can insert failures (h) in this model,
which we can then diagnose (h’) using our diag-
nostic model M2. Ideally, h’ should equal hfor all
(fault) scenarios.

In the current early stage of our research these mod-
els are generally not equal, because, as mentioned in
the third section, while we have no problemsimu-
lating models with time and state, we are only able
to diagnosecombinational models. As we make
progress, our diagnostic model M2 will evolve in
the direction of M1. In the following we describe
M1 and the subsequent derivation of M2.

Model 1 Model 2
h h’

x x

y y

System

sim ulation engine diagnostic engine

Figure 2: Connection between the simulation (M1) and
diagnosis (M2) model of target system.

Simulation model

At present, a laser sub-system is chosen as a case
study for the TANGRAM project. The purpose of
this system is to provide the lithography scanner
with an exact dose of light energy to expose the
wafer. The dose is provided in the form of laser
pulses. Besides the laser, the model for this system
also includes the interface with the scanner and the
laser control software located at the scanner side.

To build this model of the laser system both a top-
down and bottom-up approach is followed. In the
top-down approach we model the entire structure of
the whole system. We start out by interfacing with
empty LYDIA systems and gradually add function-
ality and fault modes. In the bottom-up approach
we choose a specific sub-system, of which the ba-
sic functionality is implemented in a LYDIA model.
Furthermore, we also investigate known or interest-
ing failure modes of this sub-system and introduce
health variables to simulate this behavior. An ex-
ample of this approach is the shutter module. The
shutter can be thought of as part of the optical in-
terface that blocks or passes on the light emitted by
the laser. Beside this nominal functionality we also
implemented the following faulty behavior. A nom-
inal shutter would start opening when the “open”
command is given, and would only report that it is
fully opened when done. A fault mode of this shut-
ter, which has been known to exist in an earlier de-
sign, is that it would not wait to be fully opened,

30 XOOTIC MAGAZINE

but would immediately return the “open” status af-
ter the command has been given. The following LY-
DIA code implements both the nominal and fault be-
havior.

% common.sys contains the clip and
% latch functions
#include common.sys

system shutter_M1 (
% commands
cmd_open: bool, cmd_close: bool,

% health parameters
h_open: bool, h_close: bool,

%light coming in and going out
light_in: float, light_out: float,

% status
sts_open: bool, sts_close: bool)

{
% latch the mode based on the command
latch (cmd_close, cmd_open, mode_open)
latch (cmd_open, cmd_close, mode_close)

sts_open = (h_open and (pos = 0.0))
or (!h_open and mode_open)

sts_close = (h_close and (pos = SHUT))
or (!h_close and mode_close)

step = if (mode_close) (CONST_STEP)
else
(if (mode_open) (-CONST_STEP)
else (0.0))

% integrate and clip position
% between 0.0 and SHUT
pos = clip (0.0, integrate (SHUT,

pos, step, TIME_STEP), SHUT)

% calculate beam attenuation
light_out = ((SHUT - pos) * light_in)

}

In this model the shutter latches the open or close
command (pulse) to an internal mode (level). De-
pending on this mode the shutter position is either
decreased (opened) or increased (closed). The LY-
DIA systemslatch, clip andintegrate are
defined in the included LYDIA file common.sys.
The sts_open and sts_close status signals
are based on the shutter position if the sensors are
healthy, and otherwise simply by the internal mode.
The latter corresponds to the non-nominal behavior
of the shutter.

Diagnostic model

As explained earlier, due to the limitation of our
diagnostic algorithm, the diagnostic model for the
current experiments is a simplified version of our
simulation model. Again, we will use the shutter
model as an example. The shutter model makes use
of time, as it takes time to open or close, and uses
state, as it has internal modes,pos, mode_open
andmode_close, which determine the shutter po-
sition and whether it is opening or closing. The as-
sociated time and state variables prohibit our combi-
national diagnosis approach and therefore we have
to convert M1 to a model M2 specifically suited for
diagnosis.

In our conversion from M1 to M2 we take the fol-
lowing approach:

1. isolate the equations with health parameters,
on the condition that they are combinational.
For each health parameter we also introduce its
probability of being false or true;

2. re-use those (auxiliary) equations from M1 that
are required to solve the isolated, health equa-
tions.

Thus our diagnostic approach includes simulation
next to diagnosis. The result of applying these two
steps on our shutter model is as follows:

system shutter_M2
{

% combinational health equations
probability (h_open = false) =0.01
probability (h_close = false) =0.01

sts_open = (h_open and (pos = 0.0))
or (!h_open and mode_open)

sts_close = (h_close and (pos = SHUT)
or (!h_close and mode_close)

% auxiliary equations
latch (cmd_close, cmd_open, mode_open)
latch (cmd_open, cmd_close, mode_close)

step = if (mode_close) (CONST_STEP)
else

(if (mode_open) (-CONST_STEP)
else (0.0))

pos = clip (0.0, integrate (SHUT,
pos, step, TIME_STEP), SHUT)

}

December 2005 31

We use the M2 model to diagnose our M1 model
with the setup shown in Figure 2. In this setup
lsim simulates M1 as well as the auxiliary equa-
tions of M2. The combinational health equations of
M2 are compiled into a symptom-diagnosis lookup
table and used byscotty for the actual diagnosis,
as explained in the second section.

Diagnostic test results

In the next experiment we use the follow-
ing values for the constants: SHUT=1.0,
SHUTTER_STEP=0.1 andTIME_STEP=0.01. As
our models have a symmetric description for the
open and close sensor, the simulation and diagnosis
results for both sensors are also symmetric. There-
fore we limit our discussion to the open sensor. In
the first 6.51s we simulate a healthy open sensor.
The first test starts at 1.00s and we allow the shutter
to fully open, after which we close it again at 2.0s.
The second run starts at 3.00s but now we interrupt
the shutter at 3.01s, before it can open completely.
At 5.0 we do the same but after the interrupt we
open it again. In the second half (t≥ 7.00s) we
perform the same tests, only now with an unhealthy
sensor. The experiment yields the following results:

time:
| h_open_M1:
| | cmd_open:
| | | mode_open:
| | | | (pos=0.0):
| | | | | sts_open:
| | | | | | h_open_M2:
| | | | | | | probability:
| | | | | | | |
1 2 3 4 5 6 7 8

0.00 1 0 0 0 0 1 0.9801
1.00 1 1 1 0 0 1 0.9900
1.11 1 1 1 1 1 1 0.9801
2.00 1 0 0 1 1 1 0.9900
2.01 1 0 0 0 0 1 0.9801
3.00 1 1 1 0 0 1 0.9900
3.01 1 0 0 0 0 1 0.9801
5.00 1 1 1 0 0 1 0.9900
5.01 1 0 0 0 0 1 0.9801
5.02 1 1 1 0 0 1 0.9900
5.13 1 1 1 1 1 1 0.9801
6.00 1 0 1 1 1 1 0.9801
6.50 1 0 0 1 1 1 0.9900
6.51 1 0 0 0 0 1 0.9801

8.00 0 1 1 0 1 0 0.9900

8.11 0 1 1 1 1 1 0.9801
9.00 0 0 0 1 0 0 0.9900
9.01 0 0 0 0 0 1 0.9801

10.00 0 1 1 0 1 0 0.9900
10.01 0 0 0 0 0 1 0.9801
12.00 0 1 1 0 1 0 0.9900
12.01 0 0 0 0 0 1 0.9801
12.02 0 1 1 0 1 0 0.9900
12.13 0 1 1 1 1 1 0.9801
13.00 0 0 1 1 1 1 0.9801

The second columnh_open_M1 gives the inserted
sensor health of our simulation model. The seventh
column gives the diagnosed healthh_open_M2 as
inferred from M2 and the last column the prob-
ability of this diagnosis. From the first part of
the results we can see thatscotty correctly pre-
dicts that the sensor is healthy. The second part
shows that a correct diagnosis is only performed
when the(pos=0.0) expression in the fifth col-
umn is unequal to thests_open variable in the
sixth column. In other words, when the output of
the healthy shutter, for whichsts_open is only
true if pos=0.0, does not coincide with that of the
unhealthy sensor, for whichsts_open is only true
if mode_open is true. This corresponds with the
results from the diagnosis of the single inverter ex-
ample in the first section.

Conclusions

In this article we have presented our MBD approach
and research objectives as pursued in the TAN-
GRAM project. We have also demonstrated how to
use the modelling language LYDIA in this approach.
The examples show that we can already model and
simulate the basic functionality of a realistic subsys-
tem. Furthermore we have shown how we can make
these models suited for combinational diagnosis. In
the coming period we will put more emphasis on the
diagnosis of existing fault scenarios. From this we
expect to learn more about how to deal with the oc-
currence of time and state behavior in our diagnosis
models.

Acknowledgements

We gratefully acknowledge the feedback from the
discussions with our TANGRAM project partners
from ASML, Eindhoven University of Technol-

32 XOOTIC MAGAZINE

ogy, Embedded Systems Institute, NLR, TNO-TPD,
Twente University and the University of Nijmegen.

References

[1] M. Ajmone Marsan, G. Balbo and G. Conte,
“A class of Generalized Stochastic Petri Nets
for the performance analysis of multiproces-
sor systems,”ACM Tr. on Comp. Syst., vol. 2,
May 1984, pp. 93–122.

[2] A. Benveniste, P. Caspi, S.A. Edwards,
N. Halbwachs, P. Le Guernic and R. De Si-
mone, “The synchronous languages 12 years
later,” Proceedings of the IEEE, vol. 91, Janu-
ary 2003, pp. 64–82.

[3] Tom Brugman and Frans Beenker, “Project
plan for the TANGRAM project on model-
based testing,” Tech. Rep. Doc. Nr. 2002-
10060 version 09, Embedded Systems Insti-
tute, Nov. 2002.

[4] Johan de Kleer, A. K. Mackworth and R. Re-
iter, “Characterizing diagnoses and systems,”
Artificial Intelligence, vol. 56, 1992, pp. 197–
222.

[5] Johan de Kleer and Brian C. Williams, “Diag-
nosing multiple faults,” inReadings in Non-
monotonic Reasoning(Matthew L. Ginsberg,
ed.), Los Altos, California: Morgan Kauf-
mann, 1987, pp. 372–388.

[6] A. Fijany, F. Vatan, A. Barrett and R. Mackey,
“New approaches for solving the diagnosis
problem,” 2002.

[7] A.J.C. van Gemund, “LYDIA Version 1.1 Tu-
torial,” Tech. Rep. PDS-2003-001, Delft Uni-
versity of Technology, Nov. 2003.

[8] P.L. Guernic, M.L. Borgne, T. Gautier and
C.L. Maire, “Programming real time applica-
tions with Signal,”Proceedings of the IEEE,
vol. 79, Sept. 1991, pp. 1321–1336.

[9] N. Halbwachs, P. Caspi, P. Raymond and
D. Pilaud, “The synchronous data-flow pro-
gramming language LUSTRE,”Proceedings
of the IEEE, vol. 79, September 1991,
pp. 1305–1320.

[10] James Kurien, “Model-based monitoring, di-
agnosis and control.” Ph. D. Thesis Proposal,
2000.

[11] Sriram Narasimhan and Gautam Biswas, “An
approach to model-based diagnosis of hy-
brid systems,” inHybrid Systems: Compu-
tation and Control HSCC(C. J. Tomlin and
M. R. Greenstreet, eds.), vol. 2289 ofLNCS,
Springer, Mar. 2002, pp. 465–478.

[12] R. Reiter, “A theory of diagnosis from first
principles,” in Readings in Nonmonotonic
Reasoning(Matthew. L. Ginsberg, ed.), Los
Altos, California: Kaufmann, 1987, pp. 352–
371.

[13] Brian C. Williams and Robert J. Ragno,
“Conflict-directed A* and its role in model-
based embedded systems.” To appear in Jour-
nal of Discrete Applied Math.

Contact Information

Jurryt Pietersma

Parallel and Distributed Systems Group
Faculty of Electrical Engineering
Mathematics and Computer Science
Delft University of Technology
P.O. Box 5031, NL-2600 GA Delft
The Netherlands
j.pietersma@ewi.tudelft.nl

Arjan J.C. van Gemund

Parallel and Distributed Systems Group
Faculty of Electrical Engineering
Mathematics and Computer Science
Delft University of Technology
P.O. Box 5031, NL-2600 GA Delft
The Netherlands
a.j.c.vangemund@ewi.tudelft.nl

Andre Bos

Science & Technology BV
P.O. Box 608, NL-2600 AP Delft
The Netherlands
bos@science-and-technology.nl

December 2005 33

Uitdaging als secundaire
arbeidsvoorwaarde
Ruim 100 gedreven technische software specialisten, die behoren tot de besten in
hun vakgebied, werken bij softwarehuis TOPIC in Best aan de meest uitdagende
en uiteenlopende projecten in de consumentenelektronica, medische systemen en
professionele systemen. Met succes. TOPIC blijft groeien. Daarom zijn we permanent op
zoek naar (embedded) software specialisten met minimaal 2 jaar werkervaring die
hun kick halen uit uitdagende opdrachten. Vakspecialisten die zich thuis voelen bij TOPIC.
En die zich willen blijven ontwikkelen. In projecten en via ons Personal Improvement
Program. Zin in een kick? En heb je de persoonlijkheid, ervaring en kwaliteit die past
bij TOPIC? Mail dan snel je motivatie met CV naar recruitment@topic.nl of bel eerst met
Frank de Roo, Manager Recruitment, op nummer (0499) 336979.

 Voor meer informatie: WW.TOPIC.NL

De kick van TOPIC!

A multidisciplinary model-based test and
integration infrastructure 1

Will Denissen

Current market trends like shorter time to market, faster return on investment,
flexible product families, first time right etc., will put strong requirements on
the development process of manufacturing companies. In this article we will
present a test and integration infrastructure that supports the development
process in these changing markets.

Introduction

ASML[4] is the carrying industrial partner within
the Tangram[5] project and needs support for their
test and integration challenges. Because no single
solution to this problem exists a broad approach
is taken in the form of four different lines of at-
tentions, each defined to tackle a different part of
the test and integration problem. These lines of
attention are: test strategy, model based testing,
model based diagnostics, and test and integration
infrastructure.

In this article we will concentrate on the last line
of attention and present a multidisciplinary model-
based test and integration infrastructure. It is devel-
oped and used within the Tangram project and must
support the other lines of attention.

The article is organized as follows. In the first sec-
tion terminology is introduced that will help the
communication between the different disciplines
for which the test and integration infrastructure is
developed. In the second section, different kinds
of testing are presented which serve as use cases
for the test and integration infrastructure. The third
section describes the early integration concept for
multiple disciplines. Then the design of the test and
integration infrastructure is given.

Terminology

An extra challenge in multi-disciplinary testing
w.r.t. mono-disciplinary testing is that each dis-
cipline uses its own terminology and some terms
overlap and therefore might be misinterpreted. The
disciplines we distinguish are:system, software,
electrical, mechanical, and optical engineering.

To identify when and wheretesting activities can
take place we have to concentrate on thedevelop-
ment process(the classical v-model) as used within
ASML. Figure 1 shows the differentdevelopment
levels and differentdevelopment phasesthat can
be identified in the ASML product development
process.

For a new product a typical sequence of activities
will follow the curved arrow representing the time
axis. Going from a single system designdecompos-
ing it into several sub-systems up until an array of
unit level designs. For each unit level design a re-
alisation is constructed. Unit realisations arecom-
posedinto subsystems and finally into a single com-
plete system realisation.

The two sided arrows depict for each development
level and development phase that atesting activity
can occur. From our perspective a testing activity
is no more than checking the consistency between
two entities. These entities are eitherdesigns(in the

1This work has been carried out as part of the TANGRAM project underthe responsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

December 2005 35

Methodology

Part
Model

Whole
��

part model

System

Sub
system

Unit

Design Realisation

D
evelo

p
m

en
t L

evels

Development phases

Models
��

Realisation

Aspect
Model

Parts
��

Whole realisation

Part Whole

Mental
��

Formal model

Formal
Model

Mental
Model

Requirements

Simulator

Testing = checking consistency

Indirect Testing

SUT
Model

Env
Model SUT

SUT = system under test

Figure 1: Different kinds of testing at different development levels andphases

form of documents, models, executable models) or
realisations (in the form of libraries, executables,
hardware or a combination of both). We will de-
liberately not talk about validation and verification
because both approaches assume that one of the en-
tities is correct and the other is incorrect. In prac-
tice both entities might need a correction. That’s
the reason why testing is depicted as a two-sided ar-
row. The definition and characteristics of each test-
ing activity together with some examples is given in
a separate section.

Development levels

At each development level a different level of ab-
straction is used to describe the system. The dif-
ferent development levels range from the high-level
system level, via one or moresubsystem levelsup
to the most low-levelunit level. Going from high-
level to low-level development levels the amount
of information increases, describing more details of
the system. The same holds for the amount of de-
signs, realisations, and people involved.

At each level, possibly different groups of experts,
playing a different role, cooperate in making a de-
sign for that level. At each level the design contains
as much detail as relevant for that level. To cope
with complexity the design at a certain level (the
whole-design) is decomposedinto a set of designs

(thepart-designs) at the next lower level. The ex-
perts at a certain level expect that the experts who
are filling in the part-designs do not violate their
whole-design. Each expert will develop his or her
own mental model of the design they work on as a
group. Thewhole-realisation, which iscomposed
from theparts-realisationwill be tested at the same
level of abstraction as the whole-design. Both the
designand therealisation fulfill the same set of re-
quirements.

System level

At system level there can, by definition, be only one
design and one realisation. There is no level above
the system level. The group of people involved is
typically small and theirrole is that of asystem en-
gineer. Based on their skills, experience, and com-
mon practice they will create or select a proper de-
sign. The design will typically deal with identify-
ing and naming the subsystems and identifying and
naming their interactions asinterfacesand allocat-
ing budgets over these subsystems, without filling
in the details of these sub-systems.

Sub-system level

A subsystem level is, by definition not the system
level and not the unit level. There can be zero or

36 XOOTIC MAGAZINE

more subsystem levels. At subsystem level each
part-design of its next higher-level whole-design is
filled in. The group of people involved is typically
of medium size and originate from different disci-
plines.

Unit level

A unit level is, by definition, the most detailed level
of design and realizations. There are no levels be-
low a unit level. Over all units, a lot of people are
involved from different disciplines. For a given unit
the experts originate from a single discipline. The
designs are typically so detailed and complete that
subcontractors can make (e.g. Electronics: PCB
manufacturers) or tools can generate (e.g. Software:
compilers, Mechanics: CNC-machines) realisations
out of it .

Development phases

Two development phases can be distinguished, ade-
sign phaseand arealization phase.

Design phase

In the design phase all kinds of information about
the system’s structure, behavior or operating con-
straints are collected and archived. Some informa-
tion will end up in documents and others in models.

A design can contain severalmodels. There are two
types of models:structural models (e.g. a class di-
agram in UML[10], or a mechanical model in Un-
igraphics) andbehavior models (e.g. an activity
diagram in UML, or a 3D kinematic model). A be-
havior model is called anexecutable modelwhen
asimulator can execute it. The simulator simulates
the executable model according to a certainpara-
digm (e.g. discrete event DE, communicating se-
quential processes CSP, Continuous time CT, Hy-
brid (DE + CT)). A simulator has a notion of logical
time that can either run faster or slower than wall
clock time. Every simulator is based on the same
implementation pattern. A modeler can specify a
model as relations between modeling entities form-
ing a set of equations. The simulator will solve this
set of equations for the current logical time, calcu-
lates the logical timestep, and advances the logical
time with this timestep. This sequence is repeated
until the end of logical time is reached.

Each model will only model a specificaspect(e.g.
temperature distribution, resource scheduling) of
the system. In the design phase interactions be-
tween models will be identified. Aninterface de-
scribes and names such an interaction.

Realisation phase

In the realisation phase the different realisations
come to completion, part realisation will be assem-
bled, tested and integrated into whole realisations.

A realisation is something that consumes resources
(materials, space, time, memory footprint etc.). Re-
alisations have commercial value; they are costly to
build and/or to maintain. Realisations have identity.
Two realisations can be identified by their product
numbers, but both can be build from the same de-
sign.

In a realisation all kinds of different aspects are in-
trinsically combined and will influence each other
in the form of interactions. Some interactions are
known at design time and can have a model coun-
terpart in the form of model interfaces and might
be realised asreal interfaces (e.g. electronic con-
nectors, software function calls, optical light paths)
but others might yet still be undetected (hidden in-
teractions) (e.g. physical aspects due to the small
nanometer scale of operation).

The discipline interfaces within a realisation are
typically layered as shown on the right side in Fig-
ure 3. The interactions between disciplines occur
only at the given interfaces. A interaction, for in-
stance, between an optical lens and a software state-
ment is hard to imagine without an electronic inter-
face in between.

Kinds of Interfaces

In both the design phase and the realisation phase,
interfaces between sub-systems or units exist but
their nature of interaction are quite different. There-
fore, two kinds of interfaces can be distinguished;
model interfacesandreal interfaces. The charac-
teristics of each of them will be described below.

Model interfaces

Model interfaces model the flow of abstract in-
formation between models. The information flow

December 2005 37

between models are a kind of data streams. At
each logical clock increment, which are discrete
moments in time a simulator will send/receive a da-
tum to/from one or several other simulators. The
logical clock of each involved simulator needs to
be synchronised with other logical clocks. This can
be done directly by a separate logical time manager
or indirectly by configuring all participating simula-
tors such that all logical clocks start at the same log-
ical time with the same logical increments. Model
interfaces are visualised in Figure 3 as a line crossed
by a dotted line.

Real interfaces

Real interfaces incorporate both data and control
flow of an interaction at unit level. Real interfaces
are visualised in Figure 3 as a line crossed by a bold
line, and can be annotated with its type. Currently
we distinguish only real software, electronical, and
physical interfaces. Both the real software and real
electronic interface has a notion of direction. The
flow of information takes time to travel from the
producer to the consumer.

For real software interfacesthe information flow-
ing through the interface is the exact function call
with all its parameters properly filled in, in the ex-
pected order, atdiscrete moments in timewithout
knowing when the actions will actually take place.

For real electronical interfaces the information
flows through electrical wires. The interface de-
scribes the signals, their shapes, duration, and con-
nector with the proper mechanical dimensions. Dig-
ital interactions can take place only at discrete
events (at the clock ticks). Analog interactions take
place in continuous time.

Forreal physical interfacesthere is no notion of in-
formation flow or causality, the interface just identi-
fies an interaction between two or more entities and
take place incontinuous time. Some interaction
might exist in real life but not been detected/known
by the developers. An example of a real physical
interface is a collision between two mechanical en-
tities which occurs instantly and continuously.

Different kinds of testing

Now that we have introduced our terminology we
can concentrate on describing the different kinds

of testing that can take place in the development
process (i.e the two-sided arrows in Figure 1). The
testing process needs to be described because it pro-
vides the use cases and requirements for the test and
integration infrastructure that we have designed and
build. In the following subsections we will describe
each kind of testing as depicted in Figure 1 around
the development process.

Mental ↔ Formal model testing

At each development level adesigner is involved
that needs to come up with adesign that fulfills
the requirements. Given the requirements a lot of
designs can be found that all fulfill the same re-
quirements. This set of designs, is called thede-
sign spacefor the given requirements. While mak-
ing a design new parts will identified and their re-
lations. Some parts might be designed as com-
mon/commercial off the shelf (COTS) parts. Others
might be a commonly used interface in the form of
a design pattern. But whatever the design will be it
will impose new/more detailed requirements on its
parts (i.e the next lower development level). It is the
designer’s role to find such a design that fulfills the
requirements at his level and minimises the lower
level requirements and maximises theirdesignabil-
ity .

Because a designer has a freedom of selecting a de-
sign from a design space, he/she needs to get some
feeling of how his design will look like (structure)
or behaves. Preferably a designer will use a com-
puter added design (CAD) tool to support his de-
sign activities. With such a CAD tool the designer
builds up amental modelon the structure and be-
havior of his design. In order to use his CAD tool he
needs to express his design in aformal model. The
formal model that expresses the design is commu-
nicatable among other developers because of its un-
ambiguous semantics. His mental model however
is not transferable because, it will never be as com-
plete, accurate, or unambiguous as a formal model.
A developer can also never cope with the different
versions of designs that might pop up and all the
implications that the combinations of these designs
might have.

The mental model of the developer is kept
aligned/synchronised/consistent with the formal
model. The developer will learn from the formal

38 XOOTIC MAGAZINE

model and adjusts his mental model accordingly.
The formal model becomes more detailed until it
mimics the behavior from the mental model.

Whole↔ Part model testing

Testing whole models with part models all have to
do with decomposing a design in a set of sub de-
signs. This decomposition of whole designs into
parts designs is typically aligned with the whole re-
alistion and its parts realisation. There is typically a
one to one relation between whole and parts models
and realisations at each design level.

Decomposing a whole model into parts models is
nothing new within a single discipline, and is the
basic pattern to handle complexity. For instance,
a system engineer can decompose his budgets in a
hierarchical manner. A software engineer can de-
compose his software program in a set of subpro-
grams. An electrical engineer can decompose his
electrical model into a set of sub models. Some sub
models might be standardised into a library of mod-
els (e.g. software: mathematical library, electron-
ics: counters, clock dividers, mechanics: robot arm,
gearbox).

The testing activity inwhole ↔ part testing con-
sists of checking that the developers who will come
up with the part designs do not violate the require-
ments imposed on the whole design and vice versa.
Once a discrepancy is detected either the whole or
the part models need to be modified such that they
together are consistent again.

Part ↔ Whole realization testing

Part↔ whole realisation testing occurs the moment
the different part realisations are assembled together
(a.k.a. integration phase). The kind of problems you
observe, are typically related to resource conflicts or
unknown interactions. For instance, assembling to-
gether different software realisations (e.g. libraries,
executables) might show that the memory footprint
of the whole exceeds the available memory.

Assembling mechanical parts might uncover in-
compatibilities. The shared resource could be the
space the parts may occupy at a given moment in
time. Something similar occurs in electrical engi-
neering. The fan-in and fan-out of the active electri-
cal parts must match when assembled into a whole

otherwise the quality of the electrical signals will
degrade.

Resources might be shared by different disciplines.
For instance, a certain volume might be blocking an
optical light path by a mechanical component. Or
the mechanical materials used might outgass such
that the optical lenses get polluted. Typically struc-
tural interactions (without a time dependency) are
directly detected while assembling. Behavioral in-
teractions can only be detected when the whole re-
alisation can be executed/used/employed according
to its use cases.

Normally most of the interactions are expected be-
cause the were already known by experience or
from previous similar systems, these interactions
are then also modeled in the design phase. Un-
known interactions are typically detected in this
testing activity. Judging whether the whole realisa-
tion is functioning correctly is done indirectly. First
the part realisations are tested with their part models
on conformity, then the whole realisation is tested
on its conformity with its whole model.

Model ↔ Realization testing

Model ↔ realisation testing is normally known as
conformance testing. The to be build realisation is
described by models, each capturing a different as-
pect. For each model the realisation must conform
in structure and behavior. Both the models and the
realisation areopen, i.e. the interaction with their
environment is modeled. The interfaces and their
kind (software, electronics, physical) are identified.
The behavior of the environment is modeled as a set
of use cases. A realisation conforms to its models
when both the observations of the model and the re-
alisation are identical when the same set of use case
are applied to them.

Testing a given aspect of a realisation is typically
done in an indirect way as depicted in the upper
right part of Figure 1. Given a model an environ-
ment model (in the form of atest suite, a set of
tests or use cases) is constructed against which the
(system under test (SUT)is tested.

In manual Model ↔ Realization testing the test
designer derives manually, the test suite from a
model of the SUT. The test developer than imple-
ments an autotester that hard codes this test suite,
that the SUT must pass.

December 2005 39

In model based Model↔ Realization testing
however, the test cases are automatically derived
from the SUT model. The model based autotester
interprets the model of the SUT and derives on the
fly test cases from it. The model based autotester
controls the SUT and observes its reactions. The
model based autotester can judge, based on the ob-
servations of the SUT, whether the SUT is reacting
correctly or not.

Early integration

Looking at Figure 2, we can see how a system is
decomposed into two subsystems, how each subsys-
tem gets designed and implemented in several ver-
sions. Due to the fact that models and realisations
reach completion at different moments in time there
is no clear point in time where we cross the design
and realisation phase.

We therefore distinguish three integration phases,
indicated by vertical dotted lines. Themodel inte-
gration phasestarts a soon as there are part-designs
of the system design available, which share at least
one design interface. It stops as soon as the first
unit realisation is available. Themixed integra-
tion phasestarts a soon as the first unit realisation
is available and stops as soon as the last unit realisa-
tion is available. Therealization integration phase
starts a soon as the last unit realisation is available
and stops as soon as the system realisation is avail-
able.

Although the system architects are fully aware
of the interdiscipline/interproject interfaces be-
tween the subsystems (they have identified them in
the first place), they become poorly managed during
the red marked time interval.Errors made, either
design errors(detailing designs that violate the in-
terdiscipline/interproject design interfaces) orreal-
isation errors (realisations that violate the interdis-
cipline/interproject realisation interfaces) in each of
thoseswimlaneswill only be discovered after the
composition of the subsystem realisations into the
system realisation.

Because of the possibility to introduce interdis-
cipline/interproject interface violations very early
(i.e. after decomposition) and the fact that these can
only be detected very late (i.e after composition) in
the development process, together with the fact that
late detection results in costly repairs, we think tool-

ing can perfectly help in managing these interdisci-
pline/interproject interfaces, especially when a lot
of subsystemss and versions are flowing around.

The brick wall in Figure 2 symbolises the behav-
iour that occures when responsibilities are distrib-
uted over serveral projects and/or different disci-
plines. Either side of the wall might feel that he
is the owner of the interface and starts to define one.
The other party is hardly involved because they have
not yet reached the point where they need to work
with the interface. As a consequence they get in the
end confronted with an interface which is defined
from only one perspective.
Another scenario might be that both define an inter-
face in the beginning but this interface is expressed
in there own development environments and start to
deviate from each other during both developments.
Nobody guarantees that both interface descriptions
are equal. Better would it be when there is only
one interface description owned by a system archi-
tect from which specific interface descriptions are
derived.
The fact that there is such a brick wall makes it
easy to export your problems to someone else by
just throwing it over the wall. Both parties might
even insist on having such a brick wall just because
of this. We think that especially tooling might help
in solving these kinds of problems.

In the next subsections we will elaborate on the dif-
ferent integration phases because they impose dif-
ferent requirements on our test and integration in-
frastructure.

Model integration phase

In the model integration phase only model inter-
faces exist. The integration environment that is
needed during themodel integration phase is one
that can support model interfaces between different
structural and behaviour models and is called asim-
ulation environment. The simulation environment
can manage the dependencies between models by
facilitating communication between simulators that
run these models.

Mixed integration phase

In the mixed integration phase a mixture of model
interfaces, real interfacs exist. The integration envi-

40 XOOTIC MAGAZINE

Development process

Decompose Integrate

Time

Subsystems from
different disciplines

or projects

Model integration Mixed integration Realisation integration

Integration phases

Sub
Syst B
Ver. 0

Sub
Syst B
Ver. 1

Sub
Syst B
Ver. 2

Sub
Syst A
ver. 0

Sub
Syst A
ver. 1

Sub
Syst A
ver. 2

System
System
model Test

Sub
Syst A
Ver. 0

Sub
Syst A
Ver. 1

Sub
Syst A
Ver. 2

Sub
Syst B
ver. 0

Sub
Syst B
ver. 1

Sub
Syst B
ver. 2

Simulation env Test env Real-time env

Figure 2: Early integration phases

ronment that is needed during themixed integration
phase is one that can manage both model interfaces
between different (structural and behaviour) models
and real interfaces between realisations and is called
a test environment. It must be capable of bridging
information flowing through model interfaces into
information flowing through real interfaces.

Realisation integration phase

In the realisation integration phase only real inter-
faces exist. The integration environment that is
needed during therealisation integration phase is
one that can manage the real interfaces between dif-
ferent realisations and is called anreal-time envi-
ronment. A real-time environment is part of the
system and is as such developed in the development
process. The real-time environment must manage
the control dependencies between realisations in
real time.

Test and integration infrastructure

Figure 3 shows the test and integration infrastruc-
ture. Four different environments can be identified:
Simulation, Prototype, Test, and Real-time. Each
environment will be described in the following sub-
sections.

For the complete test and integration infrastructure
the following requirements must hold.

• The same test and integration infrastructure
must be used: In each development phase, for
each development level, for each discipline.

• All existing parts (simulators and realisations)
need to be integrated as is, without any modifi-
cation.

• All newly designed parts of the test and integra-
tion infrastructure must be based on open stan-
dards, commonware or COTS tools, to avoid
vendor locks.

• The test and integration infrastructure must be
open for future extensions or unforeseen inter-
actions between environments.

• The test and integration infrastructure must be
applicable for other High Precision Equipment
Manufacturers. Therefore the ASML specific
parts will be isolated as much as possible from
the rest of the integration and test infrastructure.

Simulation environment

A simulation environment allows co-simulation of
several models from different disciplines at the
same time. The following aspects must be taken
into consideration when designing the simulation
environment.

• In Mental ↔ Formal model testing, each dis-
cipline uses their own simulators, which have
proven their usability within that discipline.
Commonly used simulators are: Simulink[7],
Visual Elite[11], LabView[2], Unigraphics[13],
and SystemC[12]. The developers are familiar
with these simulators and have invested consid-
erable effort in building specific models. The
simulation environment must therefore fully in-
tegrate and support these simulators as they are.

December 2005 41

Control bus

Prototype env.

Language binding
• C/C++
• Java/Python
• Matlab*

Data bus

Tangram Tools
Common Busses

Existing models

Realisations

Real time env.

Model binding
• UML
• Simulink
• Visual Elite

Data
EL

bridge

Test
env.

TTCNAdaptor

Data
SW

bridge

Simulation env.

Operating systems
• Solaris
• VxWorks
• Linux
• Windows

Real interface Model interface

Optics Mech.

Electronics

Software
Control

SW
bridge

sw sw

el

op me

Figure 3: test and integration infrastructure

• In Whole ↔ Part model testing, the whole
model might run on a different simulator and/or
platform than the part models. The simulation
environment must therefore support a distrib-
uted simulation.

• To facilitate the interface management, the in-
formation describing the model interfaces need
to be centralised and owned by a system archi-
tect.

• To allow a modeler to stay within his/her own
discipline, all interaction with the outside world
go through a so calledmodel connector. This
can be a graphical/textual representation that
can be imported from a model library.

• Models containing logical time need to be syn-
chronised according to their semantics.

• The simulation environment must support ad-
dition of model animations that show, for in-
stance, the state of the SUT at the proper design
level.

Prototype environment

A prototyping environment allows execution of pro-
totype realisations.Prototype realisationsare re-
alisations that implement real interfaces but their
behaviour is only rudimentary implemented. The
following aspects must be taken into consideration
when designing the prototype environment.

• The prototyping environment must allow substi-
tution of prototype implementations with reali-
sations.

• For early integration, the developer must be
capable to build prototype implementation in
the most suitable (rapid prototype) progamming
language. Commonly used languages are: C,
Matlab, Python, and Java

• The prototyping environment must support dif-
ferent operating systems (e.g. Solaris, Vx-
Works, Linux and Windows). The prototyping
environment must support different hardware
platforms (e.g. PC, Sun workstation, IBM).

Test environment

A test environment allows a test designer to spec-
ify a test suite (a set of tests) that can be executed
agains a SUT. Each test can either pass or fail. The
test environment must fulfill the following aditional
requirements:

• For test generation purposes and to save man-
hours, the test environment must allow auto-
matic execution of tests.

• The test environment must have a notion of time
to allow timed testing. Therefore the test en-
vironment must be able to control the actual
moment of stimulus to the SUT and must also
have access to time-stamped observations of the

42 XOOTIC MAGAZINE

SUTs reactions.
• To test or diagnose the SUT in its real time envi-

ronment the test environment needs full control
and observability over its interfaces. Currently
the SUT must be controllable and observable
over three types of interfaces: a software con-
trol bus, a software data bus, and an electronical
control/data bus.

• The test environment must be connected to the
simulation environment to allow a partly simu-
lated environment for the SUT while testing.

• The test environment must handle both synchro-
nous and a-synchronous interactions with the
SUT.

We selected the TTCN3[6] test language and tool-
ing for the test designer to write his test suite. The
selection is based on the following rationale:

• TTCN3 is based on decades of experience in
testing reactive systems

• TTCN3 is designed for and by test developers
• TTCN3 is an open standard
• TTCN3 abstracts away all SUT specific details
• TTCN3 allows uniformly testing over different

real interfaces.
• Robust and mature IDE’s exist that help the test

developer in writing, debugging and managing
his test specifications.

• Several Tool vendors provide TTCN3 tools.
• A vast user community exists around TTCN3:

Automotive, Telecom companies

The test developer now has the opportunity to write
an executable test to test the SUT on functionality,
performance, interoperability, or conformance.

The progamming model of the TTCN test language
is a fully programmable closed language and is
based on communicating sequential processes CSP.
Test cases can run in parallel. The SUT is access-
able through ports. The test cases can be connected
to these ports with buffered channels.

Real time environment

The real time environment is the environment in
which the system operates. The SUT within Tan-
gram will be the ASML Twinscan machine (see
Figure 4) or parts of it. Most of the software in-
teractions are not time critical. Some interactions

close the electronics have strict real time require-
ments. The real electronical interface of the SUT is
mostly generic in the sense that generic data aqui-
sition devices can be bought that connect to this in-
terface. The real software interface of the SUT is
ASML specific w.r.t. the client/server architecture,
the interface descriptions, the message format, the
protocol used, and the server address model, and the
application programmers interface.

Standard busses

For scalability reasons, the test and integration in-
frastructure is based on a bus topology. Using a bus
topology with n participants, onlyO(n) connec-
tions need to be developed compared toO(n2) peer
to peer connections. An open standard bus avoids
vendor lock (i.e. no single vendor can control the
future development of such a bus) and assures inter-
operability between the participants.

Control bus: CORBA

The prototype, test, and real time environments are
all attached to a control bus. OMG’s CORBA[8]
is used as standard that describes its functionality.
OmniOrb a freeware Orb is used as commonware
that implements such a control bus. Within Tan-
gram we will concentrate on connecting these three
environments to this control bus. The rationale for
selecting CORBA is:

• CORBA is based on decades of experience in
driving reactive systems

• CORBA is designed for and by software devel-
opers

• CORBA is an open OMG standard
• CORBA abstracts away all transport specific de-

tails.
• CORBA is based on the proven proxy pattern

(i.e allows uniform calling of services over dif-
ferent progamming languages, operating sys-
tems, and communication hardware)

• Several Tool vendors provide CORBA and
CORBA service implementations.

• A vast demanding user community exists
around CORBA: Defense, Aerospace, and Man-
ufacturing companies

December 2005 43

Key figures:
50 processors
400 sensors,
500 actuators,
12,5 MLOC
Language: C (Java, Python, Matlab)

Figure 4: The system under test: The ASML Twinscan machine

Data bus: DDS

The simulation, test, and real time environments are
all attached to a data bus. OMG’s data distribution
service[9], a CORBA service, is used as standard
that describes its functionality. RTI’s NDDS[1] a
commercial product is used as commonware that
implements such a data bus. Within Tangram we
will concentrate on connecting these three environ-
ments to this data bus. The rationale for selecting
DDS is:

• DDS is based on decades of experience in
driving real-time reactive systems

• DDS is designed for and by software developers
• DDS is an OMG standard
• DDS is based on the proven publish/subscribe

pattern.
• DDS describes a simple application program-

mers interface (API) with an array quality of
service (QoS) configurations.

• DDS abstracts away all transport specific de-
tails.

• Several Tool vendors provide DDS tools.
• A vast demanding user community exists

around DDS: Defense and Aerospace compa-
nies

Bridges

Because we try to use proven and existing simula-
tors and commonware we can concentrate on con-

necting environments together. The technique for
that is based on bridging. A bridge allows bidirec-
tional flow of data and control between two worlds.
A bridge does not add extra functionality to a sys-
tem it just reformats information from one world
into the other and vice versa. The bridges that
can be identified within the test and integration in-
frastructure will be discussed separately in the fol-
lowing subsections.

CORBA to SUT Software bridge

The CORBA to SUT SW bridge opens up the SUT
for control over the software control bus. Fortu-
nately the software control interface implemented
by the ASML execution environment greatly resem-
bles the interface of the CORBA control bus. The
ASML specific interface descriptions, expressed
in so called ddf files, can be translated into the
standard CORBAinterface description language
(IDL). Using these IDL files a bridge can be gener-
ated automatically. Therefore, the bridge can follow
each interface modification for each build of each
release. This bridge can intercept function calls at
each selected software interface. Participants on the
CORBA bus can act as clients of the SUT, or as a
server for the SUT, or both at the same time.

TTCN to CORBA bridge

By building a TTCN3/CORBA bridge we suc-
ceeded in attaching Telelogic’s Tau Tester[3] to the

44 XOOTIC MAGAZINE

CORBA control bus. The bridge can be generated
from the same IDL descriptions that were used in
the CORBA to SUT bridge. From a testers point
of view the complete software interface to the SUT
is described in TTCN interfaces: types, functions,
interaction ports etc.

TTCN to DDS bridge

The TTCN to DDS bridge allows an information
flow from the TTCN3 test environment to the test
data bus and vice versa.

DDS to SUT Electronics bridge

The DDS to Electronics bridge connects the DDS
data bus to the electronics interface of the SUT. Na-
tional Intruments’ Labview[2] will be used as ’com-
monware’ to implements this bridge.

Model to real interface adaptor

When connecting models to realizations the sparse
information that flows over a model interface must
be converted into an information rich data and con-
trol flow that a realisation interface needs. When
timing is an issue the adaptor needs to convert log-
ical time into real-time and vice versa (e.g. trigger-
ing calls at some point in real time, and timestamp-
ing replies). Aninterface adaptor is just doing
that. An interface adaptor is connected both to the
DDS data bus and the CORBA control bus and is
progammable.

When converting model interfaces into real inter-
faces extra information is added to the real inter-
face. This extra data are calledtest vectors. When
converting real interfaces into model interfaces only
portions of the data flow needs to be filtered out of
the information rich data coming from the real inter-
face. Every programmable application that is con-
nected to both the control and data bus can act as an
adaptor, like TTCN3 for instance.

Case studies

With the help of concrete case studies the applica-
bility, usability, and robustness of our test and in-
tegration infrastructure will be assessed. The cases

must preferrably cover the 4 different kinds of test-
ing, for each development phase and level. The mo-
tivating examples will be sorted according to the im-
portance as perceived by the ASML developers. As
a first case we are thinking of testing the hardware
software interface, where the interface is described
as a memory map.

Future work

Future work might include: management tools (e.g.
a time manager for the simulation environment,
integration of requirement management tools, and
versioning systems), diagnostic tools (like UML
model animators and code instrumentation), and
test tools (test case generators and extensions for
timed testing).

Conclusions

We have presented a generic test and integration in-
frastucture based on COTS products. Some parts
are already glued together with relatively low ef-
fort. In our own first experiments we could already
appreciate the flexibility of the infrastructure. Real
ASML case studies must show the added value of
the infrastructure. This will be the main remaining
challenge for the rest of project.

Acknowledgements

We gratefully acknowledge the feedback from the
discussions with our TANGRAM project partners
from ASML, Eindhoven University of Technology,
Embedded Systems Institute, Delft University of
Technology, Twente University and the University
of Nijmegen.

References

[1] Ndds, http://www.rti.com, Real-Time Innova-
tions, 2005.

[2] labview, http://ni.com/labview,
National Instruments.

December 2005 45

[3] Tau tester, http://www.telelogic.com/
products/tau/tautester/index.cfm,
Telelogic, 2000.

[4] ASML, http://www.asml.com.

[5] TANGRAM, http://www.esi.nl/tangram/,
2003.

[6] TTCN-3 standard. http://www.etsi.org/
ptcc/ptccttcn3.htm, 1998-2003.

[7] matlab/simulink, http://www.mathworks.com/
products/, Mathworks.

[8] CORBA, http://www.omg.org/technology/
documents/formal/corbaiiop.htm,2003.

[9] Data distribution service for real-time sys-
tems. http://www.omg.org/technology/ docu-
ments/formal/datadistribution.htm, 2005.

[10] UML 2.0, Unified modeling language 2.0,
http://www.uml.org/, 2005.

[11] Summits visual elite,
http://www.summit-design.com.

[12] System c 2.1, http://www.systemc.org/, 2005.

[13] Unigraphics, http://www.ugs.com/products/nx/.

Contact Information

Will Denissen

TNO Science and Industry
P.O. Box 155, NL-2600 AD Delft
The Netherlands
Will.Denissen@tno.nl

46 XOOTIC MAGAZINE

