
 February 2007  XOOTIC MAGAZINE 
 
8 

Certified Binaries for Software Components 
 

Sagar Chaki, James Ivers, Kurt Wallnau 
Software Engineering Institute 

Introduction 
There is an evident need for mechanisms that enhance our ability to trust third-party 
software. In the current era of plug-and-play, off-the-shelf programs are being 
increasingly made available as modules or components that can be attached to an 
existing infrastructure. More often than not, such plug-ins are distributed in machine 
code or binary form. In this article we present a framework that can be used to 
generate trustworthy binaries for software components, and to prove that binaries 
generated elsewhere satisfy specific policies. At the core of our methodology lies a 
paradigm called proof-carrying-code (PCC), originally proposed in a seminal paper 
by Necula and Lee [1, 2]. The essential idea underlying PCC is to construct a proof of 
the claim that a piece of machine code respects a desired policy. The proof is 
shipped along with the code so that it may be independently verified before the code 
is deployed.  
 
To date, the application of PCC has been restricted to pure safety policies. The 
progress of PCC has also been hindered by, among other things, the need for 
manual intervention (e.g., discovering complicated loop invariants), and large proof 
sizes. Our approach overcomes these limitations of PCC in the context of certifying 
software components using powerful, but specific techniques. In particular, we 
achieve the following three objectives: (1) Enrich: Expand the set of PCC policies to 
include both safety and liveness. To this end, we use a state/event-based temporal 
logic called SE-LTL developed in the context of the Predictable Assembly from 
Certifiable Components (PACC)1 project at the SEI. (2) Automate: Use iterative 
refinement in combination with predicate abstraction and model checking to generate 
appropriate invariants and ranking functions required for certificate and proof 
construction in a completely automated manner. (3) Compact: Use state-of-the-art 
Boolean satisfiability (SAT) technology to generate extremely small proofs. 
Preliminary investigations [5] indicate that the use of SAT yields proofs sizes that are 
several orders of magnitude more compact than when using conventional methods. 

Background 
In the original formulation of PCC, the world is divided into trusted code consumers 
and untrusted code producers. A code consumer publishes a safety policy. In 
general, safety policies assert that “something bad never happens,” while liveness 
policies assert “something good will eventually happen.” The code producer 
annotates the code with key invariants and uses a certifying compiler to generate 
object code as well as a verification condition (VC); in essence, the VC is the logical 
formula that is valid if and only if the object code respects the safety policy.  The 
certifying compiler also constructs a proof of the VC, which is embedded in the object 
code; hence “proof carrying.” The code consumer checks that the proof is valid by 
verifying its construction against a set of sound axioms and inference rules that have 
been defined on the machine instructions themselves. The verification step is 
efficient, and reduces to a form of type checking.  In other words, the proof is valid if, 
and only if, it is well-typed. 
 
                                                
1 http://www.sei.cmu.edu/pacc 



XOOTIC MAGAZINE  February 2007 9 

PCC does not depend on the correctness of the certifying compiler or on the 
technologies used to construct proofs of program properties. PCC is also resilient to 
tampering, including code optimizations.  Most attempts at modifying either the object 
code or the proof of the VC will lead to an ill-typed proof and hence will be detected. 
Moreover, any undetected tampering is guaranteed to result in code that still respects 
the published safety policy, and hence is harmless as far as the policy is concerned.  
Last, proof-carrying code is efficient, since the static proof eliminates the need for 
runtime checks.  Still, a number of technical challenges (discussed in [2]) arose in 
this original formulation of PCC. Particularly notable among these are: 
 

• (CH1) The restriction to safety conditions is problematic if the cost of 
developing a trustworthy PCC infrastructure is great. 

• (CH2) The proof generator sometimes requires manual assistance, for 
example to compute loop invariants; for practical transition purposes, this is a 
non-starter. 

• (CH3) The proofs generated are often quite large, hindering wider use of the 
PCC paradigm. Despite a lot of recent advances, this problem continues to be 
open. 

 
Prior to this work, we conducted two projects that have a direct bearing on the above 
challenges. First, as part of the PACC project, we developed an expressive linear 
temporal logic called SE-LTL that can be used to express both safety and liveness 
claims of component-based software. In this work, we adopt and modify SE-LTL to 
express certifiable policies, thereby targeting CH1. Second, in collaboration with Prof. 
Peter Lee, an original proponent of and leading expert in PCC, we conducted an 
Independent Research and Development (IRAD) project [3] on “Assessing and 
Demonstrating the Readiness of Proof Carrying Code for Obtaining Objective Trust in 
Software Components”. As part of this PCC-IRAD, we have developed an 
infrastructure to generate compact certificates for C programs (not binaries) against 
SE-LTL claims in an automated manner. The automation is achieved by combining 
iterative refinement with predicate abstraction and model checking to generate 
appropriate invariants and ranking functions that are required for certificate and proof 
construction. The tightness of proofs is obtained via the use of the state-of-the-art 
Boolean satisfiability (SAT) technology [5]. In this work, we extend this framework to 
certify binaries generated from component specifications. Thus, we complete the 
framework from a PCC perspective, and also address issues CH2 and CH3. To this 
end we build on the PACC infrastructure for analyzing specifications of software 
component assemblies and generating deployable machine code for such 
assemblies. 

Overall Approach 
Our technical approach is best summarized by the architecture described in Figure 1. 
This figure depicts the final infrastructure for certified component binary generation 
that we developed. The boxes are numbered for ease of reference. The steps 
involved in generating certified component binaries can be summarized as follows: 
 

1. We begin (box 1) with a specification of a component assembly written in the 
Construction and Composition Language (CCL) [9], which has been 
developed as part of the PACC project. A CCL specification contains a 
description of the assembly as well as safety and liveness policies that need 
to be certified. CCL is currently implemented as a profile of an executable 
subset of UML 2.0. 

2. The CCL specification is automatically interpreted [4] into a form that can be 
processed by a model checker. This form (box 2) essentially comprises of a C 



 February 2007  XOOTIC MAGAZINE 
 
10 

program along with finite state machine specifications for library routines 
invoked by the program. The interpretation procedure was implemented as 
part of the PACC project. 

3. The result of the interpretation is input to Copper (box 3), a state-of-the-art 
certifying software model checker. Copper [8] was originally developed as 
part of the ComFoRT [7] reasoning framework of the PACC project. It was 
enhanced [5] with the ability to generate certificates and proofs as part of the 
PCC-IRAD [3]. Copper interfaces with theorem provers (TP) and SAT solvers 
(SAT) during model checking and certificate generation. The output of Copper 
is either a counterexample to the policy (CE) or a proof (Proof1) that the input 
to Copper respects the desired policies. 

4. Proof1 only certifies that the result of interpreting the original CCL 
specification respects the desired policies. It is reverse-interpreted (arrow 4) 
into a proof (Proof2) that the CCL specification itself also respects these 
policies. However, in order to generate certified binaries, we perform two 
additional steps. 

5. The CCL specification is now transformed (arrow 5) into a Pin/C program (box 
6) that can be compiled and deployed in a Pin runtime environment (RTE). 
This transformation process, as well as the Pin RTE, has been developed to a 
large extent as part of the PACC project. We enhanced this transformation 
process so that it also creates a proof of the correctness of the generated 
Pin/C code from the proof of the correctness of the CCL specification. In 
essence, we transform the proof of correctness, along with the actual 
assembly, from one format (CCL) to another (Pin/C). 

6. The final step (arrow 7) is conceptually the same as the previous step. We 
use a standard C compiler (gcc) to achieve this goal. The end result is a proof 
(Proof3) that the final (i.e., binary code for the) component assembly respects 
the desired policies. 

 

 
Figure 1: Architecture of developed framework. 

 
 

Proof1 

7 

SAT 

5 

TP 

Pin/C Binary 

proof(φ ) proof(φ ) 

CCL 
Spec 

C + FSP Copper 

TP 

Pin/C Certified 
Binary 

proof(φ )Proof2  

CE 

proof(3
φ

Proof3 Proof checkers 

1 

2 
3 

6 

4 



XOOTIC MAGAZINE  February 2007 11 

References 
[1] George Necula, “Proof-carrying code,” In Proc. 24th ACM Symposium on 

Principles of Programming Languages (POPL), New York, Jan. 1997 (106-119).  
[2] George Necula and Peter Lee, “Safe kernel extensions without runtime 

checking,” In Proc. 2nd USENIX Symposium on Operating System Design and 
Implementation (OSDI), Seattle, Wshington1996 (229-243).  

[3] Sagar Chaki, Kurt Wallnau, “Proof-Carrying Code,” CMU/SEI-2005-TR-020, 
Chapter 6, December 2005.  

[4] James Ivers, Nishant Sinha and Kurt Wallnau, “A Basis for Composition 
Language CL”, (CMU/SEI-2002-TN-026).  

[5] Sagar Chaki, “SAT-based Software Certification”, in Proc. Of TACAS, 2006. 
[6] Fred Schneider, “Enforceable Security Properties,” in ACM Transactions on 

Information and System Security, Vol. 3, No. 1, February 2000 (30-50).  
[7] James Ivers and Natasha Sharygina, “Overview of ComFoRT: A Model 

Checking Reasoning Framework”, (CMU/SEI-2004-TN-018).  
[8] Sagar Chaki, James Ivers, Natasha Sharygina and Kurt Wallnau, “The 

ComFoRT Reasoning Framework,” in Proc. 17th Computer Aided Verification 
(CAV), LNCS 3576 (164-169), July 2005.  

[9] Kurt Wallnau and James Ivers, “Snapshot of CCL: A Language for Predictable 
Assembly”, (CMU/SEI-2003-TN-025). 


