
Article

Analytical Software Design Case MagLev
Stage Software Project for Philips Applied

Technologies
Guy H. Broadfoot, George Kielty

Product innovation, quality and time to market are key elements in the bat-
tle to achieve and sustain competitive advantage. For a growing number of
businesses, this means software development. Software is now an essential
component embedded in an ever increasing array of products. It has become
an important means of realising product innovation and is a key determinant of
both product quality and time-to-market. For many businesses, software has
become business-critical and software development is a strategic business ac-
tivity. At the same time, software development continues to suffer from poor
predictability. Existing development methods appear to have reached a quality
ceiling that incremental improvements in process and technology are unlikely
to breach. To break through this ceiling, a different approach is needed. In this
paper, we describe how Verum applied Analytical Software Design (ASD), a
new approach that applies software engineering mathematics to industrial soft-
ware development, to develop the software controlling an advanced mechatron-
ics subsystem being developed by Philips Applied Technologies in the Nether-
lands.

“ASD is a formal method that is informal enough to be applied in practice.” G.P.M. Haagh
Senior Software Architect, Philips Applied Technologies

Introduction

Product innovation, quality and time to market are
key elements in the battle to achieve and sustain
competitive advantage. For a growing number of
businesses, this means software development. Soft-
ware is now an essential component embedded in
an ever increasing array of products. It has become
an important means of realising product innovation
and is a key determinant of both product quality and
time-to-market. For many businesses, software has
becomebusiness criticaland software development
is astrategicbusiness activity.

Today, software development continues to suffer
from poor predictability. Business managers need

reliable answers to the questions “When will it be
ready?”, “What will it cost?” and “How well will it
work?” These are the very questions that software
developers are least able to answer.

In recent years, in an attempt to overcome these
problems, companies have invested heavily in soft-
ware development process improvements, technol-
ogy, infrastructure and training. In spite of this, the
rapidly increasing complexity and amount of soft-
ware still presents a serious challenge. According to
studies, 40% - 50% of total development costs are
typically lost on avoidable rework [4]; 15% - 25%
of software defects are delivered to customers [4];
in 2002, software failures cost the U.S. economy an
estimated $59.5 billion [7].

July 2005 21

Existing development methods appear to have
reached a quality ceiling that incremental improve-
ments in process and technology are unlikely to
breach. The amount and complexity of in-product,
embedded software is growing exponentially; ac-
cording to the SEI, productivity in the most suc-
cessful organisations is improving linearly, at best.
The challenges many businesses experience devel-
oping embedded software and being able to guaran-
tee its quality and correct functioning is a testament
to this growing capability gap and inability of cur-
rent testing-centric software development practices
to bridge it. To bridge this divide, a different, more
formal, approach is needed.

The Case: The MagLev Stage

Philips Applied Technologies1 is part of the Dutch
Royal Philips Electronics group of companies. Part
of its mission is to develop innovative solutions
for advanced manufacturing. It is a leading devel-
oper of industrial vision systems and high precision
mechatronic systems.

One of its latest products is a highly accurate, high
performance “stage” known as the MagLev Stage
(see figure 1). This is a subsystem designed to be
incorporated in a variety of industrial systems that
require high speed, highly accurate material posi-
tioning, especially in high vacuum situations, for
applications such as e-beam inspection and laser
cutting. It uses advanced magnetic levitation ser-
vos and achieves a repeatable sub-micron scanning
accuracy (130 Nanometers or better).

An essential part of the MagLev Stage is the con-
trol software embedded in it. This software coordi-
nates the actions of the multi-axis controllers and
provides an Application Program Interface (API)
to customer developed domain specific application
software.

Early in 2004, a “proof of concept” version of the
control software was developed to enable the me-
chanical and electronic sub-systems to be developed
and tested. This development took about 10 weeks
in order to achieve a level of “good weather” func-
tionality useful for the product development. Al-
though suitable for its purpose as a “proof of con-
cept” prototype, this software was not of the in-

dustrial quality levels considered suitable for the fi-
nal product. Since its initial development, defects
have emerged at regular intervals, including soft-
ware crashes and race conditions. By January 2005,
more than 20 versions were present in the software
configuration management system, each represent-
ing a major release to fix multiple errors.

Figure 1: MagLev Stage

In September 2004, it was decided that a new
version of the controller software would have to
be developed in order to achieve required quality
standards. Given the complex nature of the soft-
ware, Philips Applied Technologies and Verum to-
gether applied Analytical Software Design (ASD)
techniques in which the complete software design
is modelled mathmatically and model-checked for
correctness before implementation starts. After ver-
ifying the design mathematically, Verum’s ASD
techniques enabled 90% of the new code to be gen-
erated in C++ automatically from the verified de-
sign specifications.

Technical Details

The MagLev Stage consists of twosubstagescalled
theIntermediate Substageand theCarrier Substage
respectively. Each substage is controlled by its own
dedicated multi-axis controller. The multi-axis con-
trollers are existing subsystems previously devel-
oped by Philips Applied Technologies and used in
other products.

1www.apptech.philips.com

22 XOOTIC MAGAZINE

Figure 2: MagLev Software Overview

Figure 2 shows the overall organisation of the soft-
ware into two major components, namely theMa-
nipulator and theSubStage. In the diagram, soft-
ware components are depicted by rectangles; major
interfaces are depicted by the labelled ovals.

The SubStage component is responsible for control-
ling a single substage via its dedicated multi-axis
controller known as aMAC. The diagram shows two
instances of the SubStage component, one control-
ling the Intermediate Substage and one controlling
the Carrier Substage. The Manipulator component
coordinates and controls the two substage compo-
nents. All actions that are specific to a single MAC
are implemented in the SubStage component; all ac-
tions requiring coordination between the substages,
such as most movements and all exception and er-
ror handling, are implemented in the Manipulator
component. As is usual in such systems, the “good
weather” behaviour, although complex, is relatively
straight forward; the majority of the program logic
is required to handle all the various exception con-
ditions that can occur.

Figure 3: Manipulator Context Diagram

The Manipulator component implements the API
to be used by the customer-developed domain spe-
cific application software. It must be “thread safe”;
that is, able to support multi-threaded client applica-
tions while handling asynchronous call-back events
from the two substages. For efficiency reasons, the
Philips Applied Technologies senior architect re-
quired the execution architecture to minimise con-
text switching with execution remaining under the
caller’s thread context as long as possible. Figure 3
is a context diagram of the Manipulator component.
This shows the Manipulator as implementing its
client API (IStage), sending asynchronous call-back
notifications to the client application (IStageCB),
using the SubStage API (ISubStage) and receiving
notifications from the two substages via the ISub-
StageCB call-back interfaces. All the ISubStageCB
events are routed to the Manipulator via a queue and
are executed under the context of a separate deferred
procedure call (DPC) server thread.

Figure 4: SubStage Context Diagram

Figure 4 shows the context of each SubStage com-
ponent instance. It implements an API used by
the Manipulator (ISubStage and ISubStageCB) and
uses the interfaces provided by the MAC (IMac and
IMacCB). The SubStage receives API calls from
the Manipulator and asynchronous event notifica-
tions from the MAC via a queue and a separate DPC
server thread. The ISubStage interface realises a
high level abstraction of the physical substage, with
high level moves implemented in terms of the prim-
itive move operations provided at the MAC inter-
face.

An Overview of ASD

Analytical Software design is based on two design
principles:

July 2005 23

• Business critical software must be based on de-
signs that are verified before implementation
starts;

• Software Architects and Designers must use de-
signs and architectures that can be verified using
currently available tools and techniques.

With one exception, all branches of engineering
routinely apply their specific branches of mathemat-
ics to specification and design. Modelling a design
is cheaper than building a prototype and testing it.
It is also more certain; testing is by definition an ex-
ercise in sampling and can never provide complete
coverage or certainty of correctness. An architect
charged with designing an earthquake-proof build-
ing does not build it and wait for an earthquake to
test it! Instead, the design is mathematically mod-
elled and subjected to rigorous mathematical analy-
sis.

The one exception is software engineering. Apart
from those few domains (mostly safety critical)
where formal design and verification methods are
mandated, mathematics are not routinely applied to
software specification or design. Instead, reliance is
placed on informal inspection-based methods and
testing. As a consequence, defects injected early in
the life-cycle during specification and design activ-
ities are frequently not detected and removed until
after implementation is substantially complete and
integration testing begins. This is the most expen-
sive time to correct defects and occurs at a point in
the life-cycle that results in the maximum impact on
time to market. For many kinds of errors, such as
race conditions and deadlocks, this is also the least
certain way to find them.

Analytical Software Design2 combines the practi-
cal application of software engineering mathemat-
ics and modelling with specification methods that
avoid difficult mathematical notations and remain
understandable to all project stakeholders. In addi-
tion, it uses statistical techniques for software com-
ponent testing and advanced code generation tech-
niques. From a single set of design specifications,
the necessary mathematical models, program code
and statistical test cases are generated automati-
cally.

ASD uses the Sequence-based Specification
method [8, 9] to specify functional performance

requirements and designs as black box functions.
These specifications are traceable to the original
requirements specifications and remain completely
accessible to the critical project stakeholders. This
allows them to play a key role in verifying the ASD
specifications and retain control over them. At the
same time, ASD specifications provide the degree
of rigour and precision necessary for mathematical
analysis.

ASD applies the Box Structured Development
Method [5, 6] following the principles of stepwise
refinement to transform the black box design spec-
ifications into state box specifications from which
programming is based.

The ASD Model Generator generates mathematical
models from the black box and state box specifi-
cations and designs automatically. These models
are generated in the process algebra CSP [3, 10]
and can be formally analysed and verified using the
model checker FDR [1]. For example, we can use
the model checker to verify (i) whether a design
satisfies its functional requirements; (ii) whether
the state box coding specification is behaviourally
equivalent to the black box design; and (iii) whether
the design uses other components according to their
external functional specifications.

The ASD Code Generator can generate significant
amounts of code automatically from the ASD spec-
ifications. The principle advantage of code genera-
tion is correctness; the code is generated automati-
cally from the ASD specifications that have already
been formally verified. Code generation may not be
applicable to every project but in those cases where
it is, significant development efficiency gains can be
achieved.

ASD uses Statistical Testing methods based on Us-
age Models derived directly from the ASD Specifi-
cations to test software components against the ver-
ified designs. The ASD Test Case Generator and
Analyser generates large numbers of self-running
test cases and analyses their results.

Figure 5 shows the main elements of ASD.
The functional specification is analysed using the
Sequence-based Specification method extended to
enable nondterminism to be captured. This enables
the externally visible behaviour of the system to be
specified with precision and guarantees complete-
ness.

2Patent applied for under patent application number GB 0410047.5

24 XOOTIC MAGAZINE

Figure 5: ASD Overview

Because ASD specifications avoid difficult mathe-
matical notations and are fully traceable to the orig-
inal specifications, they can be validated by inspec-
tion with project stakeholders. Next, the design is
specified using Sequence-based Specification. This
still remains a creative, inventive design activity re-
quiring skill and experience combined with domain
knowledge. With ASD, however, the design is typ-
ically captured with much more precision than is
usual with conventional development methods, rais-
ing many issues early in the life cycle and resolving
them before implementation has started.

The ASD model Generator is used to generate pro-
cess algebra models of both the specification and the
design so that the design can be verified for compli-
ance with the specification. In most cases, a design
cannot be verified in isolation; it depends on its ex-
ecution environment and the components it uses for
its complete behaviour. In ASD, used component
interfaces are specified using Sequence-based Spec-
ification, the corresponding mathematical models
are generated using the ASD Model Generator and
these models, combined with those of the design,
are verified for compliance with the specification.
For CSP models, this verification is done mathemat-
ically using the model checker FDR. Errors detected
during the verification are corrected in the design
specification, new CSP models are generated and
the verification is repeated. (This is typically a very
rapid cycle.)

When the design has been verified, the ASD Code
Generator is used to generate program source code
in C++ or C or other similar languages. The per-
centage of the total code that can be generated this
way varies from project to project. Experience sug-
gests this is typically between 70% and 90%, but it

can be lower on some projects.

Finally, from the same set of design specifications,
large numbers of statisitically selected test case can
be generated in the form of self running tests and
the results analysed by the ASD Test Analyser.

Applying ASD to the MagLev Stage
Development

The design team consisted of a senior software ar-
chitect and software engineer from Philips Applied
Technologies and two employees from Verum. The
goals of the project were:

1. To re-develop the MagLev Stage control soft-
ware to industrial quality standards as quickly
as possible;

2. For Philips Applied Technologies to gain practi-
cal experience of applying ASD in practice with
a view to assessing its applicability to other typ-
ical software developments carried out within
Philips Applied Technology.

The work proceded as follows: firstly, an ASD spec-
ification of the MAC interface (IMac and IMacCB)
was made based on existing specifications and the
expert knowledge of the senior architect. This black
box function was plotted in the form of a state tran-
sition diagram and reviewed by the team.

Next, an ASD specification of the client applica-
tion API (IStage and IStageCB) was made based on
the existing implementation and with frequent ref-
erences to the existing code. The process of making
the ASD specification raised a significant number of
specification issues, most of which were resolved by
the senior architect based on his extensive domain
knowledge and experience gained in developing the
original “proof of concept” prototype.

The architecture was then developed, partitioning
the major functions of the control software between
the Manipulator component and the two instances
of the SubStage component; an ASD specifica-
tion of the SubStage interfaces (ISubStage, ISub-
StageCB) was made, reflecting the first “guess” at
the SubStage abstraction.

The first major design task was the design of the
Manipulator. This was specified using Sequence-
based Specification. As the design evolved, the
precision of the ASD interface specifications of

July 2005 25

the client interface and the SubStage interface was
extremely beneficial. As the design neared com-
pletion, the ASD Model Generator was used to
generate the CSP models of the client interfaces
(IStage, IStageCB), the SubStage interfaces (ISub-
Stage, ISubStageCB) and the Manipulator design.
The parallel composition of the Manipulator design
model plus two instances of the SubStage Interfaces
(one for the Intermediate SubStage and one for the
Carrier SubStage) were verified against the client
interface model using the model checker. This was
done after first verifying with the model checker
that the design was free from divergence, internal
inconsistencies and deadlocks.

During this process, many design and some specifi-
cation errors were discovered by the model checker.
As they were discovered, the appropriate ASD spec-
ification was updated to correct the error, new math-
ematical models generated and the verification con-
tinued. This cycle occurs quite rapidly, finding and
fixing several errors per hour. This differs signif-
icantly form conventional, testing-based develop-
ment method. Unlike conventional testing:

• All of this is done without having written any
program code or executing any test cases.

• This form of verification is based on mathemat-
ical proof and is total. It is equivalent to 100%
execution pathcoverage, something unacheiv-
able by testing.

• This form of verification is particularly good at
uncovering dynamic behavioural errors such as
deadlocks, race conditions and design behaviour
that violates interfaces specifications. Such er-
rors are extremely difficult to detect and diag-
nose using conventional testing because their
nondterministic nature makes them to reproduce
and repair.

• This verification is done before investing in im-
plementation, at the most economic point in the
life-cycle.

When the Manipulator design was completed and
verified, work began on the SubStage design.
Again, this was specified using the Sequence-based
Specification Method. In this case, the imple-
mented interface is the SubStage interface (ISub-
Stage, ISubStageCB) and the used interface is the
MAC interface (IMac, IMacCB). As the design
neared completion, the CSP models were generated
automatically using the ASD Model Generator and

FDR was used to check the SubStage design plus
the MAC interface against the SubStage interface.
The SubStage interface model was the same one
used to verify the Manipulator design.

During the SubStage design, it proved impossible
to implement the SubStage interface exactly as it
had been specified and it was necessary to change
it. This involved changing the ASD SubStage in-
terface specification, regenerating its mathematical
model and then verifying the Manipulator design
against the changed SubStage interface to assess
the impact of the changes on the Manipulator de-
sign. Where necessary, the Manipulator design was
changed and verified against the modified SubStage
interface specification. This enabled the impact of
ISubStage design alternatives on the Manipulator to
be assessed quickly and provided additional input
for making often difficult technical choices.

When both the Manipulator and SubStage designs
were completed and verified by model checking, the
C++ code of both the Manipulator and th SubStage
was generated using the ASD Code Generator.

Results

The ASD specification of the MAC interfaces took
about 1 week; the specification of the client API in-
terface and the SubStage interface took about the
same time. The MAC interface specification has
493 transition rules and 12 canonical sequences, the
longest of which is 5 stimuli long. The ASD specifi-
cation of the client API has 345 transition rules and
13 canonical sequences. The SubStage interface has
370 transition rules and 13 canonical sequences.

The ASD design and verification of the Manipula-
tor took about 4 weeks to complete. The design was
extremely complex due to the complex behaviour
of the MAC as this was still visible at the Sub-
Stage interface plus the event driven and concur-
rent nature of the behaviour. Due to its complex-
ity, the Manipulator design was hierachically de-
composed into a top level design together with 3
significant lower level sub-designs. In total, the
design has 1,700 transition rules and 28 canoni-
cal sequences. This hierarchical design structure
was carried through into the generated mathemat-
ical models and the generated C++ code, providing
full traceability between these different views.

26 XOOTIC MAGAZINE

During the design verification of the manipulator,
about 200 errors were detected in the model check-
ing phase. Most of these fell into one of two cat-
egories: i) internal inconsistencies where the de-
sign violated the interface specifications of the used
components or was unable to react correctly to noti-
fications arriving asynchronously from the used in-
terfaces; ii) race conditions that were particularly
difficult due to a) the number of unstable states
in the SubStage specification arising from the na-
ture of the underlying MAC behaviour and b) the
loose coupling between the Manipulator and the
SubStage introduced by the event notification queue
mechanism. The order of verification was as fol-
lows: i) to verify freedom from race conditions, di-
vergence and deadlocks; ii) to verify complicance
with the used SubStage interface specifications; iii)
to verify compliance with the client API specifica-
tions, the interface implemented by the design.

The ASD design and verification of the SubStage
took about 4 weeks to complete. Due to its com-
plexity, the design was hierarchically decomposed
into a top level design plus 5 lower level sub-
designs. In total, the design has 4,700 transition
rules and a total of 84 canonical sequences. The or-
der of verification was the same as described above.
Again, the number of unstable states in the be-
haviour of the MAC together with the decoupling
caused by the event notification queue resulted in
a very complex design with many possibilities for
race conditions and other unexpected behaviour.
During the verification, in the order of 200 errors
were detected by model checking and removed.

After all designs were completed and mathemati-
cally verified, the C++ code was generated. The
generated code is structured according to the well
known State Pattern [2] and was tailored to meet the
code architecture required by Philips Applied Tech-
nologies. This is a normal part of the ASD code
generation process; experience shows that “stan-
dard” code generators are frequently too inflexible
in the style and strucure of the code they gener-
ate. Every project and development environment
has specific requirements for the generated code to
ensure that it properly integrates with the rest of the
code base and the run-time platform. In this project,
the run-time platform was VxWorks. In total 17,000
executable lines of code were generated, represent-
ing more than 90% of the code. The hand written
code was either concerned with domain specific is-

sues such as coordinate transformations or “glue”
code interfacing the software to the rest of the run-
time environment. Although the final run-time plat-
form was VxWorks, component testing was done by
Verum under Windows XP. Testing in the final Vx-
Works environment is being performed by Philips
Applied Technologies.

The comparative results of this project are shown
in figure 6. Philips Applied Technologies calcu-
lates that its code production rate for a typical soft-
ware development, including design, specification,
coding and testing effort, is about 6,000 executable
lines of code per man year. The original MagLev
“proof of concept” software was produced at a rate
of 8,727 executable lines of code per man year.
Desktop integration testing of this software, using
simulated hardware, found 60 defects, resulting in a
large - but undocumented - amount of rework.

In 2004, when considering the redesign of the Ma-
gLev software using traditional methods, the Ap-
plied Technologies design team expected to produce
approximately 5000 lines of code in 6 man weeks:
a productivity equivalent to 18,000 executable lines
of code per man year. Based on their experience
with the “proof of concept” version, they also obvi-
ously expected an increase in the quality of the end
result.

Ultimately the redesign of the MagLev software
was performed together with employees of Verum
using ASD. The result was the production of 17,000
executable lines of code in 45 man weeks of effort,
including all specification, design, design verifica-
tion, coding and desktop integration testing effort.
This equates to a production rate of 15,000 exe-
cutable lines of code per man year. The stated effort
captures the contributions from both Applied Tech-
nologies design staff and Verum’s employees. It
also captures the learning curve needed by both par-
ties; Verum’s employees to learn about the MagLev
application and Applied Technologies engineers to
learn how to work with ASD. Much of this learn-
ing curve would not be required for future projects.
Furthermore, application of ASD to the design of
this system resulted in the discovery of about 400
defects during design verification. The average ef-
fort to find and fix each defect was approximately
1 man hour per defect. Consequentially the soft-
ware delivered to Philips Applied Technologies has
a very low defect rate. During desktop integration

July 2005 27

Figure 6: Comparitive Results

testing with simulated hardware, only 5 errors were
found and very little effort was required to correct
these errors.

Of course, the number of executable lines of code is
a poor indicator of the complexity of a piece of soft-
ware. Comparison of hand versus automatic code
generation techniques leads to a discussion of the
relative efficiency of each technique, with no obvi-
ous conclusions except that automatically generated
code leads to far lower error rates. Unfortunately,
there are no other common metrics that give an in-
dication of complexity in this case. However, the
design team judged the complexity of the MagLev
design to be at least twice that estimated at the be-
ginning of the project, even with the experience of
having produced a proof of concept version.

As a result, Philips Applied Technologies drew the
following conclusions from the application of ASD
to the redesign of the MagLev software:

• Overall the use of ASD in the design/code/unit
test phases is cost neutral w.r.t. traditional ways
of working; that is, the benefits were gained at

no extra cost as compared to traditional working
methods.

• The number of defects found during desktop in-
tegration is reduced by a factor 12

• The perceived quality of the code is MUCH
higher (supported by the figures)

Verum’s employees also observed that:

• The complexity of the MagLev (re)design prob-
lem was much greater than that anticipated by
the Applied Technologies design team

• The use of ASD exposed the complexity of the
(re)design problem during the earliest moments
of the development

• The MagLev software was delivered on time ac-
cording to original expectations

• The MagLev software was delivered in line with
effort estimates, bearing in mind the unexpected
complexity of the design problem.

At the time of writing this report, the MagLev soft-
ware remained to be tested with real hardware and
released to real customers. Therefore Applied Tech-

28 XOOTIC MAGAZINE

nologies has only measured the effect of ASD on
early lifecycle phases and has yet to experience the
benefits ASD brings to system testing, release and
maintenance.

Conclusions

This project has demonstrated to Philips Applied
Technologies:

1. The application of ASD is cost neutral over con-
ventional design methods during the first half of
the project lifecycle.

2. The application of ASD results in a factor 12
reduction in defects found during initial integra-
tion testing.

3. The application of ASD results in a predictable
completion date for the project.

4. ASD specifications are understandable and us-
able by project stakeholders without knowledge
of software engineering mathematics; there
is no complex mathematical notation to be
learned.

5. ASD enables experienced employees of Verum
to work productively together with domain ex-
perts in a joint design team in an existing soft-
ware development environment and with soft-
ware engineers and architects not specifically
trained in the method.

6. ASD is applicable to a wide variety of projects
within Philips Applied Technologies.

7. ASD results in designs and implementation of
a much higher quality than can be achieved by
conventional methods.

The senior architect on this project stated that he
has a much higher level of confidence in the quality
than he has using conventional methods. He said:
“This is the first formal method informal enough to
be applied in practice.”

Acknowledgements

We are grateful to Philips Applied Technologies3

for allowing us to present the case study and for
their cooperation and support when we applied
these techniques together to develop control soft-

ware for the MagLev Stage. We are particularly in-
debted to G.P.M. Haagh Senior Software Architect
and Rutger van Beusekom Software Engineer, both
of Philips Applied Technologies, for their cooper-
ation and positive contribution in applying ASD to
this development.

References

[1] Formal Systems (Europe) Ltd. Failures-
Divergence Refinement: FDR2 User Manual,
2003. Seehttp://www.fsel.com .

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides.Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley,
1994.

[3] C. A. R. Hoare. Communicating Sequential
Processes. Prentice Hall, 1985.

[4] Thomas McGibbon. A business case for soft-
ware process improvement revised. Technical
report, Data & Analysis Center for Software,
1999.

[5] H. D. Mills. Stepwise refinement and verifi-
cation in box structured systems.Computer,
21(6):23–26, 1988.

[6] H. D. Mills, R. C. Linger, and A. R. Hevner.
Principles of Information Systems Analysis
and Design. Academic Press, 1986.

[7] The economic impacts of inadequate infras-
tructure for software testing. Technical re-
port, National Institute of Standards and Tech-
nology NIST, US Department of Commerce,
2002.

[8] S. J. Prowell and J. H. Poore. Sequence-
based software specification of deterministic
systems.Software - Practice and Experience,
23(3):329–344, 1998.

[9] S. J. Prowell and J. H. Poore. Founda-
tions of sequence-based software specifica-
tion. IEEE Transactions of Software Engineer-
ing, 29(5):417–429, 2003.

[10] A. W. Roscoe. The Theory and Practice of
Concurrency. Prentice Hall, 1998.

3Philips Applied Technologies B.V., Eindhoven, The Netherlands.

July 2005 29

Contact Information

Guy H. Broadfoot
guy.broadfoot@verum.com

George Kielty
george.kielty@verum.com

Verum Consultants B.V
Paradijslaan 28-28a
5611 KN, Eindhoven
The Netherlands
Phone +31-40-2359090
Fax +31-40-2359099

30 XOOTIC MAGAZINE

