Analytical Software Design Case MaglLev
Stage Software Project for Philips Applied
Technologies

Guy H. Broadfoot, George Kielty

Product innovation, quality and time to market are key elements in the bat-
tle to achieve and sustain competitive advantage. For a growing number of
businesses, this means software development. Software is now an essential
component embedded in an ever increasing array of products. It has become
an important means of realising product innovation and is a key determinant of
both product quality and time-to-market. For many businesses, software has
become business-critical and software development is a strategic business ac-
tivity. At the same time, software development continues to suffer from poor
predictability. Existing development methods appear to have reached a quality
ceiling that incremental improvements in process and technology are unlikely
to breach. To break through this ceiling, a different approach is needed. In this
paper, we describe how Verum applied Analytical Software Design (ASD), a
new approach that applies software engineering mathematics to industrial soft-
ware development, to develop the software controlling an advanced mechatron-
ics subsystem being developed by Philips Applied Technologies in the Nether-
lands.

“ASD is a formal method that is informal enough to be appliegiactice” G.P.M. Haagh
Senior Software Architect, Philips Applied Technologies

Introduction reliable answers to the questions “When will it be
ready?”, “What will it cost?” and “How well will it
work?” These are the very questions that software

Product innovation, quality and time to market amtevelopers are least able to answer.

key elements in the battle to achieve and sustaii recent years, in an attempt to overcome these
competitive advantage. For a growing number gfoplems, companies have invested heavily in soft-
businesses, this means software development. S@fire development process improvements, technol-
ware is now an essential component embeddedyi§y, infrastructure and training. In spite of this, the
an ever increasing array of products. It has beco%idw increasing complexity and amount of soft-
an important means of realising product innovatiqgare still presents a serious challenge. According to
and is a key determinant of both product quality angydies, 40% - 50% of total development costs are
time-to-market. For many businesses, software f@ﬁically lost on avoidable rework [4]; 15% - 25%
becomebusiness criticabnd software developmeniyf software defects are delivered to customers [4];
is astrategichusiness activity. in 2002, software failures cost the U.S. economy an
Today, software development continues to suffestimated $59.5 billion [7].

from poor predictability. Business managers need

July 2005




Existing development methods appear to hadestrial quality levels considered suitable for the fi-
reached a quality ceiling that incremental improveral product. Since its initial development, defects
ments in process and technology are unlikely t@ave emerged at regular intervals, including soft-
breach. The amount and complexity of in-productyare crashes and race conditions. By January 2005,
embedded software is growing exponentially; amore than 20 versions were present in the software
cording to the SEI, productivity in the most suceonfiguration management system, each represent-
cessful organisations is improving linearly, at beshg a major release to fix multiple errors.

The challenges many businesses experience devel-

oping embedded software and being able to guaran-

tee its quality and correct functioning is a testament
to this growing capability gap and inability of cur-
rent testing-centric software development practices
to bridge it. To bridge this divide, a different, more
formal, approach is needed.

The Case: The MagLev Stage

Philips Applied Technologiésis part of the Dutch

Royal Philips Electronics group of companies. Part

of its mission is to develop innovative solution§'9ure 1: MaglLev Stage

for advanced manufacturing. It is a leading devel-

oper of industrial vision systems and high precision

mechatronic systems. In September 2004, it was decided that a new

One of its latest products is a highly accurate, hi rsion of the controller software would have to
performance “stage” known as the MagLev Staﬁ developed in order to achieve required quality
(see figure 1). This is a subsystem designed to gjandards. Given the complex nature of the soft-
incorporated in a variety of industrial systems th¥{are, Philips Applied Technologies and Verum to-
require high speed, highly accurate material po§iether applied Analytical Software Design (ASD)
tioning, especially in high vacuum situations, fdiechniques in which the complete software design
applications such as e-beam inspection and laisenodelled mathmatically and model-checked for
cutting. It uses advanced magnetic levitation sé&@rrectness before implementation starts. After ver-

vos and achieves a repeatable sub-micron scanrif!d the design mathematically, Verum's ASD

accuracy (130 Nanometers or better). techniques enabled 90% of the new code to be gen-
An essential part of the MagLev Stage is the coﬁ.—rated in _C_:++' automatically from the verified de-
trol software embedded in it. This software coord 9" specifications.
nates the actions of the multi-axis controllers and
provides an Application Program Interface (API)

to customer developed domain specific application ) )
software. Technical Details

Early in 2004, a “proof of concept” version of the

control software was developed to enable the niEhe MagLev Stage consists of twabstagesalled
chanical and electronic sub-systems to be develogkdIntermediate Substagind theCarrier Substage
and tested. This development took about 10 weealespectively. Each substage is controlled by its own
in order to achieve a level of “good weather” funadedicated multi-axis controller. The multi-axis con-
tionality useful for the product development. Altrollers are existing subsystems previously devel-
though suitable for its purpose as a “proof of comped by Philips Applied Technologies and used in
cept” prototype, this software was not of the imsther products.

www.apptech.philips.com

XOOTIC MAGAZINE



The Manipulator component implements the API

CMacCB > gupetage /\ SubStage Philips Applied Technologies senior architect re-

Intermediate )  Jgamer

Substage

=) S /‘I“ quired the execution architecture to minimise cop-

N e /5 text s,thchlng with execution remaining undgr th
- - caller’s thread context as long as possible. Figure 3

is a context diagram of the Manipulator component.

This shows the Manipulator as implementing i

Figure 2: MagLev Software Overview client API (IStage), sending asynchronous call-back

notifications to the client application (IStageCB

Figure 2 shows the overall organisation of the sof#sing the SubStage API (ISubStage) and receiving
ware into two major components, name|y tkle- notifications from the two substages via the ISup-

nipulator and theSubStage In the diagram, soft- StageCB call-back interface;. All the !SubStageC
ware components are depicted by rectangles; mayents are routed to the Manipulator via a queue g

interfaces are depicted by the labelled ovals. are executed under the context of a separate defer

The SubStage component is responsible for contrfocedure call (DPC) server thread.

ling a single substage via its dedicated multi-axis
controller known as 81AC. The diagram shows two
instances of the SubStage component, one control-

Responses

Stimul ISubStageCB

ling the !ntermediate Substage gnd one controlling =N
the Carrier Substage. The Manipulator component ’
coordinates and controls the two substage compo- Susstage /

Substage

nents. All actions that are specific to a single MAC —
are implemented in the SubStage component; all ac- Rosporos

tions requiring coordination between the substages, T

such as most movements and all exception and er-

ror handling, are implemented in the Manipulatdtigure 4. SubStage Context Diagram
component. As is usual in such systems, the “good

weather” behaviour, although complex, is relativelgigure 4 shows the context of each SubStage cg

straight forward; the majority of the program logiponent instance. It implements an APl used by

to be used by the customer-developed domain spe-
Manipulator cific application software. It must be “thread safe;

that is, able to support multi-threaded client applica-

1 \ tions while handling asynchronous call-back events

=\ from the two substages. For efficiency reasons, the

m-

is required to handle all the various exception cothe Manipulator (ISubStage and ISubStageCB) and

ditions that can occur. uses the interfaces provided by the MAC (IMac and
IMacCB). The SubStage receives API calls from

the Manipulator and asynchronous event notifig
tions from the MAC via a queue and a separate DF
server thread. The ISubStage interface realise
high level abstraction of the physical substage, w
high level moves implemented in terms of the prin
\ °°°°° itive move operations provided at the MAC inter

ISubStage face

Manipulator

Responses

ISubStage

An Overview of ASD

Analytical Software design is based on two design

Figure 3: Manipulator Context Diagram principles:

July 2005



e Business critical software must be based on dequirements and designs as black box functions.
signs that are verified before implementatiofihese specifications are traceable to the original
starts; requirements specifications and remain completely

¢ Software Architects and Designers must use descessible to the critical project stakeholders. This
signs and architectures that can be verified usiaows them to play a key role in verifying the ASD
currently available tools and techniques. specifications and retain control over them. At the

same time, ASD specifications provide the degree

, . : . of rigour and precision necessary for mathematical
With one exception, all branches of engineerin ag/sis P y

routinely apply their specific branches of mathemat- _
ics to specification and design. Modelling adesiﬂSD applies the Box Structured Development
is cheaper than building a prototype and testing /€thod [5, 6] following the principles of stepwise
Itis also more certain; testing is by definition an ex¢finement to transform the black box design spec-
ercise in sampling and can never provide Comp|ég§atlons mto _state box specifications from which
coverage or certainty of correctness. An architdRfo9ramming is based.

charged with designing an earthquake-proof buildhe ASD Model Generator generates mathematical
ing does not build it and wait for an earthquake tmodels from the black box and state box specifi-
test it! Instead, the design is mathematically modations and designs automatically. These models
elled and subjected to rigorous mathematical anafre generated in the process algebra CSP [3, 10]
sis. and can be formally analysed and verified using the

The one exception is software engineering. Apdpedel checker FDR [1]. For example, we can use
from those few domains (mostly safety critical’®€ model checker to verify (i) whether a design
where formal design and verification methods apatisfies its functional requirements; (ii) whether
mandated, mathematics are not routinely appliedtﬂ? _state box coding specification is behaviourally
software specification or design. Instead, relianceSguivalent to the black box design; and (iii) whether
placed on informal inspection-based methods aftf design uses other components according to their
testing. As a consequence, defects injected earlygifemal functional specifications.

the life-cycle during specification and design actiche ASD Code Generator can generate significant
ities are frequently not detected and removed urinounts of code automatically from the ASD spec-
after implementation is substantially complete ariications. The principle advantage of code genera-
integration testing begins. This is the most expetion is correctness; the code is generated automati-
sive time to correct defects and occurs at a point¢ally from the ASD specifications that have already
the life-cycle that results in the maximum impact opeen formally verified. Code generation may not be
time to market. For many kinds of errors, such @pplicable to every project but in those cases where
race conditions and deadlocks, this is also the le#dds, significant development efficiency gains can be
certain way to find them. achieved.

Analytical Software Desighcombines the practi-ASD uses Statistical Testing methods based on Us-
cal application of software engineering mathematge Models derived directly from the ASD Specifi-
ics and modelling with specification methods tha&gations to test software components against the ver-
avoid difficult mathematical notations and remaified designs. The ASD Test Case Generator and
understandable to all project stakeholders. In addinalyser generates large numbers of self-running
tion, it uses statistical techniques for software cortest cases and analyses their results.

ponent testing and advanced code generation tegfyure 5 shows the main elements of ASD.
niques. From a single set of design specificatiormhe functional specification is analysed using the
the necessary mathematical models, program c®lquence-based Specification method extended to
and statistical test cases are generated autom@table nondterminism to be captured. This enables
cally. the externally visible behaviour of the system to be
ASD uses the Sequence-based Specificatgpecified with precision and guarantees complete-
method [8, 9] to specify functional performanceess.

2patent applied for under patent application number GB 04130

XOOTIC MAGAZINE



can be lower on some projects.

Finally, from the same set of design specification
large numbers of statisitically selected test case (¢
ModelChecking be generated in the form of self running tests and
the results analysed by the ASD Test Analyser.
s v

[ csp
Black Box

ﬂ Applying ASD to the MaglLev Stage
Development

Hand-written + Generated
Code Code

SBY(T,S)~>(T'R)
Design

Generated

+ ‘ Test Cases

_ . chitect and software engineer from Philips Applig
Figure 5: ASD Overview

. N goals of the project were:
Because ASD specifications avoid difficult mathe-

matical notations and are fully traceable to the origt. To re-develop the MaglLev Stage control soft-

inal specifications, they can be validated by inspec- ware to industrial quality standards as quick
tion with project stakeholders. Next, the design is as possible;

specified using Sequence-based Specification. This For Philips Applied Technologies to gain pract
still remains a creative, inventive design activity re- cal experience of applying ASD in practice wit
quiring skill and experience combined with domain 3 view to assessing its applicability to other tyf

knowledge. With ASD, however, the design is typ- ical software developments carried out withip

ically captured with much more precision than is  Philips Applied Technology.
usual with conventional development methods, rais-

ing many issues early in the life cycle and resolvinghe work proceded as follows: firstly, an ASD spe¢

them before implementation haS Started_ iﬁca.tion Of the MAC interface (IMaC and IMaCCB)

The ASD model Generator is used to generate p}%@s made based on existing specifications and the
fpert knowledge of the senior architect. This black

lﬁox function was plotted in the form of a state tran

cess algebra models of both the specification and
design so that the design can be verified for compti- ) _
ance with the specification. In most cases, a des@Hon diagram and reviewed by the team.
cannot be verified in isolation; it depends on its ekiext, an ASD specification of the client applicg
ecution environment and the components it uses s AP (IStage and IStageCB) was made based
its complete behaviour. In ASD, used componeHie existing implementation and with frequent re
interfaces are specified using Sequence-based Sgéences to the existing code. The process of mak
ification, the corresponding mathematical modelde ASD specification raised a significant number
are generated using the ASD Model Generator aplRecification issues, most of which were resolved
these models, combined with those of the desighe senior architect based on his extensive dom

are verified for compliance with the specificatiorknowledge and experience gained in developing the

For CSP models, this verification is done mathem&gginal “proof of concept” prototype.
ically using the model checker FDR. Errors detectdthe architecture was then developed, partitionil
during the verification are corrected in the desighe major functions of the control software betwee
specification, new CSP models are generated dahd Manipulator component and the two instanc
the verification is repeated. (This is typically a vergf the SubStage component; an ASD specifig
rapid cycle.) tion of the SubStage interfaces (ISubStage, ISU

When the design has been verified, the ASD Co&t29eCB) was made, reflecting the first “guess”
Generator is used to generate program source c8 SubStage abstraction.

in C++ or C or other similar languages. The peiFhe first major design task was the design of t
centage of the total code that can be generated thianipulator. This was specified using Sequeng
way varies from project to project. Experience supased Specification. As the design evolved, t
gests this is typically between 70% and 90%, butptecision of the ASD interface specifications

Technologies and two employees from Verum. The

an

The design team consisted of a senior software @ar-

y

=)

on
f
ng
of
by
ain

ng
BN

es
a-
Ib-
at

he
e_
he
f

July 2005



the client interface and the SubStage interface WaBR was used to check the SubStage design plus
extremely beneficial. As the design neared corfte MAC interface against the SubStage interface.
pletion, the ASD Model Generator was used fbhe SubStage interface model was the same one
generate the CSP models of the client interfacesed to verify the Manipulator design.

(IStage, I1StageCB), the SubStage interfaces (ISylyyring the SubStage design, it proved impossible
Stage, ISubStageCB) and the Manipulator desigf.implement the SubStage interface exactly as it
The parallel composition of the Manipulator desigRad been specified and it was necessary to change
model plus two instances of the SubStage Interfages This involved changing the ASD SubStage in-
(one for the Intermediate SubStage and one for i@face specification, regenerating its mathematical
Carrier SubStage) were verified against the clieffodel and then verifying the Manipulator design
interface model using the model checker. This wagainst the changed SubStage interface to assess
done after first verifying with the model checkefhe impact of the changes on the Manipulator de-
that the design was free from divergence, internghn. Where necessary, the Manipulator design was
inconsistencies and deadlocks. changed and verified against the modified SubStage
During this process, many design and some spedcifiterface specification. This enabled the impact of
cation errors were discovered by the model checkeSubStage design alternatives on the Manipulator to
As they were discovered, the appropriate ASD spdie assessed quickly and provided additional input
ification was updated to correct the error, new matfor making often difficult technical choices.

ematical models generated and the verification cf¢hen both the Manipulator and SubStage designs
tinued. This cycle occurs quite rapidly, finding angere completed and verified by model checking, the
fixing several errors per hour. This differs signife++ code of both the Manipulator and th SubStage

icantly form conventional, testing-based develogyas generated using the ASD Code Generator.
ment method. Unlike conventional testing:

e All of this is done without having written any
program code or executing any test cases. Resuylts
e This form of verification is based on mathemat-
ical prqof and is total. ltis equwglent to 100.0/ The ASD specification of the MAC interfaces took
execution path:overage, something un‘PJ[Che'Vébout 1 week; the specification of the client API in-
abl-e by testing. S ) terface and the SubStage interface took about the
e This form of verification is particularly good alga e time, The MAC interface specification has
uncovering dynamic behavioural errors such g8 yansition rules and 12 canonical sequences, the
deadlgcks, rgce conditions apq d§3|gn behaqungst of which is 5 stimuli long. The ASD specifi-
that violates interfaces specifications. Such &f54io of the client API has 345 transition rules and
rors are extremely difficult to detect and diag3 ¢anonical sequences. The SubStage interface has
nose using conventional testing because thgifg yansition rules and 13 canonical sequences.

nondterministic nature makes them to reprodu . . .
P %%e ASD design and verification of the Manipula-

and repair. .
. e . ... tortook about 4 weeks to complete. The design was
e This verification is done before investing in im- .
| tati tth ; . - thextremely complex due to the complex behaviour
plementation, at the most economic poINt I Tt the MAC as this was still visible at the Sub-
life-cycle. . .
Stage interface plus the event driven and concur-
When the Manipulator design was completed ameint nature of the behaviour. Due to its complex-
verified, work began on the SubStage desigty, the Manipulator design was hierachically de-
Again, this was specified using the Sequence-baseuinposed into a top level design together with 3
Specification Method. In this case, the implesignificant lower level sub-designs. In total, the
mented interface is the SubStage interface (ISudesign has 1,700 transition rules and 28 canoni-
Stage, ISubStageCB) and the used interface is ta sequences. This hierarchical design structure
MAC interface (IMac, IMacCB). As the designwas carried through into the generated mathemat-
neared completion, the CSP models were generaiteal models and the generated C++ code, providing

automatically using the ASD Model Generator arfdll traceability between these different views.

XOOTIC MAGAZINE



During the design verification of the manipulatosues such as coordinate transformations or “gly

about 200 errors were detected in the model chedode interfacing the software to the rest of the run-

ing phase. Most of these fell into one of two catime environment. Although the final run-time plat

egories: i) internal inconsistencies where the d®rm was VxWorks, component testing was done by
sign violated the interface specifications of the us&8rum under Windows XP. Testing in the final Vx-

components or was unable to react correctly to ndiWorks environment is being performed by Philig
fications arriving asynchronously from the used impplied Technologies.

terfaces; ii) race conditions that were particularlyhe comparative results of this project are shown

difficult due to a) the number of unstable statgg figure 6. Philips Applied Technologies calcy

in the SubStage specification arising from the ngytes that its code production rate for a typical soft-

ture of the underlying MAC behaviour and b) th/are development, including design, specificatio

loose coupling between the Manipulator and th@ding and testing effort, is about 6,000 executable

SUbStage introduced by the event notification quellges of code per man year. The Origina| MagLe

mechanism. The order of verification was as fo‘lproof of Concept" software was produced at a rate
lows: i) to verify freedom from race conditions, dinf 8,727 executable lines of code per man year.

vergence and deadlocks; ii) to verify complicanqgesktop integration testing of this software, usir

with the used SubStage interface specifications; émulated hardware, found 60 defects, resulting in a

to verify compliance with the client API specificajarge - but undocumented - amount of rework.
tions, the interface implemented by the design.

_ o In 2004, when considering the redesign of the Ma-
The ASD deSIgn and verification of the SUbStaQﬁ_eV software using traditional methods1 the Ap_

e

V

g

took about 4 weeks to complete. Due to its comgtied Technologies design team expected to produce

plexity, the design was hierarchically decomposeghproximately 5000 lines of code in 6 man week

into a top level design plus 5 lower level suby productivity equivalent to 18,000 executable lines

designs. In total, the design has 4,700 transitigf code per man year. Based on their experien

rules and a total of 84 canonical sequences. The @4th the “proof of concept” version, they also obvit

der of verification was the same as described abOMgsly expected an increase in the qua“ty of the e
Again, the number of unstable states in the bgsgyt.

haviour of the MAC together with the deCOUp"nQJItimater the redesign of the MaglLev softwar
caused by the event notification queue resultedv{)?le performed together with employees of Veru
a very complex design with many possibilities folﬁsing ASD. The result was the production of 17,0(
race conditions and other unexpected behaviodf. . iabie lines of code in 45 man weeks of effo
During the verification, in the prder of 200 errorﬁmluding all specification, design, design verifica
were detected by model checking and removed. tion, coding and desktop integration testing effol
After all designs were completed and mathematfhis equates to a production rate of 15,000 ex
cally verified, the C++ code was generated. TRhgitable lines of code per man year. The stated eff
generated code is structured according to the Wedptures the contributions from both Applied Tec
known State Pattern [2] and was tailored to meet thg|ogies design staff and Verum’'s employees.

code architecture required by Philips Applied Teclyiso captures the learning curve needed by both g
nologies. This is a normal part of the ASD codges; Verum's employees to learn about the MagL
generation process; experience shows that “staplication and Applied Technologies engineers
dard” code generators are frequently too inflexiblgarn how to work with ASD. Much of this learn-
in the style and strucure of the code they gengfy curve would not be required for future projects
ate. Every project and development environmeplrthermore, application of ASD to the design ¢
has specific requirements for the generated cod&fi system resulted in the discovery of about 4
ensure that it properly integrates with the rest of thfects during design verification. The average ¢
code base and the run-time platform. In this projeggrt to find and fix each defect was approximate
the run-time platform was VxWorks. Intotal 17,006 man hour per defect. Consequentially the so
executable lines of code were generated, represgére delivered to Philips Applied Technologies hg

ing more than 90% of the code. The hand writtefivery low defect rate. During desktop integratig
code was either concerned with domain specific is-

S.

ce

d

>

SER

I,
5

e-
ort

—
1

ar-
=
to

1°Z)

DO
of-
y
ift-
NS

July 2005



Author- G Haagh

Date: 2005.03.23

Key
Assumption
Input
Estimate

Invarients
elOCAOC 0.545
Workang days per year 200

Comparative Project Data

Proaf of Inilial estimale fr ~~ Redesign
Typical Project Concept redesign with ASD

Elective LOC 88000 4000 5000 32000 Note 1
Eleclive ¢l OC AWM 2182 2727 17455
Eliet (my) ] 0.25 0.15 1.14 Note 2
el OCimy i o2y 16182 15378
Defects durmnyg desk mieqgration 60 5
Ellor for defect comection alot very litle
Defects aller release (PRs) 86
Defect comechon efion (my) 0.75
Defect level (per kel OC) 179
Efimtfdefect (md) 114

Notes

Note1l: This are generated and handeoded Enes 280N generaied LOC 3NN handwritten LOC

Nate?: Wk by ApgTech 051
Wk by VERUM 0625

Defect= A problem i the code that lead to a PR that was comected

Figure 6: Comparitive Results

testing with simulated hardware, only 5 errors were no extra cost as compared to traditional working
found and very little effort was required to correct methods.

these errors. e The number of defects found during desktop in-
Of course, the number of executable lines of code is tegration is reduced by a factor 12

a poor indicator of the complexity of a piece of soft-e The perceived quality of the code is MUCH

ware. Comparison of hand versus automatic code higher (supported by the figures)

generation techniques leads to a discussion of the

relative efficiency of each technique, with no obvi¥erum's employees also observed that:

ous conclusions except that automatically generated 1o complexity of the MagLev (re)design prob-
code leads to far lower error rates. Unfortunately, |om was much greater than that anticipated by
there are no other common metrics that give an in- o Applied Technologies design team

gicgtion of co_mdplegin;]in this (I:as_e. I?o;ve\la-:r, tLhe. The use of ASD exposed the complexity of the
esign team judged t € comp eX'tY of the MaglLev (re)design problem during the earliest moments
design to be at least twice that estimated at the be- of the development

inning of the project, even with the experience of ) .
ﬁavinggproducgd ; broof of concept ver:gion. e The MagLev software was delivered on time ac-

- . . cording to original expectations
As a result, Philips Applied Technologies drew the,

followi lusi ¢ h licati £ ASD The MagLev software was delivered in line with
oflowing conciusions from the application o effort estimates, bearing in mind the unexpected
to the redesign of the MagLev software:

complexity of the design problem.

e Overall the use of ASD in the design/code/unkAt the time of writing this report, the MagLev soft-
test phases is cost neutral w.r.t. traditional waysre remained to be tested with real hardware and
of working; that is, the benefits were gained agleased to real customers. Therefore Applied Tech-

XOOTIC MAGAZINE



nologies has only measured the effect of ASD aware for the MagLev Stage. We are particularly ir

early lifecycle phases and has yet to experience tebted to G.P.M. Haagh Senior Software Architg

benefits ASD brings to system testing, release aadd Rutger van Beusekom Software Engineer, b

maintenance. of Philips Applied Technologies, for their cooper
ation and positive contribution in applying ASD t¢
this development.

Conclusions

This project has demonstrated to Philips AppIieBeferences

Technologies: .
[1] Formal Systems (Europe) Ltd. Failures-

1. The application of ASD is cost neutral over con-  Divergence Refinement: FDR2 User Manug
ventional design methods during the first half of ~ 2003. Sedttp://www.fsel.com
the project lifecycle.

2. The application of ASD results in a factor 12
reduction in defects found during initial integra-

[2] E. Gamma, R. Helm, R. Johnson, and J. Vli
sides.Design Patterns - Elements of Reusab
Object-Oriented Software Addison-Wesley,

tion testing. 1994
3. The application of ASD results in a predictable '
completion date for the project. [3] C. A. R. Hoare. Communicating Sequentia

4. ASD specifications are understandable and us- ProcessesPrentice Hall, 1985.
able by project stakeholders without knowledg
of software engineering mathematics; ther
is no complex mathematical notation to be
learned.

5. ASD enables experienced employees of Verum
to work productively together with domain ex- [5] H. D. Mills. Stepwise refinement and verifi
perts in a joint design team in an existing soft-  cation in box structured system&omputey
ware development environment and with soft-  21(6):23-26, 1988.

ware engineers and architects not specifical%] H. D. Mills, R. C. Linger, and A. R. Hevner

tralneg n th? method. . i . Principles of Information Systems Analys
6. ASD is applicable to a wide variety of projects and Design Academic Press, 1986

within Philips Applied Technologies.

7. ASD results in designs and implementation of7] The economic impacts of inadequate infra
a much higher quality than can be achieved by tructure for software testing. Technical re
conventional methods. port, National Institute of Standards and Tec

nology NIST, US Department of Commerce
The senior architect on this project stated that he 2002.

has a much higher level of confidence in the quality
than he has using conventional methods. He saié8] S- J- Prowell and J. H. Poore. Sequenc

“This is the first formal method informal enoughto ~ Pased software specification of determinist
be applied in practice” systems.Software - Practice and Experience

23(3):329-344, 1998.

ware process improvement revised. Technid
report, Data & Analysis Center for Software
1999.

[9] S. J. Prowell and J. H. Poore. Foundg
tions of sequence-based software specifig

- . tion. IEEE Transactions of Software Enginee
We are grateful to Philips Applied Technologies ing, 29(5):417-429, 2003.

for allowing us to present the case study and for '
their cooperation and support when we applidd0] A. W. Roscoe. The Theory and Practice of
these techniques together to develop control soft- Concurrency Prentice Hall, 1998.

3Philips Applied Technologies B.V., Eindhoven, The Nethads.

Acknowledgements

4] Thomas McGibbon. A business case for soft-

=
1

nth

\ =4

1

le

al

a-

July 2005



Contact Information

Guy H. Broadfoot
guy.broadfoot@verum.com

George Kielty
george.kielty@verum.com

XOOTIC MAGAZINE

Verum Consultants B.V
Paradijslaan 28-28a
5611 KN, Eindhoven
The Netherlands
Phone +31-40-2359090
Fax +31-40-2359099



