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Testing complex manufacturing systems, like the ASML TWINSCAN [2] litho-
graphic machine, takes a lot of time and costs. Within the Tangram project,
methods are investigated to reduce this test costs. In this article, we describe
a method which is used to optimize a test sequence such that it takes the least
amount of costs, or time. With several cases we demonstrate that this method
can be used to optimize test sequences within the manufacturing of a TWIN-
SCAN lithographic machine such that cycle time is reduced.

Introduction

In today’s industry, time to market is extremely im-
portant. In their drive to reduce systems time-to-
market, many companies develop their systems con-
currently. The final phase within concurrent de-
velopment of systems is integration and test. This
phase is on the critical path, and therefore has great
influence on time-to-market (see [3]). The goal of
the Tangram project is to reduce the time and cost
spent on testing and integrating, and by that reduce
time-to-market and cycle time of a system. Within
the Tangram project, we look at test and integra-
tion strategy. A test and integration strategy de-
fines a test and integration phase which is optimal
in terms of time, costs and/or quality. In our work
we are looking at methods that select or optimize
test and integration strategies, taking into account
time, costs and quality.

In this article, we describe a method to create opti-
mal or near-optimal test sequences. A test sequence
is a key element of the test and integration strategy.
The basis of this method is described as Sequential
Diagnosis by Pattipati [4], who used this method for
the diagnosis of electronics. This method can also
be used for test sequencing problems related to the
manufacturing of complex systems.

System test problems are multidisciplinair (e.g.
electronics, software and mechanics), large (hun-
dreds of tests) and take a long time (up to several
weeks/months). A test and integration strategy for
systems is traditionally created by experts which
have a good knowledge of the systems architecture,
the risks and the test costs. Test sequencing and se-
lection is traditionally a risk-based decision. That
is, the elements with the highest risk are tested, un-
til time is up and the system is shipped. At that mo-
ment, the quality of the system is often unknown.

The semiconductor industry is a typical example of
a time-to-market driven industry. For companies
such as ASML, shipping your system before com-
petition is wanted, and thus dominates the test and
integration phase. Several cases within the man-
ufacturing process of a TWINSCAN machine are
presented in this article.

The structure of the article is as follows: first an ex-
ample test problem is introduced, then the test prob-
lem is formally described, then different solving al-
gorithms are mentioned, then the results of the dif-
ferent cases are shown, and finally conclusions and
future work are mentioned.

1This work has been carried out as part of the TANGRAM project underthe responsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs under grant TSIT2026.
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Example test problem

To illustrate a system test problem, a telephone is
taken as system under test. This telephone consists
of three modules: the device, the receiver and the
cable connecting the receiver and the device. The
system is shown in Figure 1. There are two inter-
faces between the modules: one between the device
and the cable and one between the cable and the re-
ceiver.

Device
Receiver


Cable


Figure 1: Telephone example

In this system under test, we can identify 5 possible
faults:

1. The device is broken.
2. The cable is broken.
3. The receiver is broken.
4. The cable cannot be connected to the device.
5. The cable cannot be connected to the receiver.

The first three faults are logical, the last two may be
less obvious. These two faults are interface faults,
which are typical system faults that occur through
concurrent engineering. All modules have been de-
veloped in parallel using interface specifications. If
these specifications are ambiguous, the assembled
system may not work as the specifications are inter-
preted differently for each module, which results in
interface faults. Each fault has a certain probability
that it exists. It is assumed that this fault probability
is 10% for each fault.

The goal of testing the system is to find out which
of the possible faults exists. 6 tests are available to
test this system:

0. Test the complete telephone
1. Test the device
2. Test the cable
3. Test the receiver
4. Test the device and cable
5. Test the cable and receiver

The costs of each test are defined in uniformcost
units. In real life, these costs can for example be
defined in money or in time. Test 0 costs 3, while
tests 1,2 and 3 each cost 1 and test 4 and 5 cost 2.

The objective is to create a test sequence with mini-
mal expected test costs. This optimal sequence log-
ically depends on the outcomes of tests applied, as
illustrated in Figure 2. According to this test se-
quence, a tester starts with test 0. If this test passes,
the tester knows no fault exists in the system and the
system works. If this test fails, the tester knows that
at least one fault exists and the tester has to perform
more tests to identify this fault. This way of work-
ing results in a test tree, which contains several test
sequences depending on the outcomes of tests. The
objective of calculating the optimal test sequence
actually means calculating the optimal test tree with
minimal expected test costs, identifying each possi-
ble fault.

The test costs of a test tree can be calculated as de-
scribed in the sequel for the example test tree of
Figure 2.To start with, test 0 is performed. This
test fails with a certain probability and if so test 3
is performed next. This probability depends on the
covered faults and their probabilities. The expected
test costs are therefore the test costs of test 0 plus
the test costs of test 3 multiplied by the chance that
test 0 fails, and so on. An optimal solution is a tree
with the least expected test costs. An optimal so-
lution for the telephone example is shown later in
this article. We continue in the next section with a
formal description of the test problem.

System
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Pass
 Fail


Pass
 Fail


Fail
Pass


Test 0


Receiver


broken


Cable


broken
........


Figure 2: Test tree with multiple test sequences
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Test problem formulation

Formally, a test problemD can be defined as a five-
tuple:D = (T ,S, Tc,Sp,Rts), where:

• T is a finite set ofk elements, called tests.
• S is a finite set ofl elements, called fault states.
• Tc : T → R gives for each test inT the associ-

ated costs of performing that test
• Sp : S → R gives for each fault state inS thea

priori probability that the fault state is present.
• Rts : T → P(S) gives the subset of fault states

that are covered by a test.

The a priori probability is the absolute probability
that a certain fault is present. The test problem can
also be represented as a matrixA of dimensions
l × k, whereAij = 1 if test tj covers fault state
si, otherwiseAij = 0. The formal description is a
model of the test problem and is therefore called the
system test model. In Table 1, the system test model
of the telephone example is shown, represented as a
matrix.

Table 1: Telephone example system test model
S / T t0 t1 t2 t3 t4 t5 Sp

s1 1 1 0 0 1 0 10 %
s2 1 0 1 0 1 1 10 %
s3 1 0 0 1 0 1 10 %
s4 1 0 0 0 1 0 10 %
s5 1 0 0 0 0 1 10 %
Tc 3 1 1 1 2 2

In the following sections, different algorithms are
discussed to solve the test problem and hence cal-
culate the optimal test tree with minimal expected
test costs.

Solving algorithms

Continuing on the work of Pattipati, many different
solving algorithms using different heuristics have
been developed. A good overview is given by Shak-
eri et al in [1]. The assumptions of the test problem
solving algorithms are:

• binary outcome tests (only pass or fail),
• the fault states are independent of each other,
• the tests are 100% reliable,
• the tests are 100% sensitive and specific,
• a repair action 100% fixes the fault state.

The test problem solving algorithms consists of two
types: single and multiple-fault algorithms. The
single-fault algorithms have the assumption that at
most one fault state is present. The multiple-fault
algorithms do not have that assumption. Both types
of algorithms are explained in the sequel.

Single-fault algorithms

The single-fault algorithm has the assumption that
at most one fault state exists. This assumption re-
sults in some changes to the original test problem.
The possibility that no fault state exists (the system
is OK) must be modelled explicitly because the al-
gorithm assumes that at least one fault is present.
This is done by adding an extra state toS, nameds0

which represents the system OK state. ElementS of
the basic test problem is denoted byS for the single-
fault problem. Also, because at most one fault state
can be present, the sum of the fault state probabil-
ities must be 100%. Therefore, thea priori fault
probabilitiesSp are converted toconditional fault
probabilitiesSp using,

Sp(s0) =
1

1 +
∑

s∈S

Sp(s)
1−Sp(s)

(1)

and

Sp(si) =

Sp(si)
1−Sp(si)

1 +
∑

s∈S

Sp(s)
1−Sp(s)

for i = 1, · · · , l. (2)

The single-fault system model of the telephone ex-
ample is shown in Table 2.

Table 2: Telephone example single-fault system test
model

S / T t0 t1 t2 t3 t4 t5 Sp Sp

s0 0 0 0 0 0 0 - 64.28%
s1 1 1 0 0 1 0 10% 7.14%
s2 1 0 1 0 1 1 10% 7.14%
s3 1 0 0 1 0 1 10% 7.14%
s4 1 0 0 0 1 0 10% 7.14%
s5 1 0 0 0 0 1 10% 7.14%
Tc 3 1 1 1 2 2 - 100%

A solution to the single-fault test problem is an
AND/OR decision tree as shown in Figure 3. This
tree consists of three types of nodes: AND, OR and
leaf nodes. The OR nodes represent the suspected
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set of fault states, the AND nodes represent tests ap-
plied to the OR nodes and the leaf nodes represent
isolated faults states.

s0


Test 3


Pass
 Fail


Pass
 Fail


Test 0


s3

s1, s2, s4,


s5
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 Test 2
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 Test 3


s1, s2, s3,
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OR node
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Figure 3: An AND/OR graph

Calculating an optimal AND/OR tree is NP-Hard
[5]. Therefore in literature, two types of solv-
ing algorithms are described: optimal algorithms
for small and near-optimal algorithms for large test
problems.

To calculate an optimal AND/OR tree, two optimal
algorithms can be used: Dynamic Programming and
AND/OR graph search [5]. The Dynamic Program-
ming technique is a recursive algorithm that con-
structs an optimal tree from the leave nodes up by
identifying larger subtrees until the optimal tree is
generated. The Dynamic Programming technique
has storage and computational complexity ofO(k3)
for the basic test problem. Therefore in this article,
we use the more efficient top-down algorithm based
on AND/OR graph search (AO∗).

The AO∗ algorithm constructs an AND/OR graph
as a directed graph with a root (or initial) node and
a nonempty set of terminal leaf nodes. The ini-
tial node represents the given problem to be solved,
while the terminal leaf nodes correspond to the sub-
problems with known solutions. An OR node is
solved if any one of its successor nodes is solved,
and an AND node is solved only when all of its im-
mediately successors are solved. During the search
within the AND/OR graph, the expected test costs
of visited OR nodes are saved to reduce computa-
tional effort: these costs do not have to be calculated
again.

For larger problems near-optimal algorithms are
necessary. Several near-optimal search algorithms
are known from literature [5], for example: theAO∗

ε

algorithm, the limited searchAO∗, and theAO∗

algorithm combined with a multi-step information
gain heuristics. The near-optimal one-step informa-
tion gain heuristics can be used during theAO∗ al-
gorithm to solve the larger cases presented in this
article.

The test tree shown in Figure 4(b) is an optimal tree
for the telephone example. The expected test cost of
this tree are 4.07. This means that on average, 4.07
test cost are necessary to identify one fault state in
the system.

To illustrate the different test sequences that can be
found for different fault probabilities, we reduce the
a priori fault chance of each fault state from 10% to
5%. The resulting tree can be seen in Figure 4(a). In
the third situation, thea priori fault chance of each
fault state is 50%. The resulting tree can be seen in
Figure 4(c). In the 5% situation, only test 0 is neces-
sary to check whether the system is OK, in the 10%
situation both tests 4 and 5 are necessary to check
whether the system is OK, while in the 50% situa-
tion tests 4, 3 and 5 are necessary to check whether
the system is ok.

Multiple-fault algorithms

When fault probabilities are high, the assumption
that at most one fault state is present in the system
is questionable. In these cases, it is still possible to
use the solution tree of the single-fault algorithm,
over and over again until all fault states have been
identified, but it is certainly not optimal. Therefore
multiple-fault algorithms are necessary.

Multiple-fault algorithms construct AND/OR
graphs in the same way as the single-fault algo-
rithms. However, instead of considering one possi-
ble fault state, they consider all possible combina-
tions of fault states. The OR node in an AND/OR
graph represents all possible subsets of suspected
fault states. Multiple-fault problems have a expo-
nential complexity ofO(2l) (see [1]). TheAO∗

multiple-fault algorithm used in this article, is de-
rived from theAO∗ single-fault algorithm. Com-
pared to the single-fault algorithm, the multiple-
fault algorithm considers fix actions of fault states.
If a fault state is isolated, it can be fixed immedi-
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Figure 4: Telephone example optimal single-fault test trees

ately. After the fix action, isolated fault states are
removed and more tests are applied to find other
faults. The algorithm terminates when all faults are
excluded and the system is ok. The resulting graph
has one root node and one leaf node. An example
multiple fault tree is shown in Figure 5.

Besides test and fix actions, the algorithm also has
diagnosis actions. If a number of fault states is un-
der suspicion, but none have been isolated and ad-
ditional testing does not give more information, a
diagnosis action removes the suspected fault states.
This diagnosis action has high costs, but is neces-
sary to terminate the algorithm and solve the test
problem.

To reduce computational complexity, the same in-
formation gain heuristic is implemented as in the
single-fault algorithm. Most computational costs
are spent during the calculation of the pass and fail
probabilities of a test, as all subsets of fault states
must be taken into account. Therefore, estimators
are used to estimate the pass and fail probabili-
ties and reduce this computational complexity. If
a problem is still to large, it can be divided into
subproblems that can be solved optimal or near-
optimal. The subproblems by itself can then be se-
quenced with the same algorithm, or by hand. To
reduce storage complexity of saved OR nodes, the
implemented multiple-fault algorithm uses the com-
pact set notation (see [1]). The compact set notation
is a shorter notation for all possible subsets of fault
states.

An optimal multiple-fault tree of the telephone ex-

ample, shown in Figure 5, has been calculated with
the optimal multiple-fault algorithm.

Tree simulation

Both single and multiple-fault algorithms can be
used for system test problems. The advantage of
a single-fault algorithm is that the resulting tree is
smaller and better understandable. Also, the com-
putational effort is less. However, the resulting test
costs may be higher than in case of using solution
from a multiple-fault algorithm. By using a simu-
lation model of the test process, called the testFac-
tory, the difference between the average test costs
can be made clear. The testFactory is not discussed
in this article. The testFactory simulates the testing
of a number of predefined faulty systems either us-
ing a single-fault tree over and over again until all
faults are found, or using the multiple-fault tree. In
Figures 6(a) and 6(b) two histograms are shown of
the simulation of the single and multiple-fault 10%
fault probability trees. After 5000 simulation runs
(number of systems tested), the average test costs
of the single-fault tree were 5.7, while the average
test costs of the multiple-fault tree were 5.3. If all
tests would be performed, the test costs would be
10.
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Figure 5: Telephone example optimal multiple-fault test
tree

Cases

Within the manufacturing department at ASML,
several test steps are performed during the produc-
tion of a TWINSCAN lithographic machine. These
test steps consist of performance, measurement and
fault-detection tests, and calibrations. The pre-
sented test sequencing method is applied to three
test steps, called job-steps, of different modules to
reduce the cycle time of manufacturing a TWIN-
SCAN machine.

The approach of the case is as follows:

1. Three models are created for 3 different job-
steps.

2. For each model the optimal single and multiple-
fault test trees are calculated.

3. The resulting test sequences are simulated us-
ing a test factory simulation model to show the
expected test time.

In Table 3 the properties of the 3 created models are
shown. The first column denotes the size of the ma-
trices for job-steps A, B and C. The second column
denotes the sum of all test costs, denoting the cur-
rent situation. The cost of a test is for this case de-
fined in time units. The third column shows average
fault probability. The fourth column indicates the
density of theA matrices, that is, how well ’filled’
these matrices are.

Table 3: Case system test model properties
Case k × l

∑

t∈T

Tc(t) Aver.(Sp) Dens.(A)

A 15 × 15 815 71.3% 38.2%
B 33 × 60 33 46.0% 15.2%
C 39 × 73 730 15.8% 10.4%

Now, the single and multiple-fault trees can be cal-
culated. In Table 4, the properties of the trees and
algorithms used are shown. The first single-fault
column denotes which methods have been used
to solve the single-fault problem: either the opti-
mal calculation or using the information gain (IG)
heuristic or by dividing (div) the problem in mul-
tiple problems. The second column shows the ex-
pected tree costs. The same columns are shown for
the multiple-fault algorithm.

The costs of the single-fault trees are much lower
then the multiple-fault trees. This due to the single-
fault assumption and the conditional probabilities
which are much lower in these cases then thea pri-
ori fault probabilities.

Table 4: Case test tree properties
Single-fault Multiple-fault

Case Method Costs Method Costs
A Optimal 202.9 IG 690.0
B IG 5.0 div(4) 25.8
C Optimal 144 div(4) 504

After the trees have been calculated, they are sim-
ulated in the simulation environment, as mentioned
previously. In Table 5, the simulation results are
shown. The first column shows the average single-
fault tree costs and the second column shows the
gain or loss in cycle time compared to the current
situation. The third and fourth columns show the
same for the multiple-fault test trees.
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Figure 6: Telephone example tree simulation histograms

The average test costs of the single-fault tree are
much higher then the test costs of the current sit-
uation. This results from the assumption that only
one fault exists, while the average number of faults
present is large (larger then 10). The single-fault
tree is therefore only suitable when the average
number of faults is small, in the range of 1 through
5. For a larger number of average faults, the
multiple-fault algorithm performs better. The re-
sulting test trees are even better then the test trees
that are currently used.

Table 5: Case simulation results
Single-fault Multiple-fault

Case Sim. Delta Sim. Delta
A 1848 +126% 689.0 −15.5%
B 60.8 +84.4% 25.9 −21.5%
C 1608 +120% 504.2 −30.9%

Conclusions

The presented method describes the test problem in
a system test model. A single-fault algorithm calcu-
lates an optimal, with the least test costs, test tree,
consisting of multiple test sequences, based on this
system test model. This algorithm has the assump-
tion that at most one fault exists. Besides this al-
gorithm, a multiple-fault algorithm is described that
creates a test tree with the assumption that multiple-
faults can exist. This algorithm needs to take fixing
and diagnosis of faults into account. The single-
fault algorithm needs few computation to give an

optimal solution, however it is recommended that
this solution may only be used with test problems
that have no more then 5 faults on average present in
the system. The multiple-fault algorithm takes more
computation effort, but the calculated solutions can
also be used with problems that have more then 5
faults present.

We can conclude that the presented method is
suitable for system test problems, as seen within
ASML. There are two main benefits for using this
method in the test and integration phase of systems.
First, the test cost can be reduced by calculating the
optimal test sequence as is shown in this case. Even
test sequences that are judged to be quite good by
experts, can be improved and cycle time can there-
fore be reduced.

Second, more insight in the test coverage of faults is
gained when creating system test models. For large
systems little knowledge exists about the relation
between faults and tests: if a test fails it is difficult
to indicate why. The presented system test model
is a summary of these relations. Furthermore, the
available test set can be made more explicit. New
tests can be developed that cover faults which are
not covered by the current test set. Also new tests
can be developed that replace multiple other tests
but cover the same or even more faults.
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Future work

In the sequel of this project we will continue de-
veloping methods to optimize test and integration
strategies. Test and integration sequences depend
on each other. For example, the telephone consists
of three modules. If the development of a certain
module is delayed, tests using this module cannot
be performed, while tests concerning the other two
modules can be performed. Also, if the modules are
separated, parallel testing would be possible, which
probably reduces test time. In other words, the in-
tegration sequence of modules must be taken into
account to determine the optimal test sequences. Or
even further: the integration sequence must be op-
timized regarding time, costs and/or quality. Other
aspects of the test and integration strategy relevant
to our project are: scheduling tests over resources,
strategy decisions regarding cost, time and quality
and as already mentioned in this article, test and in-
tegration process simulations to determine the dif-
ference between certain test and integration strate-
gies.
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