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Testing complex manufacturing systems, like the ASML TWINSCAN [2] litho-
graphic machine, takes a lot of time and costs. Within the Tangram project,
methods are investigated to reduce this test costs. In this article, we describe
a method which is used to optimize a test sequence such that it takes the least
amount of costs, or time. With several cases we demonstrate that this method
can be used to optimize test sequences within the manufacturing of a TWIN-
SCAN lithographic machine such that cycle time is reduced.

Introduction System test problems are multidisciplinair (e.g.
electronics, software and mechanics), large (hun-

L . _ ~ dreds of tests) and take a long time (up to several
In today’s industry, time to market is extremely imyeeks/months). A test and integration strategy for

portant. In their drive to reduce systems time-tQystems s traditionally created by experts which
market, many companies develop their systems C@faye a good knowledge of the systems architecture,
currently. The final phase within concurrent dgpe risks and the test costs. Test sequencing and se-
velopment of systems is integration and test. This:ion is traditionally a risk-based decision. That
phase is on the critical path, and therefore has grgaihe elements with the highest risk are tested, un-
influence on time-to-market (see [3]). The goal @f time is up and the system is shipped. At that mo-
the Tangram project is to reduce the time and CO8knt, the quality of the system is often unknown.

spent on testing and integrating, and by that redu‘Fﬁe semiconductor industry is a typical example of

time-to-market and cycle time of a system. Within . . . :
the Tangram project, we look at test and integr%_tlme-to-market driven industry. For companies
' such as ASML, shipping your system before com-

tion strategy. A test and integration strategy de. tition is wanted, and thus dominates the test and

fines a test and integration phase which is optinPaT . o
. ) . t(n egration phase. Several cases within the man-
in terms of time, costs and/or quality. In our wor

. . ufacturing process of a TWINSCAN machine are
we are looking at methods that select or optimize A .

. ) . L resented in this article.
test and integration strategies, taking into account

time, costs and quality. The structure of the.ar_ticle is as follows: first an ex-
. . . mple test problem is introduced, then the test prob-
In this article, we describe a method to create opjl- . . . .
. em is formally described, then different solving al-

mal or near-optimal test sequences. A test sequence. : .
. ) ) orithms are mentioned, then the results of the dif-
is a key element of the test and integration strategy. , .

. . . . rfent cases are shown, and finally conclusions and
The basis of this method is described as Sequen {ﬂure work are mentioned
Diagnosis by Pattipati [4], who used this method for '
the diagnosis of electronics. This method can also
be used for test sequencing problems related to the

manufacturing of complex systems.

1This work has been carried out as part of the TANGRAM project underresponsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry ohBmic Affairs under grant TSIT2026.
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Example test problem The costs of each test are defined in unifarost
units In real life, these costs can for example be

To illustrate a system test problem, a telephonedsfined in money or in time. Test O costs 3, while

taken as system under test. This telephone consietgs 1,2 and 3 each cost 1 and test 4 and 5 cost 2.

of three modules: the device, the receiver and tifge objective is to create a test sequence with mini-
cable connecting the receiver and the device. Thﬁ| expected test costs. This Optima| sequence |og-
system is shown in Figure 1. There are two intecally depends on the outcomes of tests applied, as
faces between the modules: one between the deyjgtrated in Figure 2. According to this test se-

and the cable and one between the cable and thegigence, a tester starts with test 0. If this test passes,

ceiver. the tester knows no fault exists in the system and the
_ _ system works. If this test fails, the tester knows that
Receiver Device .
at least one fault exists and the tester has to perform
O I:I more tests to identify this fault. This way of work-

ing results in a test tree, which contains several test

oooo

oo
oo
oo
oo

oooo

O sequences depending on the outcomes of tests. The
objective of calculating the optimal test sequence
Cable actually means calculating the optimal test tree with
Figure 1: Telephone example minimal expected test costs, identifying each possi-

ble fault.

The test costs of a test tree can be calculated as de-
In this system under test, we can identify 5 possikderibed in the sequel for the example test tree of
faults: Figure 2.To start with, test 0 is performed. This
test fails with a certain probability and if so test 3
is performed next. This probability depends on the
covered faults and their probabilities. The expected
The receiver is broken. test costs are therefore the test costs of test 0 plus
The cable cannot be connected to the device.the test costs of test 3 multiplied by the chance that
The cable cannot be connected to the receivetest 0 fails, and so on. An optimal solution is a tree

i . with the least expected test costs. An optimal so-
The first three faults are logical, the last two may Qo for the telephone example is shown later in

less obvious. These two faults are interface fauligig aricle. We continue in the next section with a
which are typical system faults that occur throuqlarmal description of the test problem.
concurrent engineering. All modules have been de-

veloped in parallel using interface specifications. If
these specifications are ambiguous, the assembled
system may not work as the specifications are inter-
preted differently for each module, which results in
interface faults. Each fault has a certain probability

that it exists. It is assumed that this fault probability

¥
is 10% for each fault. System

The goal of testing the system is to find out which
of the possible faults exists. 6 tests are available to

. . Receiv
test this system: broken.

1. The device is broken.
The cable is broken.

akrwn

Pass Fail

Pass Fail

0. Test the complete telephone Pass Fail

¥ M
1. Testthe device Cable
........ broken
2. Test the cable
3. Test the receiver
4. Test the device and cable Figure 2: Test tree with multiple test sequences
5. Test the cable and receiver
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Test problem formulation

Formally, a test probler® can be defined as a five-single-fault algorithms have the assumption that
tuple:D = (7,8, 7., Sy, Ris), where:

7 is afinite set ok elements, called tests. of algorithms are explained in the sequel.
S is a finite set of elements, called fault states.

7. : T — R gives for each test il the associ-
ated costs of performing that test

Single-fault algorithms

priori probability that the fault state is present.at most one fault state exists. This assumption

that are covered by a test.

The a priori probability is the absolute probability
that a certain fault is present. The test problem cg
also be represented as a matdxof dimensions
[ x k, whereA;; = 1 if test¢; covers fault state
si, otherwiseA;; = 0. The formal description is a
model of the test problem and is therefore called t
system test moddh Table 1, the system test modei

f the telenh le is sh ted ities must be 100%. Therefore, tlaepriori fault
?natr(iex elephone exampie IS shown, represente apsrgbabilitiessp are converted t@onditional fault

probabilitiesS,, using,

His is done by adding an extra stateStonameds
which represents the system OK state. Elenseoit
the basic test problem is denoted®jor the single-

Table 1: Telephone example system test model

1
SIT | tg t1 ta t3 ta ts Sp § (30) = (1)
s |1 1 0 0 1 0/10% ? [ 1)
1-Sp(s)
So 1 0 1 0 1 1| 10% se€S
S3 1 0 0 1 0 1|10% and
S4 1 0 0 O 1 0| 10%
S5 1 0 0 0 0 1|10% 18’3(5(2),-)
7. |3 1 1 1 2 2 Sp(si) = = fori=1,---,1. (2)
1 + Z p(s)
1-Sp(s)
seS

In the following sections, different algorithms are

discussed to solve the test problem and hence eglg gingle-fault system model of the telephone ¢

culate the optimal test tree with minimal eXpeCteQmple is shown in Table 2.
test costs.

Table 2: Telephone example single-fault system tes

: : model

Solving algorithms SIT [t h f 3 i ]S, | S,

S0 0O 0 0 OoO 0 o - 64.28%
Continuing on the work of Pattipati, many different s: 1 1 0 0 1 0]|10%| 7.14%
solving algorithms using different heuristics have s2 |1 0 1 0 1 1110%| 7.14%
been developed. A good overview is given by Shak-s3 |1 0 0 1 0 1710% | 7.14%
eri et alin [1]. The assumptions of the test problem °* 10 0 0 1 0)10% 7.14%

. . i S 1 0 0 0 O 1|10%| 7.14%

solving algorithms are: T, 31 1 1 2 2 - 100%

binary outcome tests (only pass or fail),

the fault states are independent of each other
the tests are 100% reliable,

the tests are 100% sensitive and specific,

a repair action 100% fixes the fault state.

A solution to the single-fault test problem is a
AND/OR decision tree as shown in Figure 3. Th
tree consists of three types of nodes: AND, OR a
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The test problem solving algorithms consists of tw
types: single and multiple-fault algorithms. Th

most one fault state is present. The multiple-fat
algorithms do not have that assumption. Both typ

Sp : § — R gives for each fault state ifithea The single-fault algorithm has the assumption th

Ris : T — P(S) gives the subset of fault statesults in some changes to the original test proble
The possibility that no fault state exists (the syste
is OK) must be modelled explicitly because the 4
orithm assumes that at least one fault is prese

ﬁault problem. Also, because at most one fault sta
n be present, the sum of the fault state probal

leaf nodes. The OR nodes represent the suspeq
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set of fault states, the AND nodes represent tests &p+ larger problems near-optimal algorithms are

plied to the OR nodes and the leaf nodes represeatessary. Several near-optimal search algorithms

isolated faults states. are known from literature [5], for example: thgO*
algorithm, the limited searcilO*, and the AO*
algorithm combined with a multi-step information

OR node gain heuristics. The near-optimal one-step informa-
o tion gain heuristics can be used during the* al-
AND node ) N
' gorithm to solve the larger cases presented in this

e Vo St The test tree shown in Figure 4(b) is an optimal tree

VA for the telephone example. The expected test cost of

leaf d —_— “ -51,52,53,
o o this tree are 4.07. This means that on average, 4.07
@ @ test cost are necessary to identify one fault state in
/ Vant / pant the system.
S - To illustrate the different test sequences that can be
T found for different fault probabilities, we reduce the

a priori fault chance of each fault state from 10% to
5%. The resulting tree can be seenin Figure 4(a). In
the third situation, the priori fault chance of each
fault state is 50%. The resulting tree can be seen in

Figure 4(c). In the 5% situation, only test 0 is neces-

Calculating an optimal AND/OR tree is NP'Har%ary to check whether the system is OK, in the 10%

[5]. Therefore in literature, two types of SOIV'situation both tests 4 and 5 are necessary to check

ing algorithms are de'scribed: thimal algorithn\ﬁhether the system is OK, while in the 50% situa-
for small and near-optimal algorithms for large te8bn tests 4,3 and 5 are necessary to check whether

problems. the system is ok.
To calculate an optimal AND/OR tree, two optimal

algorithms can be used: Dynamic Programming and

AND/OR graph search [5]. The Dynamic ProgranMultiple-fault algorithms

ming technique is a recursive algorithm that con-

structs an optimal tree from the leave nodes up lyhen fault probabilities are high, the assumption
identifying larger subtrees until the optimal tree ighat at most one fault state is present in the system
generated. The Dynamic Programming technigisequestionable. In these cases, it is still possible to
has storage and computational complexityX§k3) use the solution tree of the single-fault algorithm,
for the basic test problem. Therefore in this articleyer and over again until all fault states have been
we use the more efficient top-down algorithm basédentified, but it is certainly not optimal. Therefore
on AND/OR graph searct4O*). multiple-fault algorithms are necessary.

The AO* algorithm constructs an AND/OR grapiMultiple-fault algorithms construct AND/OR
as a directed graph with a root (or initial) node argtaphs in the same way as the single-fault algo-
a nonempty set of terminal leaf nodes. The inithms. However, instead of considering one possi-
tial node represents the given problem to be solvdade fault state, they consider all possible combina-
while the terminal leaf nodes correspond to the sufens of fault states. The OR node in an AND/OR
problems with known solutions. An OR node igraph represents all possible subsets of suspected
solved if any one of its successor nodes is solvddult states. Multiple-fault problems have a expo-
and an AND node is solved only when all of its imaential complexity ofO(2!) (see [1]). TheAO*
mediately successors are solved. During the seanghltiple-fault algorithm used in this article, is de-
within the AND/OR graph, the expected test costved from the AO* single-fault algorithm. Com-
of visited OR nodes are saved to reduce compupared to the single-fault algorithm, the multiple-
tional effort: these costs do not have to be calculatizdilt algorithm considers fix actions of fault states.
again. If a fault state is isolated, it can be fixed immedi-

Figure 3: An AND/OR graph
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Fix: [5] Fix: [3] Fix: [4] Fix: (1)

Fix: [4] Fix: [1]

Tree cost = 4.07 Tree cost = 4.00

(a) 5% fault probabil-(b) 10% fault probability (c) 50% fault probability
ity

Figure 4: Telephone example optimal single-fault test trees

ately. After the fix action, isolated fault states ar@mple, shown in Figure 5, has been calculated w,
removed and more tests are applied to find othbe optimal multiple-fault algorithm.

faults. The algorithm terminates when all faults are

excluded and the system is ok. The resulting gra{ﬂ:be simulation

has one root node and one leaf node. An example

multiple fault tree is shown in Figure 5. Both single and multiple-fault algorithms can b
Besides test and fix actions, the algorithm also hased for system test problems. The advantage|
diagnosis actions. If a number of fault states is ua-single-fault algorithm is that the resulting tree
der suspicion, but none have been isolated and aghaller and better understandable. Also, the co

ditional testing does not give more information, putational effort is less. However, the resulting test

diagnosis action removes the suspected fault statassts may be higher than in case of using soluti
This diagnosis action has high costs, but is necé®sm a multiple-fault algorithm. By using a simu

m-

on

sary to terminate the algorithm and solve the tdation model of the test process, called the testFac-
problem. tory, the difference between the average test costs

To reduce computational complexity, the same if@" be made clear. The testFactory is not discus

single-fault algorithm. Most computational costf & number of predefined faulty systems either ys-
are spent during the calculation of the pass and 4@ @ single-fault tree over and over again until 3l

probabilities of a test, as all subsets of fault statflts are found, or using the multiple-fault tree. |
must be taken into account. Therefore, estimatdrgures 6(a) and 6(b) two histograms are shown
are used to estimate the pass and fail probabifi€ Simulation of the single and multiple-fault 109
ties and reduce this computational complexity. fgult probability trees. After 5000 simulation run

sed
ng

n
of
0

5

a problem is still to large, it can be divided inténumber of systems tested), the average test costs

quenced with the same algorithm, or by hand. f8Sts would be performed, the test costs would
reduce storage complexity of saved OR nodes, tHe

implemented multiple-fault algorithm uses the com-

pact set notation (see [1]). The compact set notation

is a shorter notation for all possible subsets of fault

states.

An optimal multiple-fault tree of the telephone ex-
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subproblems that can be solved optimal or ne&fthe single-fault tree were 5.7, while the average
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3. The resulting test sequences are simulated us-
ing a test factory simulation model to show the
expected test time.

In Table 3 the properties of the 3 created models are
shown. The first column denotes the size of the ma-
trices for job-steps A, B and C. The second column
denotes the sum of all test costs, denoting the cur-
rent situation. The cost of a test is for this case de-
fined in time units. The third column shows average
pass fault probability. The fourth column indicates the

density of thed matrices, that is, how well "filled’
these matrices are.

Table 3: Case system test model properties

Case| kxI > T.(t) | Aver.(S,) | Dens.()
teT

A 15 x 15 815 71.3% 38.2%

B 33 x 60 33 46.0% 15.2%

C 39 x 73 730 15.8% 10.4%

Now, the single and multiple-fault trees can be cal-
culated. In Table 4, the properties of the trees and
algorithms used are shown. The first single-fault
column denotes which methods have been used
to solve the single-fault problem: either the opti-
mal calculation or using the information gain (1G)
heuristic or by dividing (div) the problem in mul-
tiple problems. The second column shows the ex-
pected tree costs. The same columns are shown for
the multiple-fault algorithm.

Figure 5: Telephone example optimal multiple-fault testhe costs of the single-fault trees are much lower
tree then the multiple-fault trees. This due to the single-
fault assumption and the conditional probabilities
which are much lower in these cases thenapsi-

Cases ori fault probabilities.

Within the manufacturing department at ASML, Table 4: Case test tree properties
several test steps are performed during the produc- Single-fault Multiple-fault
tion of a TWINSCAN lithographic machine. These Case|| Method| Costs Method| Costs
test steps consist of performance, measurement an* IOGptlmaI 2002'9 :ﬁ/( 2 ggoéo
fault-detection tests, and calibrations. The pre- Optimal 144 div(4) | 504

sented test sequencing method is applied to three

test steps, called job-steps, of different modules to

reduce the cycle time of manufacturing a TWINAfter the trees have been calculated, they are sim-
SCAN machine. ulated in the simulation environment, as mentioned

previously. In Table 5, the simulation results are
shown. The first column shows the average single-
1. Three models are created for 3 different jolfault tree costs and the second column shows the

The approach of the case is as follows:

steps. gain or loss in cycle time compared to the current
2. For each model the optimal single and multiplsituation. The third and fourth columns show the
fault test trees are calculated. same for the multiple-fault test trees.
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Simulation histogram Simulation histogram
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(a) Single-fault simulation (5.7 average) (b) Multiple-fault simulation (5.3 average)

Figure 6: Telephone example tree simulation histograms

The average test costs of the single-fault tree amgtimal solution, however it is recommended that
much higher then the test costs of the current dithis solution may only be used with test problems

uation. This results from the assumption that ontizat have no more then 5 faults on average presen

one fault exists, while the average number of faulise system. The multiple-fault algorithm takes more
present is large (larger then 10). The single-fadomputation effort, but the calculated solutions can

tin

tree is therefore only suitable when the averagéso be used with problems that have more then 5

number of faults is small, in the range of 1 througfaults present.
5. For a larger number of average faults, thfe can conclude that the presented method

multiple-fault algorithm performs better. The regyjtable for system test problems, as seen within
sulting test trees are even better then the test tra@\L. There are two main benefits for using this

S

that are currently used. method in the test and integration phase of systems.
First, the test cost can be reduced by calculating the
Tagi'ﬁ ?é_?:jﬁ Simu'atiol\r/‘“:ﬁ?lf'etiault optimal test sequence as is shown in this case. Even
Casell Sim. 9 Dela Sim. P Dela test sequences that are judged to be quite good by
A 1848 | +126% 689.0 | —1550, ©€Xperts, can be improved and cycle time can thefe-
B 60.8 | +84.4% || 259 | -21.5% fore bereduced.
C 1608 | +120% 504.2 | —30.9% Second, more insight in the test coverage of faults is

gained when creating system test models. For large

systems little knowledge exists about the relatig
Conclusions between faults and tests: if a test fails it is difficu
to indicate why. The presented system test mog

The presented method describes the test problenisi® summary of these relations. Furthermore, t
a system test model. A single-fault algorithm calc@vailable test set can be made more explicit. Ne
lates an optimal, with the least test costs, test tréests can be developed that cover faults which &
consisting of multiple test sequences, based on tA covered by the current test set. Also new tes
system test model. This algorithm has the assun§gn be developed that replace multiple other te
tion that at most one fault exists. Besides this dlut cover the same or even more faults.

gorithm, a multiple-fault algorithm is described that

creates a test tree with the assumption that multiple-

faults can exist. This algorithm needs to take fixing

and diagnosis of faults into account. The single-

fault algorithm needs few computation to give an
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Future work [3] M. Prins, Testing Industrial Embedded Sys-
tems - An Overviewn Proceedings of the 14th

In the sequel of this project we will continue de- Annual International Symposium of INCOSE

veloping methods to optimize test and integration 2004

strategies. Test and integration sequences depend

on each other. For example, the telephone consiés K. R. Pattipati, S. Deb, R. W. Dontamsetty and

of three modules. If the development of a certain A. Maitra, START: System Testability Analysis

module is delayed, tests using this module cannot and Research Tooln IEEE Aerosp. Electron.

be performed, while tests concerning the other two Syst. Mag.13-20, 1991

modules can be performed. Also, if the modules are o o ]

separated, parallel testing would be possible, Whi[:l'ﬂ K. R Pattlpatl.arlld M. G. AIexza_ndr|d|sAppI|-

probably reduces test time. In other words, the in- cation of heurl'stlc_search and information the-

tegration sequence of modules must be taken into °Y 10 Sequential diagnosis [EEE Trans. Syst.

account to determine the optimal test sequences. Or Man. Cybern.Volume 20: 872-887, 1990

even further: the integration sequence must be op-

timized regarding time, costs and/or quality. Oth .

aspects of the test and integration strategy relevg'zpntaCt Information

to our project are: scheduling tests over resources,

strategy decisions regarding cost, time and qualRP€! Boumen

and as already mentioned in this article, test and in-

tegration process simulations to determine the dffechnische Universiteit Eindhoven

ference between certain test and integration stra@partment of Mechanical Engineering
gies. P.O. Box 513, 5600 MB Eindhoven

The Netherlands

r.ooumen@tue.nl
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