
XOOTIC MAGAZINE February 2007 5

 Model Driven Architecture (MDA) and Component-Based
Software Development (CBSD)

Prof. Dr. Uwe Aßmann, Technische Universität Dresden,
uwe.assmann@tu-dresden.de

http://st.inf.tu-dresden.de
http://www.rewerse.net/i3

In embedded software development, designers of product lines have to take both
variations and extensions into account. Variations occur when modules are
implemented differently or on different underlying architectures. Extensions are
unplanned functional additions, resulting from product line evolution. This paper
explores some universal concepts to combine both requirements.

Two major approaches to achieve variability and extensibility in a product line are
model-driven architecture (MDA, by OMG) [MDA] and component-based software
engineering (CBSE). Within MDA, the re-usable skeletons of applications are
referred to as Platform-Independent Models (PIMs). A PIM captures the architecture
and the algorithmic issues that are independent of all platforms. It is translated
towards application models, specific for each execution platform and enriched by
platform-specific information (Platform-Specific Models, PSM). These PSMs are then
completed by hand towards the code of the products. The variability comes with the
PSMs: the more PSMs are produced, the more products can be sold. Component-
based software engineering (CBSE) serves the same goal. Here, frameworks and
components play the role of PIM and PSM: a framework is instantiated towards an
application by filling its hooks with components. However, although serving similar
goals, both approaches differ in the way in which the application skeletons are
instantiated: PIMs are translated towards applications; frameworks are linked,
composed, or connected with components. Is there a way to combine both
approaches? In other words, how to embed components into MDA, i.e., how to build,
design and use MDA components?

Luckily, the way is not far, because MDA has a background in commonality/variability
analysis. Taking a closer look, MDA is a design approach in which variability plays a
major role: to build a product line, a PIM is extended to several PSMs, variants
specific to a platform. Historically, the first approach to commonality/variability design
has been Parnas' information-hiding-based design [Parnas]. In this approach,
variabilities (design decisions that change) are separated into modules with fixed
interfaces. When design decisions change, the implementations of these modules
may change, without this having an impact on the interface. Clearly, this approach
facilitates evolution, is robust against changes and well suited for product lines, since
variants can be segregated into product-specific modules. However, Parnas' modular
design method is based on explicit composition interfaces, which do not play any role
in MDA.

This difference, however, can be explained, if planned variability in product lines is
conceptually distinguished from unforeseen extensibility in software evolution.
Clearly, a designer of a product line has knowledge where products vary, so that she
can decide where variation points are inserted into a core framework, and which
contracts guide their instantiation (commonality/variability thinking). On the other
hand, software evolution is triggered by a customer who changes his requirements,
and since such a change cannot be foreseen, the designer will not be able to plan
how the software has to be extended. Hence, to prepare evolution, a designer also

 February 2007 XOOTIC MAGAZINE

6

needs to reflect about stability/extension issues. At least, this requires that a designer
has to prepare for implicit extension points at which the skeletons can potentially be
extended (also called join points [AOSD] or implicit hooks [ISC]). And this explains
one difference between information-hiding based design and MDA: in Parnas'
method, frameworks are varied at explicit variation points (interfaces), whereas in
MDA, implicit extension points are employed.

These arguments lead to some interesting consequences. First of all, MDA is not
only about platform issues, but rather about systematic variability. It is possible to
base a PIM on templates, modules, and generic components, in short, all component
models that use explicit variation points. With these techniques, a PIM can be varied
towards products with systematic variations filling the explicit variation points – the
degree of re-use depends only on the abstraction of the employed component model.
Secondly, MDA can also be used for software evolution, if grey-box component
models are employed that support unforeseen extension through implicit extension
points. These new models, such as aspects [AOSD], hyperslices [HyperJ], role
models [Roles], or fragment components [ISC] have been introduced to allow for
merging and extension of components. With such a grey-box component model, a
PIM can be extended by new components that are integrated at implicit extension
points (join points). We also say that we weave an extension into a core model. With
this grey-box technology, a PIM can be evolved in unforeseen ways, and MDA can
be employed as an extension technology. Thus, in the future, there will be at least
two major categories of MDA: the parametric or generic MDA for variability, based on
black-box component models with explicit variation points, as well as the extensible
MDA for evolution, based on grey-box component models with implicit extension
points.

One problem remains: Who will build all the necessary tools, i.e. the template
expanders and extension weavers for the multitude of specification and programming
languages? Can we build template processors and weavers that work universally for
all languages? Or, in other words, how can we build universally generic and
universally extensible languages? Languages, that are suitable for universal
templates and aspects? In the last years, our group has found a way to build grey-
box component models for every language [REWERSE]. Given a metamodel of a
language L, a fragment component model can be systematically generated for L, so
that a re-use-oriented add-on language Reuse-L results, in which fragment
components can be composed. This implies that a base language need not take
precaution for genericity, extension, nor composition; instead, all necessary
constructs are derived in the re-use language add-on and come for free. Since this
principle is universal, grey-box component models for modeling and specification
languages come for free, including attractive composition techniques, such as
templates, semantic macros, views, role models, and aspects. And finally, using
these principles, universal template expanders and aspect weavers can be built for
all languages. Currently, our group works on such a generic toolset, reuseware,
which can be downloaded from Sourceforge [Reuseware].

At the moment, UML is the main language for modeling in MDA. Thus, a grey-box
UML component model seems to be indispensable for a fully generic and extensible
MDA. Luckily, with add-on reuse languages, this component model should come for
free, including UML template processors and weavers. Even, if in the future other
languages are employed in the MDA stack, the universal technology will continue to
work, so that on every stack level of the MDA re-use can be planned and unforeseen
extensions can be provided for. This paves the way for true MDA components, both
for commonality/variability and stability/extension scenarios.

XOOTIC MAGAZINE February 2007 7

References

[AOSD] The Aspect-Oriented System Development (AOSD) Community
http://www.aosd.net.
[HyperJ] Ossher, H. et. al. Multi-Dimensional Separation of Concerns. The
Hyperspace Approach. http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
[ISC] U. Aßmann. Invasive Software Composition. Springer, 2003.
[MDA] Model-Driven Architecture. OMG http://www.omg.org/mda
[Parnas] D. L. Parnas, On the Criteria to Be Used in Decomposing Systems into
Modules,
Communications of the ACM, 15 (12), pp 1053-1058, Dec. 1972
[Reuseware] J. Johannes, J. Henriksson. The Reuseware toolkit.
http://reuseware.sourceforge.net.
[REWERSE] Reasoning on the Web (REWERSE). EU Network of Excellence.
Working Group I3 „Composition and Typing“. http://www.rewerse.net/i3
[Roles] T. Reenskaug. Role Modeling. http://heim.ifi.uio.no/~trygver

