
"There's nothing so practical as a good theory"

66There's nothing so practical as a good theory"
interview with Dr. Mike Spivey

The statement above is the motto of Mike Spivey. He is known in the world of
formal specifications as 'Mr. Z', after the successfut specification technique Z,
for which he wrote the reference manual. ln November l ggs, Spivey spent a
few days in Eindhoven at the invitation of OOTI. He gave a lecture to-the OOTI
students and was the key note speaker at a symposium on formal specification
methods (FSMs).tThe editors o/xoorrc MAGAZTNE had a lunch interuiew with
Spivey.

D r. Mike Spivey is affiliated to the Comput-
ing Laboratory of Oxford University. In 1982 he
joined the Programming Research Group there as

a graduate student, attracted by Oxford's reputa-
tion for combining high standards in theoretical
research with direct application of research results
to industrial practice. In 1985 he was awmded a
doctorate.

Spivey has become known as the author of the
standard reference manual for the Z notation, a
specification technique developed at Oxford. The
Programming Research group has successfully ap-
plied Z in many collaboration projects with in-
dustrial partners, two of the most important ones
being with the IBM Laborarory in Hursley (UK)
on enhancing their CICS transaction processing
system, and with the Computer Research Labora-
tory of Tektronix Inc. in Portland, Oregon (USA),
where Spivey spent a sabbatical year. Recently
his research interests have moved from the foun-
dations of mathematically-based methods for soft-
ware specification and design to compiling high-
Ievel programming languages directly into hard-
ware.

Introduction problems

What problems have you encountered with the us-
age of FSMs in general qnd Z in particular in
commercial companies?
"The initial problem often is to persuade managers
that it is worth making a tentative commitment to
formal methods in order to find out how well they
will work. Once that commitment is made, I am
convinced that that technology will justify itself.
But it is senseless just to have a tiny project to

l For a report on the symposium "specifying; a formality"
see page 4 of this edition of XOOTIC Magazine.

try them out, because such a project is always in-
conclusive. So, if you want to introduce formal
methods into an organization, it is necessary to
make the decision to make a serious trial. And
that means a big commitment to time and money
and a commitment to educate the staff to use the
method. There is no other way of beginning. I
think that is always the biggest problem."

Many software houses think that it just takes too
much time to first write a formal specification of
a system. Even if the implementation can be done
faster with a good formal specification at hand,
the total time of writing both specffication and im-
plementation is expected to be longer than writing
an implementation only.
"Of course there are many circumstances where
certain techniques do not pay off. There are m:rny
aspects of information systems that cannot be im-
proved by formal methods. An example is: you
cannot use formal methods to ensue that the screen
'looks' right. That is something that will always
be to some extent experimental. You can use for-
mal methods in user interface design, but there are
some parts that are just not subject to this kind of
discipline. May be they should be. Perhaps we
need to know a lot more about psychology and vi-
sual methods. So there are circumstances where
formal methods won't give you very much."

Specifying old code

"But what we have found is surprising. Most pro-
ductive places where you use formal methods is
where you have a big piece of old code that you
have to work with. This is exactly the situation
with IBM, but I have seen this in other places too.
You have an old system, you must continue to use
it, but you no longer quite understand what it does.



t0 XOOTIC MAGAZINE April 1994

And what IBM does is to write specifications for
bits of the existing system that they are maintain-
ing, so that they have a good understanding of what
they have to keep working in the new version. So,
in fact the most productive place for these formal
methods has not been the 'blue-sky' projects where
you start with a blank sheet of paper."

But doesn't that imply that if you start a 'blue-
s@' project withwriting aformal specification that
rnanths or years later, if you have to update the
code and you forgot the exact function of it, the
specification is already there and you will save
then?
"You can use formal methods at different levels
of abstraction. IBM chose to use them at the mod-
ule level. They haven't asked the question (and
perhaps I should be disappointed for that) 'what is
transaction processing anyway, how could we de-
sign a better transaction processing system'. But
their business is not in doing that. Their business
is in keeping the customers who continue to pay
for CICS happy. Always in the commercial world
technical issues are subsidiarv to what the customer
wants."

Textronix experience

At Tektronix in the US you spent a sabbatical year.
You worked there on the fortnal specification of an
advanced oscilloscope. Tell us about that experi-
ence.
"We used formal methods to describe only some
parts of the software for that oscilloscope. The os-
cilloscope contains about 1 Mb of object code. So,
there is actually far more software in there than is
visible from the surface. In fact, an important part
of the software design is that you should give the
elecffonics engineer the illusion that he is using
an old-fashioned oscilloscope, unless he wants to
use something digital. We used formal methods
to describe parts of the user interface of this oscil-
loscope and also to describe the real-time operat-
ing system that is behind all the signal processing.
This is a machine with half a dozen processors
in it. We built a special-purpose real-time kernal
based on data flow, that manages the signal pro-
cessing."

"Really, the most memorable experience for me
is the meetings we used to have with the applica-
tion engineers. I worked with the system program-
mers, implementing the operating system, and the
application engineers were our users. They would

propose situations where they thought our design
was inadequate or they would ask us what would
happen if such and such a situation would occur.
And I found that, having written a formal specifi-
cation, you could answer these questions directly.
Even if you hadn't thought about a situation be-
fore, you could work oul from the understanding
the mathematics gave you what would have to hap-
pen."

Spivey during the symposium "specifying; a
formality?" (Photo: Eindhoven University of
Technology, Stafgroep Reproduffiie en Fo-
tografie)

Diagram-based FSMs

One csn distinguish two rwinstreams in the FSM
world: those based on mathematicalformulas, ancl
those based on state diagrams and schematics.
What is your standpoint in this discussion?
"Drawings are very useful. But, it is not possible



"There's nothing so practical as a good theory,'

to formulate mathematical arguments that manipu-
Iate drawings."
So, you are on the side of the text-based FSMs?
"Well, I am on everybody's side. But the
telling advantage for describing systems by for-
mulas rather than by pictures that have a formal
meaning is that formulas are subject to manipula-
tion. And this is a crucial thing for the effective-
ness of formal methods."

"The naive view is that what you should do is
prove that the code implements the specification.
This is an enormously expensive process and the
more we try to do it, the more convincing it be-
comes that it is bound to be expensive. But that is
not the only use for symbolic argument. A much
more important use is to derive from the specifi-
cation other statements about the system that you
hope to be true. E.g., after describing a banking
system, you could derive the statement that the
total amount of money should be constant. you
could try to prove that statement from the specifi-
cation. These things give you confidence that the
specification says what you hoped it would say. So
the specification becomes more than simply a state-
ment of what is required. It becomes a network of
s[atements that are connected. Those connections.
which can be made by mathematical argument, es-
tablish a sort of shared understanding among the
people who have to use the specification. And that
is something that mathematical formulas can do
for you that pictures cannot. What people do with
picture-based specifications, like StateMate, is run
them on examples. It gives you a nice on-screen
animation of what happens for that particular ex-
ample. But that's all you can do: you can play
with it."

But doesn't that help with the introduction of
FSMs? A lot of people do not know anything obout
math and do not want to know either. If they sense
thst FSMs have anything to do with mnthematics,
they will simply not use FSMs.
"I am not saying that diagrams should not be used.
I am only pointing out an advantage that mathemat-
ical formulas have that diagrams can never have.
So, there is a need to use both."
"One disadvantage of these animated specifica-
tions is that it is very easy to convince somebody
that the animation they see is right. However, this
is based on surface aspects. What you have to do
with people who are not able to read the formal
specification is try and conduct a dialogue with
them which is focussed on concems that a speci-

11

fication should properly address. An anirnation of
the system might be a useful vehicle to start such
a discussion, but it is not a vehicle that carries you
all the way to the goal."

Does Z has an animntion side?
"No. The choice was that we would allow the full
generality of mathematics in specifications. Good
Z specifications rely on that. What will happen
in a certain situation might be described in an in-
variant which is always true. And these invariants
cannot be automatically realized by an animation.
Of course you can write a prototype of the specifi-
cation, but we still regard that to be an implemen-
tation of the specification and not the specification
itself. That is quite important. If you try to write
your Z specification so that it could be automat-
ically realized, you immediately shut the door to
all sorts of ways of specifying that are very useful
and attractive. People work on animating Z spec-
ifications, but I do not have a great deal of liking
for that work, because the specifications that can
be animated are very restricted. And as soon as
you write a specification with the knowledge that
you want to animate it, you put yourself in a re-
stricted world where a lot of things that I think are
important are no longer available to you."

Executable specifications

How do you feel about execut^ble specification
languages?
"There is room for a wide variety of styles of
specification. There is sometimes a problem where
actually the best sort of specification would be a
program written in a very-high programming lan-
guage. I am thinking about, for example, sym-
bol manipulation, which is algorithmic in charac-
ter. It would be difficult ro give a specification for
some problems that is not executable. But there
are classes of problems where specifications are
vastly simplified by using a specification language
that is not executable. So, there is room for both."

Is ar executable specification not a tontradiction
in terms? Somewhere in an executabte specificu-
tion you have to take decisions that are not strictly
part of the specification, but hqve to be taken for
implementatio n r eo son s.
"Sure, that is the really big danger. It is offset
to some extent if you were to use a specification
language that is subject to mathematical reason-
ing, because then it is not necessary to put the im-
plementation considerations into the specification.



t2

There is a very attractive style of program devel-
opment that some of my colleagues in Oxford are
working on, and many people in The Netherlands
are working on this too, and that is using transfor-
mations on functional programs as a way of mov-
ing from a specification to an efficient design. For
problems that can easily be described as functional
programs, it is a very attractive thing, because you
can run the specification".

"Let's first say what the big attraction to exe-
cutable specifications is. You have specifications
that you can run, and for which the transformation
between specification and program can be done
with very simple reasoning. In particular the func-
tional programming community uses equations as

their way of expressing the transformations. So
you have a very easy logical system to work with
and it is easy to automate those transformations.
What is unattractive is what you just mentioned. If
you want to use a specification as a prototype, it's
efficiency does become important. If you want to
show a customer the specification running to give
some idea of what the system will be like, one
of the things that will hit him like a brick wall is
if it takes two minutes to do the simplest opera-
tion. The difference between two minutes and two
tenths of a second is not very many orders of mag-
nitude; that is the sort of efficiency improvement
one could get by chosing the right data structures.
So, chosing the wrong data structures in order to
get a working prototype is going to make the pro-
totype useless in that way."

"Specifying things by giving global invariants:
very attractive when that is a central facet of a sys-
tem you are describing. And that is something you
have to give up in order to make it executable, un-
Iess you restrict yourself to global invariants that
can be mechanically solved. And that is a very
great restriction. The reason why making things
executable makes global invariants unavailable to
you is that if you describe a change to one pafi of
a state, what the implementation would then have
to do is solve the invarizurt to find out what must
happen to the other part of the state. That is the
general problem of solving mathematical equations
and there are no general algorithms for doing that.
Only in a restricted domain is it possible and we
do not want to restrict the mathematical domain."

"What I am saying is that all these disciplines of
specifying are attractive. What one needs as a soft-
ware engineer is a familiarity with all of them, so

April 1994

that you can choose the appropriate one to what-
ever type of problem presents itself. Sony, if that
means that software engineers need more educa-
tion. But education often turns out the cheapesi
solution in the end."

Can a real. specffication be executable? Or, in
other words, isn't every executable specification
in fact an implementation, may be in a very-high-
I ev el p r o grammin g lan gua ge7
"I don't think there is a contradiction here. I think
that a high-level programming language, and even
a not-very-high-level programming language, can
be used as a specification language. You just have
to realize what the strengths and weaknesses are. I
have recently done work in which I wrote a specifi-
cation in Pascal with abstract data types. It worked
very well, because this development made a very
nice Pascal program. The structure of the pascal
program is elaborated if you reveal more and more
detail about the data implementation. So, for that
development it was a good choice, but for some-
thing more abstract that starts with something that
is not naturally a program, that would be a bad
choice. The short answer to your question is this:
You say that an executable specification language
is nothing but a very-high programming language.
I say that a programming language, any program-
ming language, is nothing but a specification lan-
guage that happens to be executable."

Future

Do you think there will be once a specification lan-
guqge qs widely used qs now some programming
languages, say C? Or do you think there wiil be
mn ny do main- sp e c ifi c s p e c ifi c atio n lan gua g e s ?
"The seventies were a time when people believed
that there would be a perfect programming lan-
guage. The Ada project for example was in some
respects motivated by that dream. It is a dream that
has turned out not to come true. Since the eighties
we now know that there is room for a wide vari-
ety of programming languages. Some of them we
might think as computer scientists have no right to
exist, but they do.
Likewise I think that an emphasis on specification
languages rather than on specifications themselves
is a distraction. That is really the point of view
with which we started theZ effort. We stmted this
against the background where a lot of people were
advocating the use of first-order algebraic equa-
tions as a specification language and people had
competing specification languages. What we tried

XOOTIC MAGAZINE



"There's nothing so practical as a good theory"

to do in Z was ignore all of that. We simply wanted
to use the ordinary structures of discrete mathemat-
ics as our specification vehicle. The history is that
we developed linguistic constructs to make that as
easy as possible. And those linguistic constructs
have in a sense become a specification language.
But that has never been the main focus of the re-
search in Z. And in fact, I would say that I am
much more interested in specification than I am in
specifi cation languages."

Where will be in ten years from now?
"I think the most pressing item is general program-
ming, the sort of area we want to address withZ.
Not urgent now is further development of specifi-
cation languages. What is also not pressing is the
development of tools that do mechanized reason-
ing, because there is no indication that I have seen

that such tools really help in industrial specification
problems. What I think is pressing is the develop-
ments in the use of data refinement techniques, to
understand the archetypical designs that are used
in programming. Of course data refinement tech-
niques are well known by programmers, but they
are nowhere well defined. I think that what we are
looking for now is a way of making it practical to
define the implementation of data sffuctures in a
mathematical way. Not by doing lots of lengthy
formal reasoning, but by being able to document
design decisions. Lots of the technology is already
known, but there is a gap between what is known
in theory and what tums out in practice. And that's
the gap that I think should and will be closed over
the next decade. There is more and more empha-
sis, in every engineering discipline, on the use of
documentation that allows an outside observer to
understand the whole design process. For exam-
ple for safety reasons, where you want your com-
pany to have a demonstration that nothing that was
foreseeable has been neglected. Or perhaps so that
the problem of maintaining and adapting designs is
made easier, because the original design team left
behind a record of what they did. Both of those are
really pressing problems and I think formal meth-
ods certainly can help with those. I would like to
see them begin to help in a very practical way. tr

lnteruiew : Frank van den Berk,
Erik Jan Marinissen.

Text : Erik Jan Marinissen.

Towards Ph.D. in Design

Continuation of page I
prevent the title 'Ph.D.' becoming a mere bauble.

Van Lint was disappointed to meet so much aca-
demic conservatism in his university. He pointed
out that EUT is a university of technology, not
of pure science. The principle idea, he added,
was simple. Eindhoven University hosts an ex-
cellent institution for designers, namely the IVO.
When it appears that an excellent student is work-
ing on a promising design projecr, then it should
be possible to offer the student the opportunity to
continue this project and after successful comple-
tion receive a Ph.D. The academic rules that apply
to this irmongst others state that someone has ac-
cess to a Ph.D. when he 'as proof of skill of inde-
pendent practice of science has written a thesis or
constructed an experimental design'. This clearly
comprises Van Lints initiative.

Someone from industry added that to him a tra-
ditional four years Ph.D. project generally is not
relevant. He agreed that one of the criteria for a
Ph.D. must be that the scientist or designer is in-
dependent. Currently, however, this independence
often grows to the level that the scientist does not
involve anyone in his research, and that the result-
ing thesis is of academic self-interest only. For a
university of technology it should also be valued
that someone can combine good research and good
design. The translation from theory to application
is an important aspect that is too often ignored in
Ph.D. theses.

Conclusion

In tentative provocation, it is my opinion that there
are quite some theses for which universities should
rightly be ashamed. On the orher hand, there
are quite some designs on which especially a uni-
versity of technology can rightly be very proud.
Somehow it must be possible to award these skill-
ful designers with a Ph.D. n

lr. Ad Peeters completed the post-masters pro-
gramme Software Technology in 1990. He is
working towards his Ph.D. thesis at the depart-
ment of Computing Science at Eindhoven lJni-
versity of Technology and paftlime affitiated to
Philips Research Laboratories in Eindhoven.
He is secretary of xoorrc.

l3


