20 XOOTIC MAGAZINE

April 1994

Formal Specification of ‘Traffic’

ir. Frank van den Berk

Will Formal Specification Methods bring heaven on earth? Frank van den Berk,
ex-OO0T/ and currently working for software house BSO/Origin, gives his reflec-
tions on the value and limitations of formal methods for specifying large software
systems. To demonstrate his points of view, he uses the metaphore of specify-

ing traffic rules.

I my first year at BSO/Origin I had several discus-
sions about Formal Specification Methods (FSMs)
with my colleagues. In these discussions there was
a large gap between ‘theory’ and ‘practice’ and
quite often the people involved did not really un-
derstand each others arguments.

In this article I will try to clarify both the ‘practical’
and the ‘theoretical’ arguments with a hypotheti-
cal, metaphorical case study that is familiar to us
all. Hopefully this case study will narrow the gap
a little. The case: specifying and implementing a
system called ‘Traffic’, which indeed corresponds
to the streets, cars, pedestrians, bicycles, etc., that
we all know.

The case

We assume that some engineers on some other
planet have never seen traffic and that their prime
minister has ordered them to build a system in
which various kinds of vehicles and pedestrians
should be able to travel from A to B in two di-
mensions and in a safe way. The system should
be ready and operational within six months.

In the specification phase of the Traffic project,
a few engineers are involved. They make some
rough drawings of a street plan, think that it will
work, and start to build some roads. When the first
vehicles are released, the results are disappointing.
The inhabitants of our planet are a little aggressive
by nature, drive much too fast, and cause a lot of
accidents.

The engineers are desperate and decide to phone
the Computing Science department of the local uni-
versity for help. The scientists tell the engineers
that they should use mathematics to specify their
Traffic system, and teach them to use Formal Spec-
ification Methods.

With these FSMs, formal rules are constructed that
specify the conditions under which a transforma-
tion of a vehicle from position X to position Y
can take place. After some experiments and a lot
of mathematical reasoning the engineers have con-
structed a system of which they can prove that
under no circumstances an accident will happen.

The engineers are very enthusiastic and immedi-
ately start to build Traffic, because they only have
four months left. Each person involved in Traffic
gets a copy of the formal specification of Traffic.
The rules of this specification are called *Traffic
Rules’.The results of their work are familiar to us
all. Just take a look outside your window.

Formal specifications are good

Did the use of formal traffic rules help in this case?
Of course it did. Everyone would agree that a for-
mal rule like: “‘A car on a cross road that comes
from the right has right of way’’ is much more
effective than an informal rule like: ‘“You should
avoid to bump into another car’’. Why? Simply
because a formal rule can only be interpreted in
one way.

This is also true for software engineering. A soft-
ware engineering project that is based on a formal
specification will be much more efficient than one
based on an informal specification. In areas like
Software Quality the importance of formal rules is
already fully accepted and understood. Informal
software quality attributes, i.e., attributes that can
not be quantified nor measured, are regarded use-
less in this field.

In most software engineering projects today, how-
ever, specifications and designs are still informal.
Why do the people involved manage to build soft-



Formal Specification of ‘Traffic’

ware from these specifications and designs that ac-
tually works? To answer this question, we return
to our case. Let’s suppose that the traffic system
is built without formal traffic rules. How can ac-
cidents be prevented in this case?

The obvious answer is that we should only use
drivers that are skilled, experienced, and feel re-
sponsible. Skilled and experienced drivers know
the way and are familiar with their car and with
all dangerous locations along the road. They will
do everything they can to prevent accidents from
happening. In their long driving history they may
even have developed some sort of code, such as:
““When I blink my head lights you may go first™’.
New drivers should be slowly introduced in such
a traffic system, and should be coached by an ex-
perienced driver.

In software houses we see the same kind of sit-
uation. Experience, both with soft- and hardware
and in the application area of the client, is a very
important asset. Getting the ‘right men on the
right place’ is crucial for the failure or success
of a software engineering project. New employees
are slowly introduced in this ‘software engineering
world’.

Relying on experience, however, has its limits. In
very complex and crowded traffic systems expe-
rience alone will not be sufficient. Formal traf-
fic rules are needed to prevent accidents or situ-
ations where everyone is waiting for each other.
The same is true for software systems. Experience
alone is not sufficient when faced with a com-
plex system in which many people, information
and processes are involved. That is why future
use of formal methods is inevitable.

Formal specifications are bad

Did the use of formal rules result in a perfect traffic
system? The answer, of course, is ‘no’. We notice
every day that specifying formal traffic rules only
has a limited effect on safety. There are various
reasons for this, reasons that are obvious for most
of us because we all participate in traffic each day.

In the specification, a lot of relevant aspects of
traffic are left out because the engineers simply did
not anticipate these aspects beforehand and thought
that their abstractions were justifiable. A nice ex-
ample in real traffic is the fact that there is a formal
rule for the maximum speed of a car, but there is

21

no formal rule for the minimum distance between
two cars. The designers of the traffic rules sim-
ply did not foresee the density of traffic today. As
a consequence, all cars are equipped with an in-
strument that measures speed but hardly any car
is equipped with an instrument that measures dis-
tance. Moreover, the police very intensively check
your speed, but hardly ever checks your distance.
And still a lot of head-to-tail collisions are caused
by a combination of speed and distance and not by
speed alone.

When specifying software engineering systems, the
same kind of mistakes are made. Abstraction from
CPU speed and available resources, for example,
may be elegant and useful in the specification; it
can be very annoying in the implementation.

In the discussion above we have seen that ‘human
factors’ like experience play an important role in
the success of a software engineering project. Un-
fortunately human factors can also play an impor-
tant role in the failure of a software engineering
project. We also see this in everyday traffic. Mak-
ing formal traffic rules, for example, does not mean
that everyone knows or understands those rules or
that no-one occasionally forgets a rule or makes a
mistake. Sometimes it is even necessary to ‘bend
the rules’ a little, to prevent an accident from hap-
pening. Luckily, violating the rules in traffic only
has local effects...

A very important factor in traffic accidents is time-
pressure. Drivers that are under pressure will drive
too fast, make mistakes and violate traffic rules.
This, of course, is also the case in software en-
gineering projects. Making formal rules can be
rather time consuming. Take, for instance, a rule
like: “‘Traffic that comes from the right on a cross-
road has right of way’’. This rule illustrates the
difficulty in formulating formal rules. For what
exactly is traffic? And what exactly is a cross-
road? And are there any exceptions to this rule?
Making informal rules is much easier.

Conclusion

I personally think that a lot of arguments in the dis-
cussions about Formal Specification Methods also
appear in the Traffic case. In this case we can see
that both sides are right.

Yes, formal traffic rules are not the ultimate so-
lution to traffic accidents, and yes, without formal



22 XOOTIC MAGAZINE

traffic rules much more accidents would happen.

For software systems, using more formal tech-
niques will be inevitable to be able to control the
growing complexity of these systems. Just like
in traffic, formal rules are much more effective,
but harder to make, than informal ones. But even
with formal techniques, systems will still crash and
bugs will still need to be fixed. We can see this
everyday we are on the road... a

Ir. Frank van den Berk completed the post-
masters programme Software Technology in
1993 and is currently working for BSO/Origin
in Eindhoven. He is a member of xooTic and
co-editor of X00TIC MAGAZINE.

April 1994

Agenda 1994

X-Day

This annual event for all Xoo0TIc members com-
bines the Annual Members Meeting and the elec-
tion of new chairpersons with a social get-together.
A bus will drive participants up and down from
Eindhoven. Afterwards a Chinese-Indonesian buf-
fet in Arnhem will be offered.

Date: Saturday April 16th, 1994, 11.00 - 21.00 h.

Place: National Park ‘De Hoge Veluwe’.

Organization: XOOTIC.

Celebration Dies Natalis EUT

Eindhoven University celebrates its 38th Dies Na-
talis. On the occasion of this celebration, prof.dr.
Martin Rem will give a speech with the title
‘Energy-efficient computing’.

Date: Friday April 22th, 1994, 16.00 h.

Place: Eindhoven University of Technology, Auditorium.
Organization: EUT.

Trip to Berlin

It starts to become a tradition that XxooTIic orga-
nizes every year a long weekend to a European
city. After successful trips to Paris and Prague, it
was decided that this year’s trip will go to Berlin.
Date: May 12th till May 16th, 1994.

Place: Berlin, Germany.

Organization: XOOTIC.

VIE-PAO Seminar on Connecting Databases
Dr. A T.M.(Ad) Aerts (EUT) will address the prob-
lem of how to connect various local databases.
This problem arises for example after the merger
of two companies. The speaker will discuss recent
developments in the field of distributed, federal-
ized, and multi-database systems. These systems
will be evaluated on three criteria: distribution,
heterogenity, and autonomy.

Maximal 24 participants, of which maximal 8 VIE
members.

Date: Wednesday May 18th, 1994, 16.00 - 20.00 h.

Place: Aristo Zalencentrum, Utrecht.

Organization: PAO Informatica together with VIE.

Costs: NLG 150,=, VIE members NLG 75,= (includes dinner).

IVO graduation ceremony

IVO students (including OOTIs) hope to receive
their graduation certificate on this day. Following
on the ceremony, a drink will be held.

Date: Thursday September 15th, 1994.

Place: Eindhoven University of Technology, Auditorium.
Organization: IVO.



