Research and Application of Formal Methods

Research and Application of Formal Methods

dr.ir. Loe M.G. Feijs

Dr.ir. Loe Feijs of Philips Research Laboratories has been working for many
years in the area of formal specification methods. He is part of the team that
developed coLp, a wide-spectrum algebraic specification language. In this arti-
cle he expresses his views on the pro’s and con’s of formal specification methods
and his experience with the practical application of those methods within Philips’

Product Divisions.
What are formal methods?

C omputing science is concerned with informa-
tion processing systems, with designing these, and
with the theories and principles that describe such
systems. In computing science, when viewed as
an engineering discipline, the issue is to apply the
theory and the fundamental insights to make the
design process of information processing systems
happen in an orderly way.

The term formal methods refers to a number of lan-
guages and calculi, but at the same time it refers to
a way of designing in which these languages and
calculi play a role. The term ‘formal’ means ‘ac-
cording to the form’, and is usually encountered in
the context of legal and administrative matters. In
such matters the term often has a negative inter-
pretation: one could think of trials where someone
guilty goes free because of procedural mistakes
by an officer, or where loopholes can be found
to circumvent the law. But also the advantages
of the formal framework for legal and adminis-
trative matters are clear: written laws, in precise
language, make it possible to avoid arbitrariness
and too much subjectivity. It is not the case that
all actions either before or afterwards are checked
agains all laws and rules. Precisely the fact that in
principle one could go to the bottom in case of a
conflict or a breach of the law, makes that in most
cases the conflict or breach of law does not occur
in the first place.

Returning to the subject of computing science, con-
sider the following header which could be part of
the description of a software package containing
arithmetical operations, written in the program-
ming language C. Suppose that the designer of the
division function has a clear mental image of the
operation of DIVIDE and therefore does not add

any further explanation, except for maybe a com-
ment telling that it performs ‘division’.

#define Nat int
Nat z,v,x;
void DIVIDE () ;

In the meantime other designers could start using
this function. One designer feels that the first two
variables z en y, provide the input for DIVIDE
and that the input variables should not be changed.
He will call the division function with saving =z
and v first; he does not know that these are also
intended for the storage of intermediate results of
the division. Yet another designer thinks that %, v,
en z are the first input, the second input and the
result, respectively. Moreover he considers Nat as
a denotation of the natural numbers 0, 1, 2 etc. and
therefore the division should work too if v equals
zero. In his opinion, z should get the value zero
in that case.

It will be clear that in the example sketched above
the designers work according to an informal ap-
proach, i.e. not formal. Of course everybody will
say that the header of DIVIDE was stupid in the
first place, and moreover that with a little bit of
communication amongst the designers it is easy to
eliminate all misinterpretations. It also looks rea-
sonable to assume that problems concerning the
division function will be found when the larger
system encompassing it will be tested. Some care
is in order however: experience learns that when
the systems grow larger and more complex, it turns
out harder to have them well-tested.

Specification is important, but is quite non-trivial.
It requires some experience with some techniques
and it should be practiced. Special languages
have been developed, such as vbM, z, coLD, and
LARCH. These languages have powerful expres-



16 X0OOTIC MAGAZINE

sion means, which mostly have been taken from
the field of mathematical logic. Using these, or
other specification techniques, all unintended am-
biguities can be eliminated from the specifica-
tion of DIVIDE. Moreover such languages offer
support to structure both the specifications them-
selves and the collection of domain-specific con-
cepts (application-domain modeling). Just as is the
case for a modular or an object-oriented program-
ming language there are structuring concepts in the
language. This seems superfluous when dealing
with small examples, but it is essential for the large
systems that happen to be made in practice. This
style of specification is known as ‘formal specifi-
cation’. Instead of relying on intuition and implicit
assumptions, agreements are made, and design de-
cisions are taken on the basis of explicit descrip-
tions of systems and subsystems.

It is also possible to go one or two steps further by
not only approaching the specifications formally,
but also the reasonings on the basis of which cor-
rect programs are distinguished from wrong pro-
grams. A formal system of reasoning is often
called a ‘calculus’. Using this, one can give cor-
rectness proofs for programs. This is a powerful
technique, for as Prof. Dijkstra has pointed out al-
ready years ago: testing can demonstrate the pres-
ence of an error, but not its absence. The summum
of formal verification is to use proofs which are
detailed enough to have a computer (as a machine
formal, of course) check for the correctness of the
proof in a mathematical sense.

Before concluding that this ultimate option is to be
chosen always, it is necessary to mention that with
present day techniques and tools the construction
of these machine-readable proofs is an extremely
laborious task. Formal specifications however are
already usable in an efficient way for designing
real systems. With respect to applicability, the us-
age of calculi is in an intermediate position. In
the remainder of this article the focus is on formal
specification techniques.

Considerations in favor of formal meth-
ods

It is hard to understand that in computing science
one cannot do what seems to succeed much bet-
ter in other engineering disciplines: making a dis-
tinction between specification and implementation.
Why do we accept a programmer who is not able
to explain very precisely what his or her program

April 1994

will do, but instead starts programming on the ba-
sis of incomplete and ambiguous specifications?
Of course this would be understandable if informa-
tion processing systems would be fast and cheap to
build. Although this is certainly the case for small
tools for personal use, this does not hold for sys-
tems developed by a group of people over a longer
period of time. In many companies the invested
capital in software amounts to tens or hundreds of
millions guilders -- so this is hardly to be called
‘cheap’. When developing electrical, mechanical
and electronic systems where a programmed com-
puter is an essential part of the system (‘embedded
software’), the development of the programs often
takes longer than the development of the rest of
the system. If delivery time or timely introduction
in the market are important, then program devel-
opment is not fast any more -- at least, not fast
enough.

Of course there are business areas where good
work is done without formal methods; for exam-
ple the movie-business, where the subjective el-
ement is very essential. But in computing sci-
ence we are dealing with computers, and these are
formal machines par excellence. If we think of
system development by means of algorithmic and
logic programming languages, then the develop-
ment must always lead to a program which pre-
scribes the steps to be followed by the computer
in a very precise way. In this context, ambigu-
ities, misunderstandings and implicit assumptions
can -- enforcing each other -- easily lead to unun-
derstandable system behavior, bugs which are hard
to eliminate, and of course as a consequence delay
in the development projects.

Although good specification is not exactly easy,
it does not require very rare capabilities. It can
be learned. Some knowledge of logic is indispens-
able and also the usage of set theory is needed. The
well-known Boolean algebra, also called proposi-
tion logic, is useful but not sufficient. Many de-
velopers of information processing systems have
there head filled with facts and tricks concerning
the commands of the operating system they use,
names and parameter lists of the many functions
they and their colleagues have made themselves,
etc. Although remembering all this information
is a difficult task, the value of all this knowledge
is very local and very temporarily. Formal spec-
ification techniques however do not require much
factual knowledge, but they require experience in
the use of logic, in structuring facts and tricks to



Research and Application of Formal Methods

orderly concepts, and most importantly, experience
in writing these things down. It is clear that the in-
ability to write down component specifications and
system specifications is an obstacle for designing
fast and efficiently. This pleads in favor of more
education and training with formal methods than
is usual at present.

Considerations against formal methods

One frequently mentioned objection against for-
mal methods is that they are difficult and that they
are too mathematical. There is much to be said
about this. First of all that there is a kernel of
truth in it. The usage of compact formula notation
instead of natural language certainly is an essen-
tial ingredient of formal methods, and indeed the
powerful expressive means call most for experi-
ence and for abstraction. It cannot be denied that
the propagators of formal specification techniques
themselves, sometimes caught by enthusiasm about
recently gained insights, pour out more mathemat-
ics over their audience than needed. Finally, the
specification languages of today are not perfect.
They could not be, in view of the fact that the
entire field of computing science is still much in
development, and also in view of the fact that the
effort which has been invested in the development
of formal methods is small when compared with
the development of for example programming lan-
guages (which are not perfect either).

Experience learns that writing a good specifica-
tion takes time, sometimes even much time. The
amount of time needed is of the same order of
magnitude as the amount of time needed to make
the corresponding program (or the time to test it).
In any case, this time must be paid and planned
and this calls for a rational cost-benefit analysis to
decide whether or not to employ formal specifica-
tion (or specification in general).

There are paradoxical dilemmas when deciding
upon the right moment to start specifying a com-
ponent or a system. When starting with a spec-
ification first, it is difficult in the early and ab-
stract phase to have a good understanding of the
efficiency problems with respect to the usage of
scarce resources which are to be expected (scarce
resources include execution time, memory usage,
etc.). Nevertheless, efficiency is of central impor-
tance: how easy would many systems be to make
if efficiency didn’t count. When the specification

17

is postponed until agfter the implementation, it re-
quires an enormous discipline to make the spec-
ification yet. This is not an easy dilemma, but
maybe the solution lies in the education of people
who have a lot of experience in both specifying
and implementing and who are able to see both
expects in their mutual dependency.

Some care is in order with respect to the idea that
everything should be specified formally. A team
can get caught in a spiral of first making system
specifications, component specifications, striving
for a high degree of perfection with respect to form
and structure of those specifications, factoring out
common parts, etc. and where the usage of cor-
rectness proofs is an obvious next step. Of course
these are honorable initiatives, but if it is forgot-
ten (in each specific situation) to make a rational
cost-benefit analysis, it is not strange when things
go wrong from a business point of view.

Experiences in Philips

The experiences, gathered in the course of 10 years
at Philips have turned the author into a convinced
proponent of the use of formal specification tech-
niques.

At Philips Research Laboratories in Eindhoven
work on formal specification techniques has been
done since the early 1980s. In the early years,
work was done on language definition and funda-
mentals. In this period there was a fruitful coop-
eration with university specialists in mathematical
logic, in particular with G. Renardel de Lavalette
en C. Koymans. In this period coLD was devel-
oped, a kind of answer upon the vbM of Bjoerner
and Jones, and broader with respect to its scope
than the then existing algebraic specification lan-
guages. The chief designer of coLD is Dr. ir. Hans
Jonkers of Philips Research.

At the end of the 1980 the research has taken a new
direction, shifting focus from fundamentals to tools
and applications. We have had the opportunity to
experiment with the application of formal speci-
fication techniques in various product divisions of
Philips, including Medical Systems, Data Systems,
Image Tubes (calculations for shadow masks), In-
dustrial Electronics (off-line scheduling and con-
trol of component-placement machines) and Con-
sumer Electronics.

At present parts of TV sets are formally specified



18 XOOTIC MAGAZINE

according to a method called SPRINT. In particular
these are the parts which are suitable candidates for
reuse in different variants of the TV sets. For these
parts, called audio/video components it is worth-
while to make significant investments in their spec-
ification. These components are addressed twice:
they are explained formally, using logic, precon-
ditions, and postconditions; they are implemented
in a normal programming language. Other parts
of the system are developed by means of coLD
and a special compiler which generates code from
the specification. Of course not all the power-
ful expressions from a specification language can
be translated efficiently, but because of suitably
(with respect to efficiency) chosen restrictions, it
was even possible to meet high efficiency require-
ments. The executable subset of coLD is called
PROTOCOLD.

In consumer electronics, products must be sold in
large numbers and for attractive prices. An im-
portant role is played by efficiency requirements.
During the development attention must be paid to
the costs of the ROM, the RAM, and the proces-
sor. This is not a standard application of formal
methods, trying to do everything as formal as pos-
sible; where the investment pays off, careful and
formal specification is done, but where flexibil-
ity and costs are more important, a compromise is
chosen, sacrificing abstractness of specification in
favor of fast experimentation and efficiency.

April 1994

I expect that in the future formal specification
techniques will find increasingly more applica-
tions. But I also expect that these techniques will
become more integrated into programming lan-
guages, graphical formalisms, and tools. I expect
that after some time one does not talk anymore
about formal methods, but that they will just be
used. Moreover, many of the information pro-
cessing systems which are being developed now
are open systems, fitting into standardized user-
interface frameworks (window systems), operating
in communication networks (mobile phone, pag-
ing, e-mail, various new services) and exploiting
multimedia technology. This will give rise to com-
plex and long-living interfaces and standards which
must be well-specified. m]

Dr.ir. Loe M.G. Feijs works at the depart-
ment Information and Software Technology of
Philips Research Laboratories in Eindhoven.

Short News

Matrix

Eindhoven University of Technology (EUT)
started the publication of a new three-monthly
magazine called ‘Matrix’. It is intended for all
the relations of the university. Target groups are
people in business and industry, politicians, and
EUT graduates. It contains information about re-
search and educational programs which take place
at the university.

Currently ‘Matrix’ is sent to all those graduates
which are member of a graduates association (such
as xooTic). Everyone else who wishes to re-
ceive this magazine, can contact the editors: Lucy
Holl, EUT, In- and External Relations, tel. +31 40
473330.

New IVO promotion video

The Institute for Ongoing Education (IVO) has
made a second promotion video for the post-
masters programmes in technological design of
EUT. Whereas the first video was targeted at new
students, this one is targeted at companies who
should hire graduates. The title of the film is
““Technologic Designers - People that will make
it

Two graduates play a role in this video: Coen van
Beek, graduate of the course Computer-aided De-
sign and Manufacture of Discrete Products, and
Erik Jan Marinissen, graduate of OQOTI.

The premiere of the video will take place during
the IVO Information Day at April 8th. The video
will be shown on many occasions and locations
later on.



