Software Ar chitecture

up-market television products.

The architectureof a systemis oftendefinedasthe
setof subsystemand their mutual relations We
think thatthis definitionis fartoo limited:

e |tistoo ‘specifi¢ it concentratesnfactsalone
(subsystemsinterfaces)and not on, e.g., con-
cepts.

e It istoo ‘completé afull definitionof all sub-
systemsand all interfacesis beyond what a
single architector small architectureteamcan
achieve, especiallyfor a productfamily.

e It istoo ‘highlevel: it concentratesn subsys-
temsalone,while in practicethe choiceof what
someconsiderto be low-level implementation
details(algorithms datastructurescommunica-

e It is too ‘technical: it doesnot addressis-
suessuchasdevelopmentervironment,config-
uration managementprocess,organization,et
cetera.

We definearchitecturebluntly aseverythinga sin-
gle personor small group of personsneed(s)o do
to let a large teamdevelop a productor family of
productssuccessfullysee[1] for alarge setof def-
initions of architecture).Our definitionis certainly

tion mechanisms}anbecritical for thesuccess.

A ComposableSoftware Ar chitecture for
Consumer Electronics Products

RobvanOmmering

A software architecture is always designed to serve one or more goals. Our
goal is to produce a large variety of consumer electronics products in short de-
velopment times—a necessity to stay alive as a company in these markets! We
achieve this by building software components that can be combined in flexible
ways to create products. This requires a component technology tuned to the
domain, an overall product family design, attention for implementation details,
and concern for issues that are traditionally not the domain of a software archi-
tect. The architecture as described in this paper is currently being applied in

too wide: it alsoincludesfetching pizza on those
long eveningsjust beforea deadline! Still, it is a
pragmaticdefinition,andwe will illustrateit in this
paper—without claimingany completeness—bne-
capitulatingsomeof the stepswe took to definea
softwarearchitecturdor afamily of consumeelec-
tronicsproducts.

Figurel: Diversity of products.

We do soin five sections.After a summaryof our
requirments we introducesomeof our concepts
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(our ‘componenttechnology’). We then describe
product family designissues: the differencesbe-
tweenglobal and regional architecture. We delve
into the depthsof partsof our design,anddiscuss
some‘non-tetinical issues. We end with some
concludingremarks.

Requirements

Themainrequiremenfor our softwarearchitecture
is to enablethe developmentof a diverse family of
productswith for eachproductashortdevelopment
timeanda high quality.

Diversity, Lead Time and Quality

Our productfamily includestelevisionswith varia-
tion in price, (world) region, signal standards,
image, sound and data features, output de-
vice (tube, flat, projection), and with a con-
tinuous evolution of the underlying hardware
technology(seeFigure 1). Soon, other prod-
ucts will be included as well, such as video
recorders(VCR), digital versatile disc play-
ersandrecordergdDVD), compactdisc players
(CD) andcombinationsof theseproducts(e.g.,
TV-VCR). Notehow diversethefamily is; some
productshave hardlyanythingin common(e.g.,
aTV andCD player).

Thesize of the software embedded in con-
sumerproductsgrows exponentially following
Moore’s law closely Currentup-marlet televi-
sionsalreadyhave two Megabytesof ROM and
two Megabytesof RAM. Softwaredevelopment
time grows accordingly;it now takes over one
hundredpeoplemore than two yearsto write
the softwarefor anew generatiorof televisions.
This is no longer acceptablesincethe market
changesso fastthat new productsmustbe out
in monthsratherthanyears.

Quality is not generallyunderstoodto be a crit-
ical issuefor consumermroducts,at least not
comparedto medical systemsor rockets sent
to Mars. Still, not one customerwill be
pleasedwith atelevision producinga Fatal Er-
ror: PleaseRebootyour Systemwhile thesame
customeipaysextrafor bugfixes(usuallycalled
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new versiong of theoperatingsystemof hisPC.
Add to this that servicein the field is cumber
somefor consumeproductsandthaterrorsare
likely to be found due to the high quantity of
productsbeingsold.

Componentsand Ar chitecture

Diversity increaseslead-timereduction,and qual-
ity improvementarein principleconflictingrequire-
ments. We feel that they canonly be satisfiedto-
getherby combiningtwo approaches:

e Theuseandreuseof componentérom which a
wide rangeof productscanbe constructedbot-
tomup).

e The definition of a family architectue that de-
finesthe contet for the componentgo be de-
veloped(top down).

Theseapproachesustbe balancedcarefully Too
muchattentionon the overall architecturemay pro-
vide a rigid skeleton with too little flexibility to
build a diversity of products.Too muchattentionon
componentgnay provide a setof building blocks
that do not fit easily togetherto form a product.
We'll give someexamples.

The MicrosoftFoundationClassesMFC, [2]) offer

aframavork thatdefinesa skeletonapplicationsup-

portingthe editing of singleor multiple documents
with single or multiple views and with file and

printing support. A specificapplicationis created
mainly throughinheritance. The disadwantageof

MFC is thatit is very difficult—if notimpossible—
to changethe overall structureof the application.
Try building an Internetbrowser (with Back and

Forwardbuttons),with MFC!

Microsoft's Visual Basic(VB, [3]) offersacompo-
nentapproachwith which a large variety of inter

active applicationscan be made. Given powerful

reusable(and relatively context independent)Ac-

tiveX control componentssimple applicationscan
be quickly built. For more complicatedapplica-
tions,anarchitecturestill hasto bedefined.

In electronicdesign,the componentgtransistors,
corecells,chips,printedcircuit boards)aresurpris-
ingly context independenhencereusable Thereis

aphysicalreasorfor this: all dependenciesustbe



routedthroughwiresandconnectorsWith little ar
chitecturaleffort, familiesof chipscanbe designed
with which a large variety of productscanbe cre-
ated.

Choosingan Approach

Microsoft's ComponeniObjectModel (COM, [4])

is—of all existing componentmodels—thebest
candidatefor our purposes.It offers languagen-

dependenceépcationindependenceand mostim-

portantly variouswaysof handlingevolution.

Evolution is very importantto us. We want to
be ableto createnew versionsof componentghat
still work in old applications,while newv applica-
tions cantake full adwantageof the new function-
ality. Moreover, new applicationsshouldnot break
down if—for somereason—thg arecombinedwith

old componentsLocationindependengé.e.,trans-
pareng for calling functionsin libraries, otherex-
ecutablespr at other processorsis becomingin-
creasinglyimportantfor us, as our newest prod-
uctshave morethanoneembeddednicrocontroller
Languaye independencéinary compatibility) will

becomeimportantin the near future, when third
party softwareis to beincludedin our products.

Unfortunately COM is still a little too expensve
for us. Binary compatibility resultsin extra code
sizeandperformancdoss,requiringmorepowerful
controllersand more memory andin a consumer
businessthis extra ‘bill of material’ cannotbe af-
forded. Fortunately we live in a closedworld. All
developersarepartof onecompary, andwe canex-
ertsomecontroloverthem. This allows usto create
acomponenimodelthat'hasthespirit of COM’, yet
usesamuchmoreefficientimplementationtechnol-
ogy. Thismodelis calledKoalaandis discussedn
the next sections(for a more detaileddescription,
see[6]). Evolutionto COM in duetime wasan ex-
plicit designgoalfor this model.

The ComponentTechnology

We shallnow provide a brief overview of our com-
ponentmodel.

Interfaces

Traditionally a componens interfaceis described
in the componentpecificationdocument. But we

wantdifferent componentsn our family to provide

the sameinterface. Therewill be multiple tuners
requiring different software drivers, and we want
themto have the sameinterface. As anotherexam-

ple, we have differentmicro controllersanddiffer-

ent real time kernelson which we want the same
API. So,we definesuchinterfacesndependentlypf

componentsasfirst classcitizens

Somecomponentprovide morefunctionality than
others. Also, a new version of a componentmay
provide morefunctionalitythantheold version.We
thereforedo not defineaninterface‘in onego’, but
ratherusethe COM notion of interfaces,as small
setsof semanticallyrelatedfunctions This allows
usto modelvariationin functionalitybetweercom-
ponentdn termsof absencer presencef suchin-
terfacesratherthanasimplementatiomotesfor the
components.

A secondadwantageof usingmary smallinterfaces
insteadof onelarge API is that evolution of inter-
facedefinitionscanbemanagedbetter No interface
definition is perfect,so changesare very likely to
occurin practice.Changingan API, while thereare
alreadyimplementationsroundthateitherprovide
or requireit, is very confusing(as Jaza program-
merswill have experiencedwhile usingthe AWT
windowing classes). Our interface definitionsare
thereforeimmutable(asin COM). We'd ratherde-
fine naw interfaces(with a new name)thanchange
existing ones.

A third adwantageof using small interfacesis that
we canalsobe very explicit on whata component
requiresof its ervironment. Making requiresinter-
facesexplicit allows third party binding (aswill be
explainedbelow), andit alsomakesthearchitecture
very visible. Advantageof the latteris that archi-
tectscanspotundesireccouplingsbetweercompo-
nentsataninstanceandthushave anearlywarning
for spaghettcodearising.
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Components

We quoteSzyperski5]: A softwae componenis a
unit of compositionwith contractually specifiedn-
terfacesand explicit context dependenciesnly. A

morethanjust clicking themtogether In fact, the
wholeraisond’étre of Visual Basicis its ability to
glue components—VBcannoteven bind directly!
In Koalawe have both options,eitherglue directly,
or inserta gluemodule(thetwo ‘documentshapes’

softwae componentanbedeployedndependently j, Figure2).

andis subjectto compositiorby third parties.

A Koalacomponen{seeFigure 2) offers function-
ality througha setof providesinterfaces(dravn as
squareswith embeddedrianglespointing into the
component). A Koala componentdependson its
environmentthroughanexplicitly definedsetof re-
quiresinterfaceqdravn assquaresvith ‘out-going’
triangles). Theseinterfacesmustbe boundto pro-
vides interfacesof other componentdy the third
party thatperformsthe composition.

Figure2: A Koalacomponent.

Figure2 alsoshavsthatourcomponentnodelis re-
cursive Thethird party thatinstantiatesandbinds
componentganagainbe a Koalacomponent!lt is
importantto notethatthe definitionsof the smaller
componentsrereusablebut theirinstancesareen-
capsulatedn the outer component. In COM, the
latteris calledaggregation or deleyation whereag-
gregation meansdirectly passinginterface point-
ersfrom inner componentssif they belongto the
outer components,and delggation involves some
glue codeat the outerlevel to call the inner com-
ponents.

Glue codeis indeedimportant,as we believe that
the compositionof componentsusually involves
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Requiresinterfacesin COM...

COM hasthreewaysto letacomponentdependon
theervironment':

e implicitly, e.g.,by callingthe Win32 API
¢ by usingCoCreatelnstance
¢ by offering connectiorpoints

Thefirst optionis usedregularlyin COM, makingit
necessaryo have thefull Win32 platformavailable
in eachproduct.For a PC,thisis by definitiontrue.
For consumeproductswe neednmuchmorecontrol
on whatindividual componentsequirein orderto
minimize,e.g.,thecodesize.

CoCratelnstancdand relatedfunctions)instanti-
ates(sub)componentsn COM. It is regularly used
to accesservicemneededy acomponentbut since
the componentactually instantiatesthe service, it
eithergetsits own privateinstanceof the service or
it getsaproxyinstancdor asingletonclass(sharing
theservicewith all otherclients).Bothcasesrenot
sufiicientto dealwith, e.g.,a TV with two tuners,if
two clientsmustbe boundto onetunerandanother
clientto the othertuner

The third option is in our view the only ‘explicit
contt dependencsubjectto compositiorby third
parties’in COM. Unfortunately it is only usedin
COM for notifications. We pleadto make much
more useof explicit requiresinterfaces,andto let
the binding of suchinterfacesbe doneby encom-
passingcomponents.

Describing Componentsand Interfaces

We defineinterfacesin aninterfacedescriptionian-
guage(IDL). We describebasiccomponentsn a
componentdescriptionlanguagg(CDL), wherewe
list all providesandrequiresinterfacesof the com-
ponent. We describecompoundcomponentsn the
sameCDL, by addingthelist of subcomponentzsnd



the list of connectionghardware engineerswvould
call thesethe part list andthenetlist, respectiely).
A small tool (also called Koala) generatesheader
files from thesedescriptionghatperformtheactual
connections.

We have a graphicalrepresentatioior component boundinto subsystemsso thereis also subsystem

descriptiongseeFigure 2), shaving all interfaces,
subcomponentsind connectionsof a component.
Theseturn out to be valuabledesigndiagrams,as
they shawv the actual designof a componentat the

level of individual interfacesjnsteadof functionsor

componentgseeFigure3 for areal-life example).

Late Binding

An importantissuein productfamily designis to
make the right decisionsat the right momentsin
time. A componentesigneishouldnot build prod-
uct specificknowledge into his component,since
thatpreventstheuseof hiscomponenin otherprod-
ucts. Instead,suchdecisionsshouldbe postponed
to producttime Decisionsthatinfluencethe com-

ponentalonecan of coursebe madeat component

time

A techniquefor postponingdecisionsis late bind-

ing. A requiresinterfaceis anexampleof this. The

componentesignerdoesnot know which compo-
nentwill offer a serviceto him, sohejustdeclares
a requiresinterface for the serviceat component
time. Thisinterfaceis boundto a particularservice
at producttime by a third party (the productengi-

neer).

A secondtechniquefor postponingdecisionscon-
cernsdiversity interfaces containingparameterso

be filled in by the third party that instantiateshe
component. There is a natural tension between
reusabilityandusabilityof acomponentThelarger
the components, the more usableit is, but also
the more likely it is that product specific proper

ties have creptinto the componentmakingit less
reusable The ultimately reusablecomponents the
empty componentwhich is thereforenot very us-
able! The solution for this dilemmais to param-

model,theseparametersre groupedinto diversity
interfaceswhich canbeboundto valuesat product
time.

There are actually more decision momentsthan
componentand product time  Componentsare

timeg in which certain componentpropertiesare
fixed, while otherpropertiesaredefinedin term of

subsystenproperties. Thereis also factory time,

wherepropertiesof individual productsaredefined,
e.g.,to calibratethe deflectionof a TV. And finally

thereis usertime wheretheuserconfiguresistele-
vision.

Late binding is often interpretedas run-time bind-
ing, and indeedthis is one way of implementing
it. Our componentmodel allows to (re-)compile
the software at producttime, so that the compiler
canoptimizethe codeusingdecisionamadeonly at
producttime (we call thislate compiletimebinding

thetechniquds actuallyaninstanceof partial eval-

uation). Theresultingcodeis muchmoreefficient
thanhadwe only usedrun-timebinding.

For decisionsthat cannotyet be madeat product
time, alittle bit of codeis generatedhat ‘reads’the
decisionfrom non-\olatile memory ThisNVM can
be programmedn the factoryor by the user(using
menus).

Handling Diversity

How do we handlediversity with the component
model?Basicallyin threeways:

¢ throughselectionandbindingof alternatves
e throughparameterizeccomponents
e throughswitches

Thefirst two choicesare fundamental.lf we want
to implementdriversfor two tuners,theneitherwe
createwo componentgof which oneis selectecind
boundinto eachproduct),or we createa singlepa-
rameterizeccomponentwherea diversity parame-
teris usedto specifytheunderlyinghardware. Rule
of thumbis to createtwo componentsf the imple-

eterizecomponents.In Visual Basic, components mentationsare 80% different, to createoneparam-
(ActiveX controls) have a large list of properties eterizedcomponentf theimplementationgare80%
with adefault valuemechanisnthatallows usersof equal,andto split-up the componeninto common
the componento fine-tunethe component.In our andspecificpartsotherwise.
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Figure3: Real-life examplesof Koalacomponentsat work’

We can use an interface switch to join these
paradigms.A switchis a small predefinedparam-
eterizedcomponenthat canroutefunction calls—
considerit a form of pseudodynamicbinding. We
canfor instancecreatea singleparameterizedom-
ponentfrom two differentonesby connectingthe
interface through switches(just like in hardware).
Figure3 shavs anothemway how sucha switchcan
beincorporatednto acompoundcomponent.

The Product Family Design

We have explained the basic componentmodel.
This allows peopleto build componentsandother
peopleto usethosecomponentso build compound
componentsyntil ultimately productsareobtained.
If we organizeall componentsn a part-of graph,
shawving the‘is aninstanceof’ relation,we obtaina
picturelike Figure4.

As architectswe have to managethe development
of all of thesecomponentsBasiccomponentgan-
not be designedwithout taking productsinto ac-
count, but they shouldalsonot be designedaking
only a singleproductinto account! We'll illustrate
someof the stepswe undertookto structurethe de-
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velopment.

Subsystems

The mostimportantaid is the notion of subsystem
Our precisedefinition of subsystenis a little com-

plicated,dueto the fact that we dealwith product
families ratherthan with single products. Before
we startexplaining this, pleasenotethat mostpro-

gramminglanguageslo not provide muchsupport
for ‘designin thelarge’ (they aregoodat handling
scopeatthefile level). Architectsareusuallyforced
to add‘designin the large’ conceptsn the devel-

opmentmethodthatthey prescribe.Heres our ap-

proach.

For a single product,a subsystenis a large com-
ponentthat implementsa particular subdomairof
functionality The entire productconsistsof rela-
tively few subsystem§L0—-20).In otherwords,sub-
systemdorm thefirst stepof decompositionlt will
not surpriseyou thatwe strive for maximumcohe-
sion and minimal coupling when defining subsys-
tems. This allows to createteamsthat develop in-
dividual subsystemsvith a minimum of communi-
cationbetweerteams thusenablingdistributedde-
velopment.



The ‘subsystemcomponent’itself is implemented
using other (smaller) components. The subsys-
tem componentencapsulatesnstancesof these
smallercomponents.To simplify developmentwe
alsowant encapsulatiorof the definitionsof these
smallercomponentsso that subsystenteamscan
changethemwithout having to notify otherteams.
What a subsystenmteam developsis in fact not a
single (large) componentut a setof components,
whereonly the large componentdefinitionis pub-
lic andthe smallercomponentdefinitionsare pri-
vate Suchasetis usuallycalleda padage. We can
alsoincludeourinterfacedefinitionsin thepackage:
public interfacedefinitionsare definitionsof inter
facesthatoccurat the boundaryof the public com-
ponent; private interface definitionsare only used
for interfacesbetweerprivatecomponents.

? > <« 4 <« A
Aghd Mghd [YH] Mghd Aghd

Figure4: Part-of graphof components

But the subsystenis not usedin a singleproduct—
it is intendedto be usedin multiple productsof
the family! It should be a unit of composition
ratherthanaunit of decompositionDifferentprod-
uctswill have differentrequirements$or thesubsys-
tem, which can only partially be solved by creat-
ing a parameterizedomponent.The otheralterna-
tive for implementingdiversity is to creatediffer-
entcompoundccomponentgdifferentselectionsand
bindingsfrom the sameset of basiccomponents),
wherepreferablyeachcompoundccomponensenes
a groupof products(it shouldnot be productspe-
cific). So,asubsystenpackageanhave morethan
onepubliccomponent!

Thereis one extra way of handlingdiversity and
that is to offer small glue componentqplug-ons)
that product designerscan use to glue a more
genericsubsystennto theirproduct.An exampleis
a UIMS, wherethe compoundcomponentequires

an interface to draw a string and a bitmap, and
wherevarious small componentimplementthese
on differenthardware devices. Theseglue compo-
nentsmustalsobepublic,asthey areusedoy others.

Whatto remembeirfrom this? Well, from a prod-
uct point of view, a subsystenis still alarge com-
ponent,possiblywith someextra glue components.
Froma family point of view, a subsystenis a pack-
agewith publicandprivatecomponenandinterface
definitions. The first notion structureshe product
designtheseconcdotionthedevelopmentprocess!

Layers

Marny peopleseelayersasthe ultimate solutionfor

the decompositionproblem. In a single protocol
stack,alayereddesignis indeedvery useful,but in

generatherequiredrelationbetweersubsystemss

more complicatedthan a one-dimensionalayered
architecturewould indicate. Still, it is worthwhile
to recognizeat leastthreecatayoriesof software:

o softwareabstractingrom computinghardware
o softwareabstractingrom domainhardware
e applicationsoftware

Software in the first catgyory can be built in iso-

lation, the secondcateyory needsthe first, andthe

third cateyory needsthe first and second. We can

view this asatwo-dimensionalayeredarchitecture,
asdepictedn Figure5.

We foundit a gooddesignrule to mirror the hard-
warestructurein the softwarefor thefirst two cate-
gories,while at the sametime creatinga software
API (setof interfaces)that is hardware indepen-
dent. Reuseof hardware blocksin differenthard-
wareplatformsthenresultsin reuseof correspond-
ing softwareblocksin differentsoftwareplatforms.
For new hardware blocks, new software compo-
nentsmustbe developed(usingcopy andedit), but
softwaredevelopmentime never exceedshardware
developmentime.

Notethatthe threecatayoriesof software have dif-
ferentevolution characteristics.On the long term,
computinghardware abstractionsoftware (operat-
ing systemsxanbe boughtfrom independenven-
dors.Domainhardwareabstractiorsoftwarecanbe
boughtfrom the supplierof the domainhardware,
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and even application software will contain mary
third party elementgsuchaswebbrowsers).
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Figure5: Cateyories(layers)of software

Global Ar chitectures

The global architecturecontainsall conceptsfacts
and rules that are relevant to all developers. As
we area large multi-site developmentorganization,
with mary cultural differencesand eachsite hav-
ing its own history it is difficult to predefinea
rigid global architecture. Instead,we only define
the highly necessarytemsat the global level, and
rely on regional architecturego fill in detailsthat
areonly relevantto partof the system.

Exampleelementof the globalarchitectureare:

e The codearchitectue, in termsof namingand
coding corventionsand a predefineddirectory
structure.

e Theidentificationof all subsystemsThe actual
definition of eachsubsystemis left to the sub-
systemarchitects.

e Theidentificationof key conceptsExamplesare
ruleson the useof therealtime kernel (asdis-
cussedn the next section)andthe non-\olatile
memory

e Theidentification(and sometimeslefinition)of
key interfaces

Regional Ar chitectures

The rest of the architectureis definedat regional
levels. Note that differentpartsof the architecture
may requiredifferentstylesand solutions. This is
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especiallytruefor softwarein thethreelayersasde-
finedabove:

e The computingplatform requiresan operating
systemapproachwith device driversandstan-
dardlibraries.

e The A/V platformrequiresanapproachhatal-
lows commonly occurring variationsin hard-
ware(replacingof a chip,changeof signalrout-
ing) to resultin local changesn the software.

e Theservicesandapplicationsrequire (amongst
others)modernuserinterfacetechnology

Delving into the Depths

Sometimesarchitectsneedto be concernedwith
what someconsiderto be low level details,if this
is crucialfor the succes®f the software. We shall
discussone example: the implementatiorof mary
smallactivitiesin the software.

Execution Ar chitecture

The softwarein consumeelectronicsproductstyp-
ically consistsof a large numberof small actiities
thatarerelatively independentf eachother A real
time kernel (RTK) can be usedto programall of
theseactvities, but therearetwo problems:

e UsinganRTK taskfor eachindividual activity
providestoo muchoverheadpothin time (con-
text switches)andin space(eachtaskneedsts
own stack).

e Activities arethenby definition asyn@ironous
and we therefore need to syndironize them
explicitly, using, e.g., critical sections and
semaphores.

Experience shavs that unbridled use of asyn-
chronousRTK tasksresultsin systemswith mary
nastybugs(deadlocks, stanation, forgottento syn-
chronize...). Let us re-examinethe characteristics
of our actiities. Many of our actiities canbe pro-
grammedn anRTK taskasfollows:

whil e(true){
Wi t For Event () ;
Handl eEvent () ;

}



In otherwords, they are statelessevent handles.
With statelessve meanthatthereis only onepoint
in thetaskwherethe activity waitsfor anevent. Of
course the responseo an event may dependupon
somestatemaintainedn statevariables.

A groupof suchactvities canbehandledby asingle
RTK task. Sucha taskwaitsfor a groupof events,
and calls the correspondindhandler The handlers
are nov mutually synchronizedwhich meansthat
we do not needcritical sectiondor communication
betweerthe handlers!

In our implementationan actvity is implemented
asapump aqueueof messagewith onefunction

that processeshe message Pumpsare createdon

pumpengines A pumpengineis an RTK taskthat

managesa setof pumpsand calls the appropriate
pumpfunction wheneer thereis a messagén the

queuefor oneof the pumps.

Eachactvity hasa characteristicdime intenal at
whichtheeventoccurs andthehandleifor theevent
hasa characteristiduration(which of coursemust
be smallerthanthetime intenal!). Of course two
eventswith handlerghathave significantlydifferent
timing requirementsannotbehandledby oneRTK
task: the ‘slower’ handlerwill block the ‘faster’
handlerfor toolong atime.

Sowe still needa few RTK tasksrunningat differ-
ent‘heartbeats’'to sene all of the eventhandlers.
We assignthe actiities to thesetasksbasedupon
two groupingprinciples:

e Cohesiorin time asexplainedabove, two activ-
ities canonly be groupedf they sharethe same
timing requirements

e Cohesionin space it is adwantageous$o group
actwities with a lot of mutual communication
astheimplicit synchronizatioomakesthe useof
semaphoreandcritical sectionssuperfluous.

But when do we decide which activity runs on
which task? Remembethat a componentouilder
doesnothave productspecificinformation. Oneso-
lution is to defineall RTK tasksin the overall archi-
tecture.We choosdor a differentsolution.

This allows a componentdesignerto decidethat
certainactivities run on the sameRTK task (pump

engine), henceneed no internal synchronization.

The productdesignerecideshow actuities in dif-

ferentcomponentaremappedo pumpengines By
default, we do not include synchronizatiormecha-
nismsinto our componentslf two component®p-
erateon differentpumpenginesin a product,then
the productdesignemustalsoensuresynchroniza-
tion betweerthe components.

Mor e Ar chitectural Issues

We shall now highlight someof the lesstechnical
architecturaldecisionsthat we took to setupour
productfamily development.Somearchitectdimit

themselesto technicalissueonly—wefeel thatto
bea serereshortcoming.

Process

First of all, let’s discussthe developmentprocess
Whendevelopingasingleproduct theselectegro-
cessis often a derivative of the waterfll model:
architectureglobal design,detaileddesign,imple-
mentationtesting.For developingproductfamilies,
threetypesof processesarerelevant (seeFigure6,
theideasweredervedfrom [7]):

e definingandevolving thefamily architectue,
¢ developingandevolving subsystems
e developingandevolving products

Theseprocessesun concurrentlyandrelatively in-
dependendf eachother but of coursewith explicit
synchronizatiorpoints. Eachprocesss executedn
a project At ary pointin time, thereis only one
architectureproject, but thereare mary subsystem
andproductdevelopmentprojects.Eachprojecthas
a clear startand end point in time. The architec-
ture, subsystemsand productshave a longer life
spanthan a project; they are the assetf the or-
ganization.Theresponsibilityfor maintainingthem
canbehandledby a sequencef projects.

As subsystemsre intendedto be usedin multi-
ple productsthey mustbedevelopedindependently
of products. For that reasonwe never allow sub-
systemsand productsto be developedin a single
project. For reductionof overhead,we do allow
multiple subsystemso be developedin a single
project.
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Figure6: Threetypesof developmeniprocesses

Organization

We alreadyexplainedthatarchitecturesubsystems

and productsare developedindependentlyof each
other (but of coursewith some synchronization).
Thesedevelopmentactivities are mappedo differ-
entdepartmentén the organizationwhich areusu-
ally locatedat differentsites. Often, suchdepart-
mentshave specificcapabilities,in alignmentwith
thesubsystemsr productsthatthey develop.

Wefeelstronglyabouttherule of developinga sub-
systemin oneprojectat onesite. Ideally, the orga-
nizationis broughtin alignmentwith the technical
architectureln practice thereareoftenmismatches
betweenechnicalarchitectureandorganization.In
suchcasesye tendto let thetechnicalarchitecture
be influencedby the organization! In otherwords,
we’d ratherhave a lessoptimal technicalarchitec-
ture thatmatcheghe organization thanan optimal
architecturghatdoesnt matchthe organization!

Documentation

Traditionally softwareis documentedvith a client
requirementspecification,a software requirement
specification,a global design, a detailed design,
and thenimplementationand testinformation. In
a reuseorganization things needto be a little dif-
ferent.

The most obvious differenceis that we concen-
trate on writing componentata sheets(i.e., user
manuals) rather than requirementspecifications.
Such data sheetsare written in adwance, and ex-

plain the componentto the user of that compo-
nent,ratherthanservingascontractfor the builder.

Theideasareborraved from the hardwaredomain,
wherelCs are describedn datasheets. Note that
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thesedatasheetgdo not containary internaldesign
information—thishasto bedocumentedeparately!

The seconddifferenceis that we documentinter

facesseparatelyof components.This is very use-
ful for genericinterfaces: they needonly be doc-

umentedonce,andcomponentdatasheetsanjust

referto theinterfacedatasheetslt is alsousefulfor

morespecificinterfaceshatareprovidedby asmall
setof components.It is lessuseful for interfaces
thatarereally specificto oneparticularcomponent,
but to make things conceptuallysimple, we follow

the sameparadigmthere.

Configuration Management

Any seriousproduct developmentactiity usesa
configurationmanagemen{CM) systemto main-
tain the sourcesof the product. CM systemsare
typically usedfor:

e versionmanagement

e variantmanagement

e build management

e distributeddevelopment

In thecontet of building productfamiliesin amulti
siteorganizationwe have aspecificopiniononeach
of thesetopics. They are all concernedwith the
move from a singlelarge productorganizationto a
large setof smaller relatively independentsubsys-
temandproductdevelopmentcompanies.

For version manajement a CM systemis invalu-
able. Each subsystemand product organization
shouldhave a CM systemin which they keeptrack
of this history of their sourcefiles.

We do not want managemenof productvariation
to be handledoy the CM system.Our original rea-
sonfor this is that we want to handlesomeof the
productvariationat compiletime, someatruntime,
without making this distinctionin adwance. CM
systemsnecessarilyoperateat compile/link time
only. A secondand moreimportantreasonis that
we wantto make productvariation explicit in the
architecturejnsteadof hidingit in aCM system.
Many CM systemgprovide build supportto create
executabledrom the sourcefiles. This build sup-
port is integratedwith the CM systems capability
of handlingproductvariation. Sincewe solve the



latter in our architecturewe neednot usethe CM
systems build support,but caninsteadchoosethe
bestof class. As a side effect, we can build our
productsoutsideof theCM systeme.g.,athomeor
in theplane.

Finally, CM systemsare often useto managedis-
tributeddevelopmentbut wefind it abettersolution
to have the differentsitesdevelop anddeliver soft-
wareasif they wereseparate&companiesOur sites
deliverreleasesf theirsoftwareasZIP filesthatare
distributedthroughthe compary intranet.

Concluding Remarks

We sstartedhisarticlewith someremarksonthedef-
inition of architectureas a setof subsystemsand
their mutualrelation. We foundthis definitionto be
too specifi¢ and have spentsometime explaining
the conceptsn our architecture We foundthe def-
inition to be too completeandtoo high level, and
have shavn at which level of detail we operateas
architects We foundthedefinitionto betoo tedni-
cal, andhave discusse@numberof issueshormally
nottackledby softwarearchitects.

The Koalacomponentmodelwhich is part of this
architecturas inspiredby Microsoft's COM. It was
anexplicit designgoalto enableevolutionto COM
in thefuture. However, Koalaintroducessomecon-
ceptsnotreadilyfoundin COM (suchasanexplicit
notion of requiresinterfaces). We arecurrentlyin-
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