POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

Perl

Python

Embedded Java

Xootic Survey 2000

1s perl -pe .
rEi=5.;s//\e[3@{[Si++3T+1l]};1lm/g; .
END{print "\033[0m"}’ PR

e pe” :
Y . _ AN s ;
perl -pe "@ph=map {ucfirst(lc)} A \.:_-.iff Ay LoE
split(/[\s.,=14/); 0% gt PP gl®
rint - (Brh) " £ txt o® o .f‘"f'*”»yf'
Print oglEEn co.TX o T ot 24P p®
.r“ﬁ.. Lt ‘5 ':‘.‘J = -
L SN "‘{c-@'f{’ A
o ¥ r(‘\.{" fﬂ"‘j‘\ E‘ 5 \
] " ot T
e) - N ¥
)"\ 1 5?(5 s . ‘EV ,Q{‘J -u{",.//
PP Sl
- m _)‘ - &
L g {:‘
ota i iy -3 xY
-4 B s B e
E C_‘:\r}t B L \;',"I
LB
def y
—init ‘o
T
JD*I‘.}C = ‘.Q-‘ff X=g 5
sely TR

def ﬂ:'-':t.[':;

Contents Colofon

XOOTIC MAGAZINE

Programming Languages Volume 9, Number 1

Editorial Preface 3june 2001
XOOTIC Survey 2000 Editors
Gertjan Schouten (on behalf of the survey V- Bos
committee) 5N.H.L. Kuijpers
Y. Mazuryk
Perl Address
Ed Knapen llXOOTIC andXOOTlC MAGAZINE
P.O. Box 6122
Java in Embedded Systems 5600 MB Eindhoven
Menno Lindwer 15The Netherlands

xootic@win.tue.nl
http://www.win.tue.nl/xootic/

Python
VictorBos 27 SecretariatooT|
Mrs. C.1.T. Kolk-Koenraat
Overview Latest OOTI Reports Post-masters Programme Software Technology
...................... 34 Eindhoven University of Technology, HG 6.57
P.O. Box 513
. 5600 MB Eindhoven
Advertorials The Netherlands
tel. +31 40 2474334
AAS . .. 4 fax. +31 40 2475895
Philips Nederland. 10 ooti@win.tue.nl

http://wwwooti.win.tue.nl/

Printer

Offsetdrukkerij De Witte, Veldhoven

Reuse of articles contained in this magazine is al-
lowed only after informing the editors and with ref-
erence to “Xootic Magazine.”

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

XOOTIC MAGAZINE

Programming Languages

Editorial Preface

An important choice to be made for every software project is the choice for a suitable programming lan-
guage. This choice is often made implicitly as a project is usually the follow-up of an earlier one, or is
part of a larger development programme. If a project team has a choice at all, this choice is often deter-
mined by experience within the team, processing power and memory consumption, or available libraries.
Sometimes a project team explicitly decides to learn a new language and even migrates existing software
to that new language. In this way object-orientation is introduced in many organisations to obtain more
flexible, reusable and extendable code. Such a migration path is a large investment which often only pays
off in future projects.

In this issue of the Xootic Magazine three programming languages are subject of discussion. You will
learn why a scripting language like Perl should not only be used by system administrators, how Java can
be applied to program embedded systems, and how Python is not only used for prototyping but can be used
to build the final product as well. Besides all ins and outs of Perl, Embedded Java and Python, you will
also learn about the results of the Xootic Survey that was filled in by almost half of the Xootic members
last Fall.

Before diving into the contents of this magazine, we would like to take the opportunity to introduce a new
editor and say good-bye to another. For several years, Eibert Engelsman has been one of the editors of
this magazine. We would like to thank him for his inspiring ideas, his contributions to the editorials and
cover arts, and of course for the hard labour of reviewing and editing a large number of articles. We are
also happy to introduce to you our new editor Yarema Mazuryk. He has just recently started the OOTI
programme and is already willing to be active for Xootic as an editor of the Xootic Magazine.

The magazine blasts off with the results of the Xootic Survey 2000 drawn up by Gertjan Schouten, on
behalf of the Xootic Survey Committee. Next, Ed Knapen describes the post modern philosophy behind
Perl. He not only briefs us on the language itself, but also explains the link between Perl, Apostle Paul
and perlmonks.com. Menno Lindwer advocates that although Java is certainly not the most obvious
language for embedded systems, recent developments in both hardware and software make that Java will
become a more logical choice for future, perhaps interconnected, embedded systems. Finally, Victor Bos
leads us through something completely different: the Python scripting language, or, rather, programming
environment.

Enjoy!

Nico Kuijpers
Editor

June 2001

Advertorial: AAS

Page 4 (should be even)

XOOTIC Survey 2000

Gertjan Schouten (on behalf of the survey committee)

In September 2000, the bi-annual Xootic questionnaire was sent out again to
all Xootic members to ask them about their current and future work, and about
their opinion of OOTI and Xootic. In the past months, the returned question-
naires were analysed and the results were presented to the Xootic members in
March 2001. This article presents the survey results.

Introduction not have to fill in the OOTI questions: the OOTI
program has changed a lot since those generations

The Xootic survey has become a two-yearly triollowed the program, a.0. as a result of their an-

dition. It provides valuable feedback to both th&/Vers to previous surveys!

OOTI and the Xootic board on their program anfou have to be careful not to change too much

their activities. Previous surveys were held in 1998 a questionnaire, otherwise the results are diffi-

1994, 1996 and 1998 (see Xootic magazine Septegtlt/impossible to compare with previous surveys.

ber 1993, September 1994, April 1996 and OctobEhat is why the remainder of the questions were left
1999, respectively). In the beginning of 2000, Ridiinore or less) unchanged. The gquestionnaire, to-
Wouters, Dietwig Lowet, Harold Weffers, Bernar@eéther with a memo from OOTI about the new Soft-

Venemans and myself set out to organise the survégre Technology Training Program, was sent to ev-
for 2000. The first thing we did, was to take theéry Xootic member early September 2000. Table 1
previous questionnaire and modify it according ghows the number of surveys that were sent out and

suggestions for improvement that resulted from tihge number of surveys that were returned this year
previous survey. as well as previous years.

The major changes as compared to the previous
guestionnaire are:

e The language: this was the first questionnaire i"syrvey T Nrsent | Nr received | Percentage
English. 1993 22 17 77%

e The OOTI questions: these were formulated by 1994 41 24 59%
OOTI to ask for specific information needed to | 1996 88 43 49%
improve the OOTI program. In this survey, only | 1988 | 155 69 45%
the younger generations were asked to answer 2000 189 88 4%

. Table 1: History of returned questionnaires
these questions.

e More predefined options were added: some ex-
tra answers, provided to us in the 'other’ option-
field of the questions from the previous surve

.) Bf'able 2 shows the returned questionnaires per gen-
were added in the answer-lists. g berg

eration. We see a large increase of returned forms
Furthermore, the questions about current and for the generation "September 1996 - April 1998”.
ture function/working environment have been confhe probable explanation for this is that this gener-
bined, and the split in generations has been etion has a lot of non-Dutch members, who had dif-
tended in the sense that the older generations @ialties filling in the Dutch questionnaire of 1998.

June 2001

Generation 1998 | 2000 - December 1991” has increased from 25% to 27%,
1988-Dec 1991 | 16 | 15 however both percentages represent four persons.
Sep 1992 -Jan 1994 18 19 h . hv th | h
Sep 1994 - Mar 1996 26 o5 The main reason w y the current employer was cho-
Sep 1996 - Apr 1998 9 15 sen isnature of the worKrated 7.9 on a scale from
Aug 1998 - Aug 2000 12 0 to 10) followed bycareer perspectivés.2), com-
Unknown 2 pany culture(6.1) andsalary (5.8).

Table 2 Number of returned questionnaires per g, re 2 shows that the final project of OOTI and
generation (nowadays) a direct approach by the company or

_ . _ a person working for the company are the most

The questionnaire was returned this year by 76 &fjccessful strategies for recruiting ex-OOTIs. The

OOTIs and 12 OOQOTIs. In the results concerningnen application” dropped from 47% in 1996, via

professional career the answers from the 12 OOHlSo4 in 1998 to 14% in 2000!

have been excluded. Hence in these results, about

every 1.3% is one person.

Employer
?tshufr 00Tl final

The questions about the current employer are N p;isj;ft
tended to get an impression of the employers whe \

=

_

-

SN

A

Xootic members are working. Figure 1 show . \

the major branches where ex-OOTIs are curren 12% \\

working. Compared to the result of the previol \ \\\ﬁ§ _

survey, there are few changes. The most striki \\\\ ////

changes are: Automation consultancy has increa:

from 2% to 11% and Electrical industry has droppe oren appcam% ||“ ontaoted by
s

////

N

149%

from 15% to 7%.

19%

Person not ex-
00Tl

Other
15%

16%

=i §

15%

Flexible staffing
31%

s ff

Figure 2: How did we get our current job?

Softwarehouse
9%

.

7

D

Tele
communication

11% Automation

consultancy

1% Function

Figure 1: Branch distribution

The results of the questions concerning current &

future function and working environment tell us
It seems that switching jobs after 4 to 6 years is bgemething about our daily work and our expec-
coming a trend! If you compare the numbers b&tions. If you look at Figure 3, you will no-
tween 1998 and 2000 (Table 3), you see that &ite that the Xootic members currently still have
ter 4 to 6 years, the majority of ex-OOTIs has leftery technical jobs: 73% are software/system engi-
their first employer. Note that the percentage of pareer/architect or researcher, compared to 64% two
sons at their first employer in the generation "198&ars ago.

XOOTIC MAGAZINE

1st employer| 2nd employer| 3rd employer| 4th employer
Generation 1998 2000| 1998 2000| 1998 2000| 1998 2000
1988 - Dec 1991 | 25% 27%| 69% 40%| 6% 13% 20%
Sep 1992 - Jan 1994 61% 32%| 28% 47%| 11% 16% 5%
Sep 1994 - Mar 1996 96% 76%| 4% 20% 4%
Sep 1996 - Apr 1998 87% 13%
Table 3: Number of employers

software engineer

software architect

[l researcher, scientist

Al

E system engineer

project leader

other automation

M system architect

E other managerial
miscellaneous

Eteam leader

Eteacher

Figure 3: Current functiords

The 'future’ situation (i.e. the desired functionjonnaires indicated that Chi, (Process) Algebr
within 5 to 10 years) is shown in Figure 4. Justpin/Promela, State machines, START, Petrinets
as two years ago, nobody plans to be (or becon@)pect/Cosa, MSCs, IDL, OCL or process Ne

a software engineeb to 10 years from now. Ap-

proximately 44% wants to advance in technicpiect oriented techniques are used more oftén:
functions. The managerial functions (team/projegi;; is used by 64% (was: 32%) and OMT is
leader, other managerial and miscellaneous) hayg.q by 33% (was: 37%).

grown from 18% now to 42% within 5 to 10 years

N software engineer
7

250, software architect
[Mresearcher, scientist
B system engineer

project leader

other automation

£
E
=

R

M system architect

22
E other managerial

miscellaneous
Pteam leader

Steacher

Figure 4: Future functions

Ex-OOTIs are working in a less multi-disciplinary35% is interested in XML.
environment! All areas of expertise showed a drdfhe waterfall model is still the most widely use
in percentagesLpgisticsdropped most from 18%process model (34%), followed by RUP (30%).

to 10%). The top-three of disciplines that ex-OOT
come into contact with in their daily work (not in
cluding Computing sciengeis as follows: Electri-
cal engineering(43%), Telecommunicatiori31%)
andInformation technology28%).

Skills

There were several questions concerning the to

and methods that are used in the workplace of e

OOTIs. One positive side to OOTI: formal meth
ods are now being used! 16% of the returned qug

works were used in the direct working environmen

Design Patterns &
‘used by more than 50% of the Xootic populatio
C++, C and Java are still the main implement
tion languages being used (63%, 57% and 50%
spectively, versus 65%, 58% and 43%, two ye3
ago). One third indicated to work with scripting lan
guages such as VB Script, Perl, Python or Tcl/Tk

Windows NT is used most frequently as a host pla
form. The dominant target platforms are: Window
NT (56%), Unix (43%), Java platform (34%) an
pSOS (27%). Linux is being used as a target plg
form by 22%.
Distributed - and Component technologies are ve
popular amongst ex-OOTIs: around 40% uses thg¢
technologies and the same percentage of Xodg

S

bse
tic

members are interested, and around 10% has taken

courses in these technologies. 74% uses HTM

June 2001

L,

Xootics are most interested in Extreme Programccording to the ex-OOT]s, the program should al-
ming (32%) (hype?) and RUP (30%). Xootic meniecatemore timeto:
bers want to know more about the following skKills: Design Basics (+202%)

Coaching, Creativity (both 23%), PSP/TSP 19‘V§' .
oaching, Creativity (bo) (. Development Environments (+56%)

and Project Management (18%).

: J () 3. Requirements Engineering (+41%)
4. Personal Software Process (PSP) Basics (+41%)
5.

Software Process Improvement (SPI) Basics

Working conditions (+37%)

This section gives us an indication of the conditionghe results of the survey indicate that the OOTI pro-
of employment. Table 4 shows the current salariggam should allocatiess timeto:

of the 72 ex-OOT s that filled in the question. 1. Workshop on Constructive Method (SPIN) (-
In this survey, we added questions about part-time 469%)
work and RSI. Currently, 6 ex-OOTls (equals app. workshop on Declarative Method (PVS) (-46%)

proximately to 8%) are working part-ime (32, 363 Eormal Methods in the Software Life Cycle (-
and 38 hours a week answered by 3, 2 and 1 per- 41%)

sons, respectively) and 22 ex-OOTlIs (29%) woulg' Seminars with Industry (FM) (-27%)

like to work part-time (24, 32, 34 and 36 hours, Modeling Performance of Computer Systems (-
a week reported by 1, 15, 1 and 5 persons, re- 26%)

spectively). 47% of the ex-OOTIs reported to have
no signs of RSI, 42% responded "sometimes”, 3%
"quite often” and 8% "very often”.

Xootic

OOTI training program Just like last time, the main reason to be a member
of Xootic is to stay in touch with other Xootic mem-
The questions about the current Software Technbkrs. To stay informed about the TU/e and/or OOTI
ogy program had a completely new form. The cuis the second reason. Lectures are the most appreci-
rent courses were listed and the trainees of OQatked Xootic activity. Suggestions for possible topics
that started their program after August 1994 weage about emerging technologies, such as .Net, C#,
asked to indicate the value/usefulness of the indiML and Embedded Linux. Xootic should organ-
vidual courses and whether they have applied tise lectures more often, or organise "X4X” lectures
knowledge gained from the courses in their workXootic-4-Xootic, like CMG’s "Pro-4-Pro”).
Finally, one was asked to indicate the amount g ggestions for activities are:
time OOTI should allocate to each course.

Company visits/excursions (e.g.: nuclear plant,
The top 5 ofmost usefutourses: ¢ pany (e.g p

logistics centre, maobile phone centre)

1. Industrial Design and Development Project e Trips (one weekend/one week to Italy, Spain,
2. Workshop Software Engineering)

3. Obiject-Oriented Analysis and Modeling e Short courses

4. Technical Writing and Editing e Golf clinic

5. System and Software Architecture e 'Wadlopen’

e Visit museums/theatre

e Regular dinner/drinks to keep in touch

e A (yearly) meeting for the "older” generations
e Panel discussions/discussion groups

The top 5 ofleast usefutourses:

Workshop on Declarative Method (PVS)
Workshop on Constructive Method (SPIN)
Formal Methods in the Software Life Cycle
Seminars with Industry (FM)

Control and System Theory e Easy access to OOTI/Xootic publications

Other suggestions are:

akrwpdPE

XOOTIC MAGAZINE

Generation <60 | <70 <80 | <90 | <100 | €110 | €120 | £150 | > 150
1988 - Dec 1991 5 3 1 2 4
Sep 1992 - Jan 1994 3 5 8 3
Sep 1994 - Mar 1996 1 4 12 6
Sep 1996 - Apr 1998 4 6 3 1 1

Table 4: Salary distribution in HFL 1000 (absolute numbers of ex-OOTISs)

e Organise activities on a more central location igerial functions frequently have signs of RSI.

the Netherlands The survey committee also received some reco
mendations:

e The questions about the OOTI program we

Conclusion difficult to answer by ex-OOTIs who did not fol

m-

re

low the courses, or could not remember the con-

The results of this survey are very valuable for (ot of a course by name only (the course ID d
OQTI and Xootic. It allows them to measure the help much!)

_quahty of the program, steer th_e program and VeTy Use the web to do the survey

ify whether changes to the curriculum have the de-

sired effect. The results can also be used to idéife would like to pass on these recommendations
tify trends and interests of Xootic members arifie Xootic Survey 2002 Committee.

to take advantage of this information. This repow/e would like to thank all Xootic members whq
only gives a summary of the survey results. Moreturned the questionnaire for their co-operatio
detailed information has been given to the OOWithout their effort, we could not have presente
and Xootic boards. The survey committee receivéitese results! Also, we would like to thank th
some questions to correlate e.g. function with salaxpotic Survey 1998 Committee for their suppo
and signs of RSl and function. However, due to thend useful input. One word of special thanks go
small number of Xootics, these correlations do ntd Lettie Werkman, who helped us to improve th
present any reliable or significant information. Faejuality of the English language of the survey.

instance, one person with a managerial function, iine Xootic Survey 2000 Committee: Rian Wouter
dicating to have signs of RSI very often, could leagietwig Lowet and Gertjan Schouten.
to the 'conclusion’ that 10% of people with man-

June 2001

d

Advertorial: Philips Nederland

Page 10 (should be even)

Perl

Ed Knapen

"Practical Extraction and Report Language or Pathologically Eclectic Rubbish
Lister? Perl has devoted fans and fierce enemies. This paper describes Perl’s
post modern philosophy, shows some of its exotic operators and explains the
link between Perl, Apostle Paul and perlmonks.com.”

Not surprising given its origins, Perl is almost the
perfect tool for system administrators: it allows the

_ _ o _ easy manipulation of files and process information,
Perl is a high-level scripting and programming lanng easy automation of all kinds of tasks.
guage originally created by Larry Wall. It derives

from the C programming Ignguage and to a Iessgat Perl's process, file, and text manipulation fa-
extent from sed, awk, Unix shells, and at Iea“?’tc‘ﬁities make it also particularly well-suited for
dozen other tools and languages. Perl prowdt%%ks involving quick prototyping, system utili-
few but very powerful sets of data types (numberﬁeS software tools, system management tasks
strings, and references) and structures (hashes agfébase aCCess nétworking and world wide wet;
Ii;ts). Hgshes (associqtive a_rrays) use strings asgpégramming. Be’sides systen; administrators, these
dices. Lists are numerically indexable and can al engths make it especially popular with CGI script
actas stacks_, queties, or even double-endeq d4eHttors (most CGI programs are written in Perl), but
Perl emphasizes support for common <appl'Catloj%'athematicians, geneticists, journalists, and even

oriented tasks: '|mpor‘:[ant featurgs ’l’nc_lude built- anagers also use Perl. Maybe you should use it as
regular expressions, “text munging”, file 1/0, an ell

report generation.

What is Perl?

Here are two command line Perl scripts that should

give you an impression: .
Who is Larry Wall?
Is | perl -pe
'$i=$.;s/\e[3@{[$i++%7+1]};1m/g;

k What Linus is to Linux, Larry is to Perl. Son of a
END{print "\033[0m"}

pastor in Los Angeles, Larry Wall started off as a
perl -pe "@ph=map {ucfirst(ic)} programmer and system administrator with a rich
split(]\s. -] +/): heritage of ideas and skills. Among these was the
print qq(@ph)" foo.txt notion that everybody can change the world. He
majored in Natural and Artificial Languages and
Officially, Perl is an acronym foiPractical Ex- attended grad school in linguistics. After the ad-
traction and Report Languagéut the alternative vent of Perl and the Perl book, which became a best
Pathologically Eclectic Rubbish Listés often used seller, came royalties and a position with the pub-
as well. Its roots are in UNIX but today you willlisher, O’'Reilly & Associates. Today, O'Reilly pays
find Perl on a wide range of computing platformd,arry to do whatever he likes, as long as it helps
including Mac, Windows and EPOC. Perl. And he generally eats breakfast at lunchtime.

June 2001

In the beginning led designers to believe that if they thought of some-
thing cool, it must be considered universally cool.
On October 18, 1987, Perl 1.0 was posted to th&at is, if something is worth doing, it is worth

Usenet group comp.sources. In Larry’s own worddriving into the ground to the exclusion of all other
approaches. Look at the use of parentheses in Lisp

“The beginnings of Perl were directly inspired by" the use of white space as syntax in Python. Or
running into a problem | couldn’t solve with thefalt the mandatory use of objects in many languages,

tools | had. Of rather, that | couldn't easily solvelncluding Java.

As the Apostle Paul so succinctly put it, “All things

are possible, but not all things are expedient” In contrast, post modernism allows for cultural and
could have solved my problem with awk and sh@ersonal context in the interpretation of any work of
eventually, but | possess a fortuitous surplus of tRé&. It's the origin of the Perl slogan: “There’s More
three chief virtues of a programmer: Laziness, Infhan One Way To Do It!" The reason Perl gives
patience and Hubris. | was too lazy to do it in awkou more than one way to do anything is a belief
because it would have been hard to get awk to juriijt computer programmers want to be creative, and
through the hoops | was wanting it to jump througtihey may have many different reasons for wanting
| was too impatient to wait for awk to finish becaus® write code a particular way. What you choose to

it was so slow. And finally, | had the hubris to thinRptimize for is your concern, not Perl’s. Perl sup-
| could do better” plies the paint (be it strings, associative arrays or

objects), but the programmer paints the picture.

Perl was created and has been evolving by combin-

ing all cool features from C, sh, csh, grep, sed, av\/k,SGCOHd Perl philosophy is its aim for “No Limits”.
Fortran, COBOL, PL/I, BASIC-PLUS, SNOBOL ,Maximum string or array lengths or similar bound-
Lisp, Ada, C++, Python, etc. Or, turning it aroundaries are not or hard to find. Usually the only limit

by leaving out all the unwanted features of all theé®the amount of free memory in your computer: the
languages. whole Linux kernel can be read into one (binary)

string, patched and written back again using Perl.

As for the name, Larry wanted a short name with
positive connotations, looked at every three and
four-letter word in the dlctlona'ry and rejecteid thefEXOtica

all. Eventually he came up with the name “pearl”,

with the glossPractical Extraction and Report Lan- _ : .

guage The “a” was dropped because of the eXig’_erl contains over 50 special variables, most of

tence of some obscure graphics language with m a C(_)mblnatlon of .the $-sign (indicating a
scalar variable) and a single character, for often

Same name used information. So is_$the default input and
pattern-searching space, while $. is the current in-
put line number, $ the effective uid of the process,
$+ the last bracket matched by the last search pat-

Post modern tern. etc.

Perl is unique in its aim to be post modern, as Oy aqdition, there are over 50 operators, like the
posed to being based on modernism. Post MOdgER 4| + ++ +=, etc., but also more unusual ones,

is, according to Larry, what the American culturgy e < tg read from a filehandle: => for numer-

has become, not just in music and literature, but alﬁgl comparison (returning -1, 0, or 1) and~ for
in fashion, architecture and in overall multi Cu“uraéearch substitute or translate.

awareness.

Example:
To Larry, modernism was based on a kind of ar-

rogance that elevated originality above all else, and open (SRC, $_[0]) ||

XOOTIC MAGAZINE

die "Can't find source file"; sub processFile {

while (<SRC>) { print "Reading " . $_[0] ." file\n";
match ’'type’ keyword open (SRC, $_[0]) ||
if (/type\s*=\s*'(\w*)"/) die "Can'’t find source file";
{ print $1."\n"; }
} }
close SRC;

Many syntactic elements can be omitted, like pafeA‘ppIications
theses around function arguments. The following

two statements are equally valid: Another Perl anecdote from Larry:

print "Hello world";]
print("Hello world"); “A couple of years ago, | ran into someone at g

trade show who was representing the National Se-

Even semantic elements can sometimes be omittedfity Agency. He mentioned to someone else|in
To read input from a file, passing that he’d written a filter program in Perl, s¢
without telling him who | was, | asked him if | could
while ($_ = <STDIN>) { print $_; } tell people that the NSA uses Perl. His response
was, “Doesn’t everyone?” So now | don't tell peotr
can be abbreviated to ple the NSA uses Perl. | merely tell people the NSA
thinks everyone uses Perl. They should know, after
while (<>) { print } all”

Perl allows execution of statements to depend Prrl is used on Wall Street, in CGI scripts, in the
modifiers (if, unless, while, until). The followingrobots and spiders that navigate the Web and build

statements are all equivalent: much of the various on-line databases. If you've
ever been spammed, your e-mail address was|al-

if ($energy < 0) { $nLives--; } most certainly gleaned from the Net using a Perl

$nLives-- if ($energy < 0); script. The spam itself was likely sent via a Perl

$nLives-- unless ($energy >= 0);
unless ($energy >= 0) { $nLives--; }
($energy < 0) && $nLives--;
($energy >= 0) || $nLives-—; Personally, my first Perl script was a 15-liner called

“bgr”, which changed the background picture g
In Perl, you can use the form that fits best with youmy OOTI machine every five minutes or so.
ideas about what highlights the most important part
of the statement. There are 800 or so reusable extension modules in
the Comprehensive Perl Archive Network (CPAN).
As many other string based scripting languages|ancing through those modules will give the im
Perl interprets variables either as numbers or pigssion that Perl has interfaces to almost eveyy-
strings depending on the context. A similar conte#fting in the world.
dependency holds for scalars and arrays. If, for ex-
ample, an array is assigned to a scalar variable, the
length of the array will be assigned.

script.

5

Comparison

Passing arguments to a subroutine can only be done _ o
by resorting to list-context functions to retrieve thBerl can be compared with other scripting languages

values, like: like Tcl, Javascript and Python. Of these three, Tcl
is the closest relation. Compared to Perl, Tcl's syp-
do processFile($fileName); tax is clean and simple, consisting of only a feiw

building blocks. This makes it easier to teach non-

June 2001

programmers Tcl. On the other hand, Perl gives ybtuture
more power of expression. While you can certainly
write awful and unreadable Perl programs, Perlsast summer, Larry Wall announced the start of the
syntax and vocabulary also allow programmers tigvelopment of Perl 6. In contrast to the first five
express exactly what they think, without having tgersions, which followed an evolutionary develop-
resort to unnecessary constructions. ment, a more organised approached with commu-

nity input has been set up. If you have a desire to
One advantage of Tcl over Perl is the availability dfelp in the crusade to make Perl a better place then
the graphical toolkit (Tk). This extension of Tcl igoeruse the Perl 6 developers page and get involved.
so tightly integrated that Tcl is normally referred td he first alpha is expected by Summer 2001.
as Tcl/Tk. With Tk, three or four lines of code is
all it takes to create a window with a clickable but-
ton or an editable input field. Since Tcl/Tk is alsb-INKS
an interpreted language, you can play around with
fonts, colours and dimensions until your interface for more information on Perl, try the following
just right, without the need for recompilation. It idinks:
possible to use graphical extensions in combinatiaww.perl.com
with Perl (even the combination Perl/Tk is possiwww.cpan.org
ble), but these are more awkward to use than thevw.perldoc.com
integrated Tcl/Tk pair. www.perlmonks.com

www.perl.org/perl6

Both Perl and Tcl are implemented in C and can be
embedded into your own application code, to ex-

tend it with the power to interpret scripts. Biography Born in Elsloo (Limburg), The

Netherlands, in 1970, Ed Knapen graduated in
Objects were only introduced in version 5 of Perbomputing science from the Eindhoven Univer-
which made a seamless integration impossible. Sﬁ{y of Technology, The Netherlands. In 1995, he
you are an object wizard who wants to write systeftaduated in the postgraduate programme on soft-
administration scripts using objects, then maybeygre technology at the Stan Ackermans Institute in
language like Python is a better option for you. Ejndhoven. This programme was concluded with a

project carried out at the National Aerospace Lab-
Perl has the largest user base of all scripting laoratory (NLR) in Amsterdam, The Netherlands.
guages. For whatever you need, chances are theirece then he has been employed by NLR to work
is a package at CPAN available that does it. Thisas research and development in the field of applica-
especially true in the field of CGI scripts. So if yotion of information and communication technology
need a quick start for a script that requires databaseairport operations, air transport and air traffic
connectivity or XML parsing, then Perl is a goodontrol. His Perl programs are in use at NLR, in
choice. European aerospace companies and institutes and

by an international chess organisation.

XOOTIC MAGAZINE

Java in Embedded Systems

Menno Lindwer

For several reasons, Java is not the most obvious language for embedded sys-
tems. It requires much more memory than most other languages and even
with JIT compilers, it runs a lot slower. Therefore, systems running Java appli-
cations are more expensive than systems with the same functionality running
natively. In many embedded systems industries (consumer electronics, net-
working, etc.), each additional cost is a market barrier. Besides that, Java is an
inherently non-real-time language. However, some recent developments have
turned Java into an obvious choice for those software tasks that do not require
hard real-time operation, such as user interfaces. From the onset, Java was
intended to reduce software development cost, software distribution cost, and
lead time, which, in embedded systems, are rapidly becoming the dominant fac-
tors. Besides that, digital devices are increasingly required to interoperate with
other devices and network servers. These new features require platform inde-
pendent software, meaning that networked devices do not need to be aware of
the internal architectures of their peers. Java comes with an extensive network-
ing library and is compiled into a standardised platform independent distribution
format, making ideal for such products. This leaves the reduction of Java exe-
cution cost in embedded systems as an interesting field for Research and and
a challenge for Development...

) namic loading/linking features inhibit determinis-
Introduction tic behaviour [15]. The programmer is shielded
off from the underlying machine, giving him/her no

Java [1] is not the most obvious language for erhandles to circumvent the problems.

bedded SyStemS. The reasons are mannyId. Hq%vveven recenﬂy System requirements (eg dy_
ever, some recent developments have turned thedgmic upgrade, networking, interoperability [6])
bles. and business requirements (e.g. short time-to-
Compared to conventional programming languagesarket) have emerged that match quite perfectly
such as C or C++, Java execution is expensiveviith the mix of features offered by Java. This re-
terms of memory use, processor cycles, and powewed interest has breathed new life into a num-
consumption. Until recently, the increased cost hler of optimisation efforts. It should be pointed out
proven to be a market barrier in embedded sythat none of the research topics are really specific
tems industries, such as consumer electronics @adlava or invented specially for Java. But many
networking. To the users of many embedded sysave gained interest, funding, and momentum be-
tems, the increased functionality does not justifyause of the possible application in Java. Some of
the increased cost. Besides that, the Java ldmese efforts, such as research into garbage collec-
guage is inherently 'real-time-unfriendly’ [15]. Ittion algorithms goes back a long time [14]. Other
does not offer adequate constructs for specifyidgvelopments, such as Just-In-Time (JIT) compila-
timing behaviour. The garbage collection and dyion [8], are quite recent. These optimisation ef-

June 2001

forts in turn have brought the application of JallOwW IS Java supposed to help in-
in cost-constrained embedded systems very neagiggase software development pro-
commercial viability. In fact, at this moment several i

companies are introducing Java-enabled devicegHCtNlty'

one of the most cost-constrained industries: smart-

cards. Java is an object oriented language [1]. Typical con-

structs from object oriented languages, such as in-
heritance, are usually considered beneficial for soft-

. ware development productivity. However, this sec-
Hand-helds 3

X 500 millon

- tion is concerned with the features that are more

£ ks) specific to Java. Most of what is discussed below is
networl j . . 3

@ | ceah not really new. But Java is the first widely used lan-

Internet/Jini Bk guage that wraps them all in a nice, well-marketed

package.

L IHDN JHAVE g The following aspects of Java were included to im-
. e O Mg <oomin prove software development productivity:

Home Appliances per Household...

0S¥ 120 il e Language simplicity: The language is easy to
learn, i.e. the syntax is kept very close to that of
C (C++). However, many of the constructs for
which C++ is regarded as complex, have been
left out. Apparantly, this has not made the lan-
guage less useful. A good example is the use
of interfaces, instead of multiple inheritance (al-

Besides re-iterating the much-publicised software though some people question the use of either).
engingeering advantages of Java in an embeddedGiving classes multiple interfaces is almost as
context, this article aims to convey a deeper un- Powerful as multiple inheritance. However, it
derstanding of the performance and cost issues atavoids problems such as classes inheriting the
play. | hope to show that Java’s high execution and Same class more than once.

memory cost are not caused by singular features or Because Java is easy to learn, it quickly gained
failures in the Java system, but rather can be at- a large developer base. This means that it will
tributed to a multitude of deliberate considerations. be more easy to find qualified software develop-
This means that the law of retained misery’ (Wet ment personnel. Besides that, Java’s simplicity
van behoud van ellende) almost always applies for allows other professionals than software devel-
attempts at optimisations. Therefore, good under- opers to understand Java code. Therefore, other
standing of the issues is necessary, in order to pre- stakeholders can more easily participate in qual-
vent system designers from choosing solutions that ity assurance of software projects.

exactly do not quite solve the problem or that are fas Strong typing: The Java language is strongly
more expensive than necessary. typed. This means that the compiler can stat-

This article is organised as follows: The next sec- ically check many commonly made mistakes,
tion discusses the business reasons, as related to théUch as passing wrongly typed arguments, in-
software development productivity gap, for apply- advertently losing or adding sign extensions at
ing Java. The second section investigates the impact@ssingments, pointer arithmetic problems, etc.
of Java’s feature set on execution cost. The third In fact, some researchers claim that, because
section takes us to the beef of the matter, namely the of Java’'s strong typing, compilers have more
technical solutions for decreasing Java’'s execution knowledge about the way the code will execute
cost. As dessert, the fourth section describes someand can therefore apply more aggressive opti-
hardware approaches for accelerating Java execu-misations. This means that, in theory, Java code
tion. The fifth section is the proverbial CFA (Con- could run faster than C code...

clusions, Future work, and Acknowledgements). e Exception handling: The software designer

Figure 1: Markets for networked Java-enabled devices

XOOTIC MAGAZINE

can define the application level at which excep- development cost, because one does not nee

tions should be caught. The language offers maintain different software versions for differ:

constructs such that, at the levels below that one, ent platforms.
developers can treat them transparantly (i.e. just Rich standardised set of APIs: This set, in-

pass them on). Of course the language also of- cluding implementations (mostly in Java) was
fers constructs for easy handling of exceptions released together with the language. Software

d to

at the level defined for that purpose. As an ex- developers can safely assume implementations

tra (and obvious) safety precaution, exceptions of these libraries to be available on any pl

that do slip through that level will eventually be form that runs the targeted flavour of Java. This
caught by the run-time environment. means that developers can concentrate on solv-

Array boundary checking: The code is guar- ing the real problems. They do not have
anteed not to violate array boundaries. Software spend effort studying APIs for many differen
developers should still check for array bound- platforms or implementing code for such bas
aries. But if this fails, at least the state of operations, as set handling, sorting, hash tabl
the system does not get corrupted. The ex- graphics primitives, etc.

ception mechanism offers a standardised cop I .
.) L e combination of these features is rumoured
struction for handling those situations. Also

. result in a productivity increase per developer of
array boundaries are part of the language a P y P P

) f}:\ tor of 2.
can therefore be taken into account when writ-

ing loops. In fact, the exception catching mech-

anism can be legally used to end array handlirrpnpact of Java’s feature set on sys-
loops (which is not to say that this is good pro-

gramming practise :-)! tem cost
Automatic memory management: Java does

programmer explicitly return memory. MemoryS concerned, features such as language simplicity,

is implicitly allocated during creation of objectsStrong typing, and exception handling come mo
The language assumes that the operating erfi-less for free. The other features come at a hi
ronment contains a garbage collector that sho #@st:

appropriately reclaim memory. Many languages

(including C) actually do not have constructs foéost of performance penalty

memory allocation and de-allocation; they are

part of the library structure. In Java and C++phe language specifies that every array access
implicit memory allocation is part of the lantp pe checked against array boundaries. Duri
guage. In Java, garbage collection is part of thgy experiment on a real-life software system

language, in the sense that an explicit construgy KLoC simulation module, written in C), array
has been (purposely) omitted. bounds checking code could be switched off, i

Platform independence: This is achieved by creasing performance by 10%. Take into accoynt
compiling Java to an intermediary languaggat this module was only part of the complete sim-

(Java virtual machine language or Java bytgtator, which also contained a simulation kern
code, JBC). Itis not a language feature. In fagind several other simulation modules, together €
Java can very well be compiled directly into naslating a silicon system. Software, instrumente
tive code of any processor [5]. In principle, itvith Purify (a memory consistency checking tool
is not possible to compile languages such asr@ns factors slower than production code. Seve
and C++ to JBC, a.0. because Java does pobdjects [20] report overhead, caused by garba
require JBC to offer direct memory manipulacollection, to be in the range of 5% to 35%. In
tion. Java Virtual Machine language interpreteggrpretation overhead (when using a regular JBC

(JVMs) are available for most (embedded) platerpreter, not a JIT compiler) is usually reported

forms. Combined with the next item, platformaccount for about a factor 5 to 10. Together, the|
independence can result in enormous savingsf@étures result in a slow-down of a factor 20 to 4

June 2001

(6]

re
gh

has

ng
a

over the same functionality, implemented in C. This dates. Besides that, for performance reasons,
performance penalty translates into higher system most JVMs modify the instructions as they exe-
cost. The processing elements inside an embeddedcute them (turning dynamically linked code into
system are usually dimensioned very carefully to semi-statically linked code). This requires the
exactly match the requirements of the software. Ev- libraries to be placed in RAM.

ery unnecessary resource causes the eventual pradJava memory management is relatively expen-
uct to be more expensive and thereby lose market sive (in terms of memory utilisation). This is
share. An exact factor for the increased system cost partly due to programming practises, partly it is
is difficult to give. It is usually not necessary to inherent to the use of a garbage collector. Cur-
actually dimension the system 40 times larger than rent programming practise results in the con-
otherwise would be required. On the other hand, stant generation of many short-lived objects.
just scaling up the clock speed of the system is not For example, function results, as used in expres-
enough. In order for a processor to actually benefit sions often are objects, even though they could
from higher clock speed, it should also have big- just as well be scalar types (integers, booleans).
ger caches, wider memory lanes, faster on-board Returning an object causes that object to be cre-
buses, more complex board designs, etc. A com- ated on the heap. However, immediately after
mon way of increasing the Java performance is the evaluation of the surrounding expression, the re-
application of a Just In Time (JIT) compiler, which turned function results become redundant.
reduces interpretation overhead (associated with €§- The garbage collector requires that the sys-
ecuting JBC, Java’s intermediary virtual machine tem contains more heap memory than strictly
language). However, even if a JIT compiler were required by the application. Otherwise, the
to remove all interpretation overhead, Java is still garbage collector would have to be activated
about a factor 4 slower than native code (because of whenever an object becomes redundant. To-
the other performance costs, such as array boundsgether, memory allocation and de-allocation re-
checking and garbage collection). quire about 2MB of RAM, in order to run mean-
ingful user-interface oriented applications.
Specially mobile applications, provided by NTT
DoCoMo’s iMode (a Japanese mobile phone
operator), show that careful design of Java soft-
ware can result in useful applications that re-

quire only a few 10s of KB for dynamic memory
e The JVM is a relatively large piece of soft- gllocations.
ware. The smallest full implementations have

footprints of about 100KB. Because of Op,[i_AII-ln-aII, the minimum requirement for a full Java

misations, fancier threading mechanisms, aﬁE stem is about 10MB of ROM and 2 MB of RAM.

fancier user interface layers, this can increase 'S comes on top .Of sj(orage for the actual Java ap-
about 500KB. Since, in many cases, the JV ication code (which is assumed to be about the

will be part of the firmware of a system, jsame as for the same application in native épde

will reside in ROM. ROM is much cheaper thar?nd the requirements of the underlying operating

RAM. Therefore, one would be tempted to diss_ystem (which is still required when running Java).

ROM’ so that many embedded Systems COﬁ?t contain the full set of Java libraries. Part of
firmware to RAM, upon startup... the confusion around Java technology stems from

e Next to the JVM, a full Java system require@e plethora of application domain specific subsets

about 9MB of Java run-time libraries. For sey@nd €xtensions to the full Java API set. Experi-

eral reasons, it makes sense to place this cdgents have shown that the full set can be brought
in rewritable memory. In a networked enviPack to about S00KB for mobile applications, by re-

moving user interface and character conversion rou-

Cost of increased memory requirements

The increased memory requirements are due to four
factors:

ronment, this code definitely is eligible for up

'On the one hand, JBC is about a factor 2 more compact than RISC code. On the other hand, JBC is packaged in Java class

files, which contain a lot more data than just the JBC. Only some of that data gets discarded during loading.

XOOTIC MAGAZINE

tines. When disregarding the performance penaltych Java execution is added for user interface p
of ROM, and when using specially designed aposes and simple applications. Because of the kir
plications, the minimal footprint for a Java systerof applications, it is not required to have high
ends up at about IMB ROM and 100 KB RAMperformance execution. And because of the mar
Again, these costs come on top of the requiremeipissitioning, it is feasible to incorporate extra prg
for the actual (Java) applications and OS. cessing power. In this scenario, assuming that t

Itis up to the system designer to choose the appRiatform already provides some degree of graph

priate AP set and live with the consequence of n8¢PPOrt, the software development cost is increas
being able to support all Java applications. by another 2 man-years for porting and verifyin
the native parts of the Java user interface tool

“High 1evel GUI 1 (e.g. Sun’s Abstract Windowing Toolkit, AWT).

Ml The maintenance cost will remain at about half
sInternet (e.g. URLs) -

e ~ man-year, annually.

+(Streams)

*Threads

sExceptions

Ul primitives :
“TCP/P stack .
~JPG/GIF loading JavaCard
*File handling

Application BC
20% - 40%

sclass loading
s«class verification
*BC interpretation
*Garbage collection

Figure 2: The complexity of the Java technology char
stems from the fact that it consists of many API sets,
most of which are not precisely subsets of each other., i

The left column lists the functionality of the APIs. The L I bra ry BC
rightmost box gives a number of product dependent ARl §RA8
extensions

Cost of increased system complexity

These costs are difficult to quantify in a gener Native
sense. But we can give an indication of the issueq
play. What is meant here are the costs associ 20% = 40%
with having to design and maintain software a

hardware colmponent.s that are Imore complex tlﬁﬂure 3: Applications spend 20% (large apps, right
would be strictly required for native operation. bar) to 40% (small apps, left bar) of execution time on

The simplest scenario is where efficient executiovtive code. Consequently, 60% to 80% of time is spe
(i.e. interpreter performance) and graphics (user 1 bytecode interpreting.
terface) are not required. There are few examples

of such systems, because devices without user intgke next scenario are the medium to high-end cd
faces usually constitute high-volume, low cost magymer devices, such as set-top boxes. In the n
kets. Anyway, in that scenario, the only engineefgture, they will adhere to standards such as M(
ing cost is associated with porting a bare-bones Ja¥aedia Home Platform (MHP [3]), Home Audig
interpreter to the target system. An experienc&figeo Interoperability (HAVi [6]), and Jini, which
software engineer spends about half a man-yeargiply Java for complex tasks, combining syste
porting, testing, and verifying a software stack likgontrol and advanced user interface technology. [
Sun’s KVM. Given frequent updates, both in Javgyite the market positioning (medium to high-end
interpreter software technology and hardware plage consumer price for such systems does not
forms, the same cost will probably recur for mainpw for the inclusion of PC-class hardware. In th
tenance on a yearly basis. first versions of these devices, the processor sp
A more complex and realistic scenario would his limited to about 300MHz. Internal memory i
the higher-end hand-held and mobile devices, imthe range of 16MB to 32MB. Harddisks are ng

June 2001

r-
nds

Ket

he
cS
ed

g
Kit

a

n_
ear
l-

m
he-

al-
e
red

L

—

yet part of the package. The heavy use of Jawade-offs, where an improvement on one axis of the
in advanced user interfaces requires an optimiseube means a degradation on another axis.

Java interpreter, sophisticated graphics stack, and
native multithreading support. Several companies
deliver speed-optimised interpreters, often in com-
bination with JIT compilers. Because of their com- 4
plexity, these systems require significant up-fron S e iy Hl---1---->»
and running licensing fees. Therefore, a choic‘% ‘ BC.Accd
for any package requires an extensive selection pr@- e ;

cess. Usually, this selection process involves expeg L.
imental ports of several rival software stacks onté* S
simulators of the projected hardware system (dur- |]
ing those preliminary experiments, the actual hard- Y
ware is often still in the design phase). This selec-
tion phase may already involve several man-years
work...

This paragraph dealt with some of the issues, sfifgure 4: Cube of execution enhancing technologies,

rounding the complexity of adding Java suppport {Bdlcatlng some postitions, relative to Sun’s standard
mﬁrpreter (pJava).

several types of embedded systems. Even thoug

the list of issues per scenario and the set of scenar-

ios are not complete, | hope this paragraph gives 3iT Compilers

idea of what to expect.

KVM

Wo% v

Performance

JIT compilers [8] were already categorized as
generic software solutions for increasing Java ex-

: _ecution speed, at the cost of increased memory util-
What TeChnOIOgleS are used to de isation. Itis therefore questionable whether they ac-

crease Java’'s execution cost? tuallly decrease execution cost. If memory is more

expensive than processor silicon, this may not be
Obviously, the choice of technologies depends time case.

the actual costs of the bottlenecks, as discusseqamadoxica”y, the pure JIT (Just In Time) compiler
previous sections. For example, it makes no sergRtems can also be called "Just Too Late”, because
to optimise thread synchronisation for small embeﬂTey start compiling a (Java byte) code sequence at
ded devices that are not expected to perform mugfz exact moment the user/system (first) needs that
multi-threading. However, in most cases, it dogsarticular function. Especially on embedded sys-
make sense to write the main interpreter loop in agms with relatively light processors, this initial call
sembly, since this is where most JVMs spend abgyhy take a long time. Also, this behaviour is partic-
80% of their time [20]. ularly disruptive to real-time operation.

When analyzing technologies, we can make sevefiglorder to prevent the Just Too Late behaviour and
more or less orthogonal categories: hardware vergiésrease memory cost of pure JIT compilers, profil-
software, memory versus speed, and domain Spgy JIT compilers were introduced [HotSpot, 21].
cific versus generic. Conveniently, this set of cagesides a compiler, such a system also contains
egories can be represented as a cube with moreyOfonventional interpreter-based execution mech-
less orthogonal sides, see Figure 4. For exampigism. Initially, all code is executed by the in-
JIT compilers are generic software enhancemert@,preter_ For every distinct code block (usu-
which impact the speed of the interpreter, at the Ce#ly method), the frequency of its invocations is
of increased memory utilisation. measured. When this frequency exceeds a cer-
In the following sections, we will categorize andain threshold, the code block gets JIT-compiled.
discuss a number of common optimisations to Javhis approach generally decreases memory require-
execution mechanisms. What we will see is thatents, because no memory is waisted on the trans-
as is usually the case, most optimisations involNation of blocks that are executed infrequently.

XOOTIC MAGAZINE

However, we do have to take into account that tloeocode, splitting complex operations in sequenges
JVM has grown larger, because of the extra intesf more basic operations. Microcode can be seen as
preter and profiling software. It also remains to keekind of processor-internal 'software’. Specialised
seen whether this approach performs as well agava processors can implement most bytecodes|us-
JIT-only solution, since initial interpretation runsng microcode. However, the really complex byte
and profiling efforts may decrease overall perfocodes can not be implemented using such an ex-
mance. tremely low-level language. Therefore, in spite of
the promise of generic Java programmability, heayy
investments in software development environments
for those processors do have to be made.

These are domain specific software optimisatioA§1d even if C/C++ software development enviror

for reducing memory utilisation, usually at the exnents are available for those specialised Java pro-
pense of performance. cessors, they usually still do not run all the required

JavaSoft's KVM [21] and JavaCard [21] are exarAggacy software. For example, because the legacy

ples of interpreters that do not support the full set 8?ftware was programmed n assembly. or requires
Java bytecodes. the support of an operating system that is not avail-

Th for JVM 4 1ib imol able for the Java processor. This would mean that a
€ same goes for S and library Implemeiya,q purpose CPU needs to be added to the hard-
tations that support only a subset of the stand

p APls. Usually. th b ictod ! re system. |If the project can afford to develap
ava s. Usually, those subsets are restrictegyin ,, ICs, the additional direct cost is limited t

. i D
terms of user mterche capab_llltles. For examplg,few euros worth of silicon per product. However
the Truffle [2,1] user |n'terface library can °”'Y h_arﬁ the project has to rely on off-the-shelf hardware
d:e one aé)plllcatloan\Illln(Z!OV\S at an);]tlms. It IdS 'Mextra ICs and increased circuit board size have to|be
pement_e amqst ully _|n gva, t ere_ y reduCiNgjed to the bill of material and product form fag
the rqulred _natlve fun_ctlonallty to a minimum (ba@r_ In terms of system design, going from a single-
sically just p|>fel df_aW!”Q)- However, _because AcPUto a multiprocessor solution adds a whole new
most all functionality is implemented in Java anget of problems, such as communication protocdls,

supplied as Java bytecodes, Truffle is also relat'v%é{che coherency protocols, and resource access ar-

slow. bitration. This gets aggravated in the case of hetefo-
geneous multiprocessor designs, consisting of dif-

Specialised processors ferent types of processors.

Of course, a specialised Java processor (even a
These are generic hardware solutions for acceleﬂﬁ'é‘terogeneous multiprocessor, incorporating a Java
ing bytecode execution. Depending on (non-Javgdocessor) probably contains less silicon than a sin-
legacy code requirements, the inclusion of a genegé general purpose processor, offering the same
purpose processor might still be necessary. In thgla performance. However, the question is, can't
case, the solution will come at the cost of increaS% f|nd amore Opnmal approach’ especia”y rega’d_
silicon area and increased system complexity, bqﬂg the system design issues?
in terms of hardware and software system design.

Examples of specialised processors are Pico-

Java [16], Moon (Vulcan ASIC), and Shboom (P&8ytecode accelerator hardware
triot Sciences). These are all processors that run

the complete Java bytecode set natively. Keepliike specialised processors, these are hardware|so-
mind that the Java Virtual Machine language reprietions for accelerating bytecode execution [11, 13].
sents a Complex Instruction Set Computer (CISGJowever, they assist a general purpose processar in
In fact, some Java bytecodes are extremely coexecuting Java. Therefore, the complete solutipn

plex, involving memory allocation, initialisation,always consists of a processor and an accelerator.
string table searches, and/or bytecode loading. Simce this processor is relieved of many of the Java
a regular software interpreter, this requires thoaxecution tasks, it can be relatively small. Besides

sands of cycles. Normally, CISCs contain mihat, the accelerator module itself should be signifi-

Subset interpreters

June 2001

cantly smaller than the Java processors in the afooey devices. But the memory device business in
mentioned heterogeneous designs. very a cost-sensitive commodity market. Specially

In its simplest form [2], the accelerator is actuallfesigned garbage collected memory chips can not
a translator from Java bytecodes to CPU native ipe Produced in sufficient numbers to make them
structions. It can be seen as an instruction-level Jfgmmercially viable.

compiler, implemented in hardware. Because it Another approach to at least alleviate the garbage
implemented in hardware, it can perform its tasks @ollection bottleneck is to implement several types
parallel to the processor doing the execution of tloé software algorithms. Some algorithms are par-
generated code. Because the translation takes plia@darly good at quickly finding a large number of
at instruction level, the system requires very littlshort-lived objects. Other algorithms are more thor-
storage for intermediate results (a matter of sevealgh, but also more time consuming. Therefore,
bytes, rather than several megabytes for a softwéne heap is divided in a space for short-lived ob-

JIT compiler). jects and a space for older objects. The former ones
One instance of such an accelerator will be didte scanned quickly. Objects that have survived a
cussed in more detail in the next section. number of those scans are moved to the latter space,

which is scanned with the thorough procedure. The
performance benefit results from the expensive pro-

Graphics accelerators cedure having to scan only part of the heap.

Measurements have shown that, for meaningful

Java applications, 2D graphics processing takgptimised thread synchronisation

10% to 20% of all processing time [20]. The rea-

son is that most Java applications are user-interfalda is a multithreaded language, heavily oriented

intensive. After optimising Java bytecode proceswwards re-use. This means that designers of Java
ing, the relative impact of this factor will increase tglasses alsways have to take into account that mul-
20% to 50% of all processing time. This means thtple threads may wish to concurrently access the

graphics acceleration only becomes an issue aftgernal data structures of those classes. Every ob-
bytecode acceleration. ject that may be accessed concurrently has to be

Graphics acceleration is a domain specific optinfrotected against multiple threads interfering with
sation. It only has use in environments that requif@ch other's changes. Therefore, Java objects are
media processing or have graphical user interfac§chronised very conservatively. The synchronisa-

and large screens with some degree of color deptn operations involve threads performing operat-

Obviously, adding a graphics accelerator meal§ system calls for claiming excl_uswe access, get-

: ting blocked as long as the claim can not be re-
higher hardware costs. LT .

warded, and relinquising the claims when the oper-

_ ations have finished. These operating system calls

Multi-level and hardware garbage collectors are very expensive. A lot of time can be saved if one

) _ can utilise the fact that actual interference is very
As was mentioned before, garbage collection alﬁ%e

accounts for a significant amount of performance

loss. As with graphics, this is very application de-

pendent. Garbage collection seems to be a 9°AdHardware approach to accelerat-
candidate for acceleration through hardware. Some .

attempts have been made, including in the authot*dd Java execution

own projects [12]. In fact, it is not very difficult to

implement certain garbage collection algorithms fiyt Philips Research, we've been working since the

hardware [14]. end of 1996 on hardware for Java acceleration in
However, garbage collection algorithms themselv g pedded iys.tetn?s. The work started from the fol-
require substantial and variable amounts of memy/Ng constraints.
ory. This can only be efficiently achieved by inte-e chip area increase should be minimal (e.g. much

grating the garbage collection logic with the mem- less than size of low-end 32-bit RISC CPUSs),

XOOTIC MAGAZINE

e memory utilisation should not increase, conthrough a standardised bus also means no other

pared to software interpreter, parts of the hardware system need to be modified.
e solution should be compatible with modern
RISC CPUs (since general purpose CPUS I [Memory lr ~ Jeru
main necessary), Native JInstr. |
Code Cache

|
e solution should be modular (i.e. have minimz '
|
|

|
|
' o
impact on other components in an embedd byte o vmI N %
system), in order to facilitate re-use, |
i {Java) | Data
e performance increase should be at least a fac | |{Jav | o ks,
L — — —

5 over a regular software interpreter.

We found a solution in the form of a translator modkigyre 6: From an abstract hardware point of view,
ule, which assists general purpose CPUs in exg@yiiis placed between the memory and the CPU

cuting Java bytecodes. We called the module Vjipeline, feeding the pipeline with translated bytecode
tual Machine Translator (VMI). Later, we found [2],

which gives a good description of many of the conxfter having indicated how the solution is intended

cepts. VMl is very small. Essentially, it consists of solve the problem, while keeping within the cor

tables that direct the translation. These tables cgpaints, it is now time for some more technical de-

be implemented in a very compact way. VMI neeqg;|.

very little computational logic, since most COMPUy, oot computer systems contain at least a CPU

tations take place on the general purpose CPU. (Central Processing Unit) and a memory. The CH

can be seen as a robot, which is able to execute
@ quences of instructions. For example, a car cg

Java Virtual Memory
BC inter- Machine man agér
preter =

Figure 5: From a software point of view, the bytecode©r printing a document. The CPU reads those i
interpreter module is simply replaced by hardware (asstructions from the aforementioned memory. Th
the garbage collector module might be) we find the instructions for the Java applications

the memory and require the CPU to fetch and su
Since part of the Java interpretation task is now iri€duently execute them. However, general purp

cutes thousands of those instructions. In the sa
way, CPUs execute billions of instructions for

simple task, such as drawing an image on a scre

n

struction robot repeatedly executes instructions that
tell it to move, pick up components, attach compp-
nents, measure parts of the construction, etc. In pr-
der to assemble a complete car, such a robot exe-

n
b-
pse

plemented in hardware, the memory utilisation a&PUs do not understand the Java instructions (also

tually decreases slightly (we need less code to if@lled 'bytecodes’). This is where the Java Vir

plement the Java interpretation software). Since ti&@l Machine software comes in. It translates t|
actual operations take place on the general purp&¥gecodes into instructions that the CPU does
CPU (remember that VMI is only a translator), thergerstand. This means that next to the function
are no problems with data coherency between #% Of the bytecodes themselves, the CPU needs
two processing elements. Contrary to most othepend time on the interpretation task. A very sin
accelerators, VMI has been developed completdl|g interpreter for some of the bytecodes could
separately from the CPU. CPU and VMI only comProgrammed as follows:

municate through the on-chip system bus. Cur- ,

rently, most integrated microcontroller devices co -'unflgf]ec,j 'nt.ertpretterf) ihar d*pc *)/ {

_tain standardised qr_l-chip bl_Jses. Therefore, bui l- uns?gne?jOIst[S?ACﬁfg?zé]s;

ing VMI for a specific on-chip system bus, meang « 'sp' compute result stack */

it is compatible with all CPUs that can be attachegl while(TRUE) {

to that bus. The fact that VMI communicates onlg. switch(*(pc++)) {

ne
n_
al-
to
’]-
be

June 2001

7. case push_const : stack pointer indirections, the translator simplifies
8. *(spt+) = *(pct+); the translation by substituting the stack values in
9. break; the instruction sequences (inspired by [4]) and do-
12' Casse__‘?Op : ing the stack pointer updates internally. The result-
12: bfea;k; ing translation_ sequences have_ an average length of
13. case add ° about 2 CPU instructions. All-in-all, the translator
14. *(sp-2)=*(sp-2)+*(sp-1); provides a speed-up on the above bytecodes of at
15. sp--; least a factor 15.

16. break;

17. case ret :

13: [f;;”arﬁ (sp-1): Conclusions, Future Work, and Ac-

20. 1} knowledgements

21. }

22}

Java is becoming an important language for embed-

ded systems programming. However, before Java-
The above code does not need to check stack Wased products can become a success, the cost of
der/overflow or code overrun conditions, becauseifie Java execution mechansism has to be reduced.

Java this is done statically. Most companies providing Java execution mecha-
Notice that the above instructions (pusbnst, pop, nisms advertise their solutions citing a single bench-
add, ret) are about as powerful as regular CPU ifark (e.g. [17]). In this article, | hope to have made
structions. However, the while-switch-case-bregkclear that performance is not the only factor at
construction (lines 5, 6, 7, 9, etc., in the code abovghke and that JVMs are such complex systems that
usually requires between 10 and 40 CPU instrugsingle-point measurement of performance can not
tions per iteration. The actual functionality of thgjve an accurate indication of relative qualities.
bytecodes (!mes 8,11, 14, 15, and 18 n the (,:O(Iiﬂe interest in incorporating Java in embedded sys-
above) requires between 5 and_ 10CPU '_nStrUCt'Ol?éms is still increasing. Despite Moore’s law (pre-
The' reason is that the st_ack_ pomter-rela’uve addregéfibing that compute power will steadily increase),
ng |ntro<_juce§ an extra indirection and becguse tfﬁ%re is a continuous need to taylor Java implemen-
stack pointer itself needs to be updated. This Me3Btions to the strict requirements of embedded sys-

thata CPU needs to execute 15 to 50 instructions {8Fns. Java acceleration technologies seem to offer

operations for which it would normally require 1 0fnteresting advantages, but their commercial viabil-

2 instructior_ls. This means a 7x to 50x interpretatiq@ still needs to be proven. On the short term (dur-
and execution overhead per bytecode. ing 2001), JIT compilers will find their way into
Going back to the accelerator concepts: systems with little real-time and memory restric-
In order to reduce the interpretation overhead, tliens. On the somewhat longer term (before 2003),
program counter is moved from the CPU into the asre will see bytecode accelerators opening up ex-
celerator. The accelerator now reads the bytecode=snely constrained devices to the Java language.
from the memory and determines the location in i&D graphics accelerators are already used in embed-
translation tables of the corresponding sequencedefd systems with heavy user interfaces. The sophis-
CPU instructions. It performs this task within théication of garbage collection systems is constantly
time the CPU needs to execute the previous transteereasing, but much work remains to be done here.
tion. Thereby, the while-switch-case-break bottlétis questionable whether garbage collection hard-
neck is completely removed. ware will ever become viable.

In order to reduce the time needed for the actdalvould like to thank the members of the Java
functionality (remember that push, pop, add, atthrdware Accelerator project at Philips Research
ret require 5 to 10 CPU instructions), the stadkr their enthousiasm, in particular Otto Stein-
pointer is also moved from the CPU into the translausch (currently at Philips Semiconductors), Nar-
tor. Now, instead of just providing the correspondisse Duarte (currently at Canal+), and Selim Ben-
ing sequence of translated instructions, includingdder. I've also had many valuable discussions

XOOTIC MAGAZINE

with Pieter Kunst, Nick Thorne, Harald van Woerf14] K. Nilsen, Progress in Hardware-
kom, and Paul Stravers. Assisted Real-Time Garbage Colleg

References

[1]

2]

[3]

[4]

[5]

[6]
[7]

[8] A. Krall, R. Grafl, CACAO - A 64 bit JavavM

[9]

[10]

[11]

[12]

[13]

tion, lowa State University, 1995,
http://www.newmonics.com/dat/iwmr5.pdf

_ [15] K. Nilsen, Issues in the Design
K. Arnold, J. Gosling, D. HolmesThe Java

Language Specification Addison-Wesley

Java, NewMonics, Inc., April 1996,
2000, ISBN 0-201-70433-1

http://www.newmonics.com/dat/rtji.pdf

E.H. Debaere, J.M. van Campenholtter-
pretation and Instruction Path Coprocessjnd16] J.M. O’Connor, M. TremblayRicoJava-I: The
The MIT Press, 1990, Cambridge MA, USA Java Virtual Machine in Hardwarepages 45-

- , 57, IEEE Micro, 1997-03/04
Digital Video Broadcast Mul-

timedia Home Platform,

http://www.mhp.org/htmlindex.html [17] Pendragon Software, Caffeine-

Mark 3, http://www.pendragon-
M.A. Ertl, Implementation of Stack-Based software.com/pendragon/cm3/info.html
Languages on Register MachindzhD thesis

Technische Universitaet Wien, Vienna 1996 [18] Philips Research,Mobile phones, set-top

The Free Software FoundatioThe GNU boxes, ten times faster with new Philip
. . accelerator for Java, January 2001,
Compiler for the Java Programming Lan-

) . http://www.research.philips.com/press-
guage http://www.gnu.org/software/gcc/java media/010101. html

HAViI, http://www.havi.org

] Philips Semiconductors, Java hardware
accelerator for embedded platforms, Philip
Semiconductors World Newsopvember 2000,
http://www.semiconductors.philips.com/pub-
lications/content/file680.html

J. Hoogerbrugge, L. AugusteijnPipelined [19
Java Virtual Machine Interpreters9th Inter-
national Conference on Compiler Construc-
tion, April 2000, Berlin, Germany

Just-in-Time Compilerinstitut fuer Comput- [20] O.L. SteinbuschDesigning Hardware to In-
ersprachen, Technische Universitaet Wien, Vi- terpret Virtual Machine Instructions; Con-
enna, 1998 cept and partial implementation for Java
Byte Code,Master’s thesis, Eindhoven Uni
versity of Technology, February 1998, TUE
ID363006

M. Levy, Java to Go: Part 1; Accelerators
Process Byte Codes for Portable and Em-
bedded ApplicationgZahners Microprocessor

Report, February 2001))
[21] Sun MicroelectronicsJavaSoft; The Source

T. Lindholm, F. Yellin, The Java Virtual Ma- for Java Technologyttp://www.javasoft.com
chine SpecificationAddison-Wesley, 1996-09

M. Lindwer, Versatile Java AccelerationBiography. Menno Lindwer is a Senior Sciens
Hardware,2001, to appear... tist at Philips Research in Eindhoven (The Nethé
lands). He has been involved in hardware d
sign (methodology) since 1991, graphics accele
tion since 1995, and Java acceleration since 19
Nazomi, Nazomi Communications; HighMenno holds a Master's Degree in computing sq
Performance Java Technology for Moence from Twente University of Technology (1991
bile Wireless and Internet Appliancesand a post master's degree in software technolg

X. Miet, Hardware for (Java) garbage collec-
tion, ENST, Paris, France, October 2000

http://www.nazomi.com from Eindhoven University of Technology (1993).

June 2001

and Implementation of Real-Time

n

[72)

Other interests include object oriented design, sificrance) and Eindhoven (The Netherlands). Previ-
ulator technology, and system-on-silicon architeous work experience includes a.o. artificial intelli-
ture. Menno joined Philips Research in 1995. Cugence systems, research in delay insensitive asyn-
rently, he is in charge of the Platform Indeperehronous circuits, and performance analysis of 3D
dent Processing and Java Hardware Acceleratigraphics accelerators.

projects at Philips Research in Limeil-Brevannes

XOOTIC MAGAZINE

Python

Victor Bos

“And now for something completely different...” Python is a scripting language
with clear syntax and semantics, support for object orientation, and an exten-
sive standard library. In contrast with many other scripting languages Python
code is readable and, therefore, reusable. This makes Pyhton a useful tool for
software development, since it can be used to implement prototypes as well as
production versions of applications.

Introduction The language

The syntax of Python is quite standard, as will be

shown in examples throughout this article. How-

ever, there are some controversial aspettslen-

tation of groups of statements is one of them. If a

group starts on a new line, all its statements should
Python is ascripting or extensiorlanguage similar be indented by the same number of columns. For
to Perl [12], Tcl/Tk [8]. In his foreword tcPro- €xample, a while loop is written as:

gramming Pythor{6] Python’s creator Guido van, e i<n and (i)<f(n):

Rossum wrote (See [11])!] decided to write an afil = (i)

interpreter for the new scripting language | had i=i+1

been thinking about lately: a descendant of ABC

that would appeal to Unix/C hackersThe ABC The statementa[i] = f(i) andi =i + 1

|anguage’ [5], has never become popu|ar7 Wh|chf£§m a group. Since indentation is used to indi-
partly caused by its peculiar syntax, but it was welpte groups, no group delimiters likeand} or
designed. In addition to ABC, Python was influpegin —end are needed. Programmers unfamil-
enced by Modula-3, an object oriented descenddit with Python might find this irritating, however,
of Pascal meant for system programming, seef[it]is not a drawback. Experienced programmers
This resulted in a scripting language with clear syfin no matter what language) have usually adopted

tax (which is not common for scripting languagedheir own style of indentation for groups of state-
and powerful language constructs. ments. Since Python does not prescribe the number

Furthermore, Python comes with an extensive stdf-columns of indentation, these people can keep on
dard library that provides the programmer access4dnd their own style in Python. Furthermore, the
a huge set of routines. Therefore, a Python prggde does not get messed up with group delimiters.
grammer usually does not have to spend much time

to implementation details of standard routines likBuild-in data structures Python has the follow-
matching a regular expression on a string, or dag data structures build-in: integers, floats, strings,
cessing operating system functionality to create proples, lists, dictionaries, and functions. There are
cesses, pipes, etc. Instead, a Python programmerbooleans, which is a shortcoming not only of
can just look up the relevant Pythamodulesin the Python but of most scripting languages. Integers,
standard library and use them to solve her/his prdipats, and strings are standard data structures which
lem. we will not discuss here. A tuple is ammutable

June 2001

sequence of elements, that is, it is a sequence(@f0) could be created by callingoint() . Other

which the elements cannot change once the tuglecial methods are used to overload operators and

is created. Lists are mutable sequences of elemeRtld-in functions. For example, the add__

elements can be added to and removed from lidlaethod can be used to overload theperator. By

A very powerful build-in data structure is thac- extending theboint . class with the following defi-

. - : ._nition of __add__, we can writepl + p2 in or-

t!onary. A dlctlor)gry is a look-up table or associager tg add the points1 andp2.

tive array containing key-value pairs. Hashing is

used to look up a key in a dictionary which meangef _ add__ (self, other):

dictionaries have fast access times. Finally, func- return Point(self.x + other.x,

tions are first-class objects in Python. Therefore, self.y + other.y)

Python programs can be a mix of functional and im-

perative programs. Aambda-syntaxknown from The other strange part of the examples above is

many functional programming languages, is uséf Self -parameter of__init__, dist , and

to denote anonymous function. For example, thef"‘dd_ . Th.IS parameter is a self-reference to the

function that adds two elements could be written fPi€Ct on which the method is invoked. Whereas

Python adambda x, y : x + y . Since thisis I most object-oriented languages there is usually

a normal object, it can be assigned to variables, 4 need to make the reference to an object it-

will be shown later. self explicit, in Python it is. Furthermore, the
self-reference is always the first parameter of the

. . . method. By convention it is calleself , but the
Universal object model Python has ainiversal . . "
object modelwhich means that every piece of dafirogrammer is free to choose another identifier.

in a Python program is an object. As usual in objeBo, in a constructor_(_init__) self refers to
oriented programming languages, an object has e object that is created and in a normal method
tributes that define the state of the object and met@ist or _add__) self refers to the object on

ods to allow other objects to perform operations Qpich the method is invoked. In some program-

the object. For example, the following Python code. s -
defines a clasBoint of objects with an: and ay %'ng languagesthis is used instead ofelf ,
e.g., C++[9] and Java [1].

coordinate and a methatist to compute the dis-

tance between two objects. Unlike many object-oriented programming lan-
guages, the set of attributes and the set of methods
class Point: of an object are not constant during its lifetime. For
example, the following code createPaint ob-
def __init_ (self, x=0, y=0): ject, changes itg-coordinate, and adds a color at-
self.x = x tribute.
selfy =y
p = Point()
def dist(self, other): pX = pXx + 4
dx = self.x - other.x p.color = "yellow"

dy = self.y - othery

return (dx**2 + dy**2) ** 5]
Programming styles Python supports three pro-

In the definition ofdist , the two argumerit* op- gramming styles: procedural, object-oriented, and
erator is usedx ** y raisesx to the powery. functional programming. Furthermore, these styles
The example shows at least two syntactic peculia@n be mixed arbitrarily. Of course, an unrestricted
ties. First of all, Python has special syntax for spgiix of these three styles will not improve read-

cial methods like the_init__ method. The spe-ability and maintainability of the program and it is

cial syntax, which in my opinion is quite ugly, istherefore wise to stick to one style as much as pos-
an identifier that starts and ends with two undegpie However, programming styles are meant to
scores. The init__ method is special, SINC€ase programming and not to restrict the freedom

it is a constructor of thé?oint class and will be £ th Theref if . .
called whenever a point is created, for exampl@! the programmer. Therefore, It In a given situa-

the point(1, 2) is created by callingoint(1,2) . tion one particular style is not adequate, it should
Note that the coordinate arguments_ofinit__ be possible to switch to another style. Python sup-
have default valuesx=0 and y=0, so the point ports programming using multiple styles, whereas a

XOOTIC MAGAZINE

pure functional language or a pure object orient&r example, consider the following Python cod
language does not. On the first line, a list of three points is created

The following Python listing is an example showP" the second line, this list is printed. Theap

ing the three programming styles. First we take tfjg1ction takes a function and a list and applies th
Point class again and extend it with the specifnction on each element in the list. The functio
method . str . This method will be called if Stt retums a string representation of its argumen
aPoint _object should be represented by a strinfj,2PPlied to aPoint , it calls the special method
e.g., in order to print it. After the class defini—St_ defined above. The third line create
tion, two functions are defineccloserToOrig a list of numbers representing the distance of t

andfindMax . The functions are not part of the?Cints in listl to the origin. Finally, the fifth line
Point class, because their indentation is not t%&!S thefindMax: function with argument$ and
same as the indentation of the class body. TRQSErToOrg in order to find a point iri that
functioncloserToOrig takes two points and de-,
termines if the first is closer to the origin, i.e.',n .
Point(0,0) , than the second. ThindMax)))

function is a generic function that takes a non-= [Poink(3.4), Point(), Point(2,1)]
empty list of elements and a compare functidifint map(str. 1) , ,
lessthan . The compare function determines ifitd = map(lambda x: x.dist(Point()), 1)
first argument is less than its second argument. NSt map(str, d)

thatcloserToOrig is such a compare function. pmrin:t IL”dMaX(L closerToOrig)

class Point: _ _
The output of this Python code is:

def __init_ (self, x=0, y=0):

self.x = x [’(31 4)'1 ’(Ov O)', ’(21 l)’]
selfy =y [5.0°, '0.0", '2.2360679775"]
3. 4

def dist(self, other):

dx = self.x - other.x .
dy = selfy - othery Standard library

return (dx**2 + dy**2) ** 5

Python comes with an extensive standard library

=]

Is at least as for from the origin as all other points

D

t.

def __str__(self): organized inmodulesand packages Furthermore,
return (*(..+ "Sti(S:tlrf(.)s(:)eler) N the standard library is mostly platform indepen-
)) Y dent. People familiar with Java will recognizé
much of the functionality, like network program
def closerToOrig(p0,pl): ming, threads, and a standard windowing toolkit. |n
return (p0.dist(Point(0,0)) < addition, it includes modules that define Perl-like
pl.dist(Point(0,0))) regular expressions and powerful string operations.

—

In this section, | will discuss some functionality o
Python’s standard library. For more detailed infoy
mation, see [6, 2].

def findMax(list, lessthan):
if len(list)>0:
m = list[0]
for i in list[1:]:

it lessthan(m, i) Internet Internet programming is one of the mos

m =1
return m of the reasons for Python’s popularity is that
else: the standard library provides functionality by
print "No max in empty list" which both server and client side Internet ap-

plications can be written. For example, the

Given a list of elements and a suitable compare
function on the elementgindMax finds a max-
imal element in the list with respect to the com-

modules urlparse and mimetools pro-
vide functionality to manipulate url strings and

pare function. For instance, given a list of points, mime encoded messages, respectively. In ad-
findMax can be used to determine a point that is dition to these modules, there are modules |to

at least as far from the origin as all other points. process HTML, XML, and SGML documents

June 2001

—

important application domains of Python. One

modules that provide HTTP servers, and mod-
ules to write CGI scripts. The fact that many
CGI scripts are written in Python and that
there exist full size web-applications, like Zope
(http://www.zope.org/), shows that Python is
popular among internet application program-
mers.

Operating system servicesPython has build in

functionality to read and write files. In ad-
dition, the standard library offers functionality

alization is platform independent. Therefore, it

is quite easy to store the current state of an ap-
plication as a sequence of bytes in a file, transfer
it to another computer (which also runs Python),

and to continue with the application in the same

state on that computer. Usually, serialization

is applied not to complete applications, but to

some crucial data structures of the applications
that should be available the next time the appli-

cation is executed.

to handle files and directories, sub-process@$jreads Python supports multi-threaded applica-
streams, and pipes. The sub-processes need notions. The threading modules resemble to some

be Python programs, but can be any program
that runs on your system. In this way, Python
can be used to control different applications or
as a communication means between different
applications.

Profiling Python comes with aeterministic pro-

filer. The online Python reference describes de-

extent the threading mechanism of Java. Multi
threading is very useful for writing server appli-
cations. For example, an HTTP server is usu-
ally written using multiple threads. In its main
loop it waits for a client to make a connection.
As soon as a client makes a request, the server
creates a new thread that processes the request.

terministic profiling as follows: During the processing of the new thread, the
Deterministic profiling is meant to reflect the Main loop is ready to accept a new request.
fact that all function call, function return, andWindowing toolkit A common application do-
exception events are monitored, and precise tim- main of Python is graphical user interfaces.
ings are made for the intervals between these Since the standard library has a windowing
events (during which time the user’s code is ex- toolkit, named bytkinter ~ and derived from
ecuting). In contrast, statistical profiling ran- ~ Tcl/Tk’s Ul widgets, writing a user interface in
domly samples the effective instruction pointer, Python has the advantage of being platform in-
and deduces where time is being spent. The dependent.
latter technique traditionally involves less over-
head (as the code does not need to be instru-
mented), but provides only relative indication®ython glue
of where time is being spent.
A profiler is an important tool for an extensiOne of the goals of Python is to act as a
ble scripting language, since it enables softwa@dle language that connects different applica-
developers to analyze an application thoroughligns and libraries. To be more precise, Python
and make the right decisions about which roM@s developed to be used in an open environ-
tines are time critical and should be implement in which Python programs could be inte-
mented in a system programming language, a@igited with non-Python programs. Therefore,
which routines are less time critical and caRython was developed to be embed-able as well
therefore be written in the scripting languagés extensible and interfaces of how to embed
Below, | will explain the possible role of theand extend Python are well documented, see
Python profiler in a software development prdittp://www.python.org/doc/current/ext/ext.html,
cess. Chapters 14 and 15 of [6], or Appendix B of [2].
Serialization Serialization is the transformation of*S @ glue language, Python greatly facilitates reuse
a (run-time) data structure into a sequence 8f€Xisting code, for example, see [3].
bytes such that it is possible to recover the origembedding Python means integrating the Python
nal data structure from the sequence of bytes.ifierpreter in another application such that Python
Python’s standard library, several modules exigtograms can be run from within the other appli-
to serialize arbitrary objects. Furthermore, segation. This effective adds all of Python’s script-
ing power to the hosting application. Extending

XOOTIC MAGAZINE

Python means integrating applications or librariéms to be turned in an object file that can be load
in the Python interpreter such that its is availabtlynamically e.g., shared libraries or DLLS, or thg
from within Python programs. It is possible to emis linked statically with the Python interpreter. Th
bed and extend Python at the same time. As usuatapper should take care of the translation betwe
such a union based on equality can be very fruitfulata structures of Python and the data structures

If Python is used to glue applications and libraridge library. The conversion between C/C++ an
together, care should be taken that it does not Rython data structures is documented extensiv
place techniques especially designed to act as andid, therefore, after some reading, not difficult.

terface between software components. In fact, usifgols have been developed that create wrappers
Python as a glue language and using a standardimmdatically. SWIG is one of such tools and stang

interface technique should be orthogonal design der Simplified Wrapper and Interface Generator

cisions. For example, if the application is supposege http://www.swig.org/. SWIG is not just a tod
to be available at somebject marketsee [10], its to create wrappers and interfaces for Python, it ¢

interface should be defined using a standardized &lso generate interfaces for other languages, €.
terface technique, e.g., CORBA or XML, instead d?erl and Tcl/Tk. SWIG comes with extensive do¢

Python. umentation and the SWIG user guide (availab

So, if there are good arguments to use CORBA @ http://www.swig.org/doc.html) has devoted on
a situation where Python is not used for integr&hapter to the combination of SWIG and Python.
tion, then it should still be used if Python is used

for integration. This claim can be turned around @(amme of a Python Extension Since extensi-
well: if Python can be used for integration, then usjlity of Python is one of its most powerful features
ing a standardized interface technique is probahlgpend the remainder of this section to descri
too much overhead. As is explained below, intgny experience with extending Python with an ‘off
grating existing code with Python requires the iRhe-shelve’ BDD library. A BDD Kinary decision
terface (C/C++ header files) of the code to be avaflragran) is a data structure to store boolean fun
able which can be problematic in a commercial efions [4] space efficiently. For this article, it is no
vironment. However, in that case, integration witthecessary to explain BDDs, but it suffices to gi\
out Python is at least as big a problem. some examples of what can be done with BDD
A prerequisite of extending Python with a given liFirst of all, BDDs manipulate boolean functiof
brary is that the interface of the library is defined isymbolically. For example, given a BDD for twg
C-header files or that the source code is availablebiaolean functiongy and f,, there are BDD opera-
C or C++. This is a limitation, since there are useftibns to compute a BDD for the functiand fo, f1)
libraries out there for which no C-header files exiefined by

ists. However, for almost any subject there exist C

and C++ libraries as well or if the source is available and(fo, f1)(b) = fo(b) A f1(D).

in, say, Fortran, then writing a C-header file for it is .

not too difficult. Furthermore, if Python should bé]‘here are also operatlong to compute oth_e_r co
integrated with Java applications, one should conon boolean op_eraﬂons,_hl«e —, etc. In addltlo_n
sider usingJython a Python implementation writ-to these_symbollc o_perat|0n§ on boolean fgnctl_or
tenin Java, see http://www.jython.org. Itis said thgtBDD I|brary provides routines to determine if
Jython-Java integration is better than the convéﬁQOIean function (represented bYa BDD) can rety
tional Python-C/C++ integration, since no reconlj[uefor some cor_1crete values of |_ts arguments. Th
pilation of Java code is needed due to Java’'s refIéTct'-there are routines that determine if a boolean f

tion API. However, since | have no experience witﬁ1UIa can be satisfied. Given that almost any prq

Jython, 1 will only focus on the Python-C/C++ com'em defined formally can be translated into a pro

bination. lem defined in boolean formulas, BDD libraries c4d

. . . _ be used an many areas. Historically, BDDs ha
Extending Python with an existing library eﬁecbeen applied mostly to tasks in digital system d

tively means that a wrapper for the library has to %("an verification, and testing

created and together with the wrapper, the Iibra_%e BDD library | chose is calle@uDDy and its

s

an
g,

le
e

m-

1S,

at
DIr-

June 2001

source code is freely available. It can be dowithe corresponding lines of Python code for tkie
loaded from http://www.itu.dk/research/buddyfueens problem reads:
There is no good reason why | chose this BDD

package; it just happened to be the first package | @ = bddtrue
found that was freely available and installed with- P = Pddtrue
. . . . ¢ = bddtrue
out problems on my machine. BuDDy is written in d = bddirue
C and has some additional definitions to use it in
C++. # No one in the same column
Extending Python with BuDDy was not a compli- for | in range(0,N):
cated task, thanks to SWIG. The main difficulties it (I 1=)):

a = a & (X[

were in dealing with pointer arguments and func- S>> X[

tion pointers, since SWIG does not process them
automatically. So, in these cases | had to write some

extra code in a so-called SWIG interface file. Aft .
that, SWIG generates the wrappers which coulde§e0ftware development with Python

compiled and linked with the original BuDDy code

into a Python module. Note that the BuDDy code éometimes, scripting languages are said to be good
left unchanged for prototyping, but not for real application de-

So, the functionality of BuDDy is now available tqvelopment. A prototype bears the associations of

Python programs. However, it is at a somewhat lo@Hick and dirty” and ‘to be thrown away.” However,

level: python programs directly call C functions t&’Ython is more than just a prototype language. Due
generate and manipulate BDDs. Furthermore, sirl@eits clear syntax and its universal object model,
garbage collection of objects created by BuDDy iguse of Python programs is a very attractive op-
left to the programmer, the Python code quickly béion. Therefore, a substantial part of Python code of

comes a unreadable mess of function calls and tegyrototype of an application could very well end up
porary variables. Note that this is more a problem pf i1, code of the final application.

BuDDy than of Python; the C-examples that come) X
with BuDDy exhibit the same mess of function call§0, What is Python’s role in a software development
and temporary variables. To make it better accesgfocess? First of all, it can be used for prototyping;
ble, BuDDy has a C++ class that takes care of autiike any scripting language, it enables programmers
matic garbage collection and overloads some opgjwrite quickly a mock up of an application in order
ators such that function calls can be written as ogy analyze the feasibility of the project.

erator applications. | did the same in Python and . .
wrote a class that defines BDDs as normal Pyth6yeimPplified and Python centered, view on software

objects. Also, | overloaded some Python operatdjgvelopment could be described as follows. Firstly,
in the same way the C++ class did. As a result, tetermine user requirements of the application and
Python code is at least as r(_ea_dable as the C+t cduleld a prototype in Python. Next, a development
For example, the following listing shows some linegycle is started that consist of assessment of the pro-
of %’I’““ C‘?deCOf an |_mplgm§|r31tat|r(])n of _tlj‘é—queedr_]s totype, estimation of costs of improving the proto-
problem in C++ using BuDDy (her& is atwo di- 4,0 514 finally a decision whether to improve the
mensional array of bdds argd b, ¢, andd are bdd

prototype or to abort the cycle and declare the cur-

variables): : T
rent prototype the final application.
bdd a=bddtrue, During each cycle, assessment of the prototype can
b=bddtrue, lead to new or more precise requirements. Analy-
c=bddtrue, sis of the prototype shows, among others, computa-
" Id:bddtrue; tion intensive code, which could be implemented in
n W

a system programming language. The Python pro-

. filer is ver ful m ion intensiv
 No one in the same column */ er is very useful to detect computation intensive

for (120 : I<N : I++) code. If, after some runs of the development cy-
if (I i: i) ' cle, all computation intensive code is implemented
a=a & (X[in a system programming language, there is proba-

>> IX[[D; bly not much more speed to gain. At that time, it

XOOTIC MAGAZINE

is a waste of time to translate the remaining Pythofb] Leo Geurts, Lambert Meertens, an
code into a system programming language. Steven Pemberton. The ABC Program-

Conclusions

In this article I have discussed the Python languaggs] Mark Lutz. Programming PythonO'Reilly &

Python is a scripting language with clear syntax Associates, first edition, October 1996.
and an extensive standard library. It supports, but

does not enforce, procedural, functional, and obje¢7] Greg Nelson, editor. System Programming
oriented programming styles. Unlike many other with Modula-3 Series in Innovative Technol
scripting languages, Pyhton code is readable and, ogy. Prentice Hall, 1991.

therefore, reusable. Reusability is even more sup-

ported by Python’s platform independence. Pythof8] John K. Ousterhout.Tcl and the Tk Toolkit
can play an important role in software development, Addison-Wesley, 1994.

since it is a powerful tool for prototyping as well

as for implementing the final application. If the[9] Bjarne Stroustrup. The C++ Programming
application contains computational intensive code, Language Addison Wesley, special edition
which will be too slow if programmed in a script- ~ 2000.

ing language like Python, the extension interface of

Python makes it very easy to implement this code[k0] Clemens Szyperski. ~ Component = Soft-
a system programming language like C/C++. Fur- Ware, Beyond Object-Oriented Programming
thermore, together with its embedding interface, the Addison-Wesley, 1998.
extension interface of Python enables efficient inte-

mer's Handbook Prentice-Hall, 1990.
To be republished by the CWI. See als
http://www.cwi.nl/ steven/abc/.

gration with existing applications and libraries. 11] Guido van RQSS“”‘- Foreword
for Programming Python, May
1996. See [6]. Also available on

References http://www.python.org/doc/essays/foreword.html.

[1]

[2]

[3]

[4]

gramming Language Addison-Wesley, 2nd Schwarz.Programming Perl O'Reilly & As-
edition, 1997. sociates, 2nd edition, 1996.

David M. Beazley. Python Essential Refer-

ence New Riders, 2000. Biography Since January 1998, Victor Bos is a
PhD student at the Eindhoven University of Tech-
nology. He is involved in formal methods re}

David M. Beazley and Peter S. Lomdahl

Feeding a Iarge-scgle physics application Is%arch at the computer science department. His ¢
python. InProceedings of the 6th Interna-

. i rent interest lies in applying formal method tech
tional Python ConferengeSan Jose, Califor- PpYIng

nia, October 1997.

Randal E. Bryant. Symbolic boolean maing Group at the department of Mechanical Eng
nipulation with ordered binary-decision diaheering. He was an OOTI from 1996-1998. |

nigues to industrial engineering and therefore he
works closely together with the Systems Engineer-

grams. ACM Computing Survey®4(3):293— December 1995, he received his masters degree in

318, 1992. computer science at the University of Groningen.

June 2001

Overview Latest OOTI Reports

The post-masters programme OOTI is concluded with a design project. The final reports of these projects
are in general publicly available, unless stated otherwise. The following reports have been published
lately.

e Venemans, B.M.
Redesign of a flexible cross-platform communication ufility
Keywords: Embedded software / Host-target communication /
ISBN 90-444-0092-4, 34 p., March 2001

e Garcia, P. and B. Xu
Introduction of Presentation State into EasyVision
Keywords: Presentation State / EasyVision / OOTI
ISBN 90-444-0-0093-2, 45p., March 2001

e Manolache, C.D. and M.F. Zelina
In-Home Network Simulation Framework Il
Keywords: JINI / In-home Network
ISBN 90-444-0088-6, 78p., March 2001

Copies of these reports are available through the secretariat of the post-masters programme Software
Technology (OOTI), tel +31 40 247 4334.

XOOTIC MAGAZINE

