

XOOric

magazine

June 2002-Volume 10-Number 1

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

Free the
Software Freedom

Making Money

An Insider’s View

Embedded Penguins

Contents Colofon

XOOTIC MAGAZINE

Free the Software Volume 10, Number 1

Editorial Preface 3 June 2002
Free Software = Software for Free? Editors
Andrew Mikheyev and Laurens Vrijnsen . 5 C. Delnooz
N.H.L. Kuijpers
Open Source Business Models Y. Mazuryk
Anthony Liekens 11 address
XOOTIC andXOOTIC MAGAZINE
AFIO: Inside an open source project P.O. Box 6122
KoenHoltman 15 5600 MB Eindhoven

The Netherlands
xootic@win.tue.nl

Linux inside your TV? : _
http://mww.win.tue.nl/xootic/

RuudDerwig 23

SecretariatoOTI
RecentooTI Publications Mrs. C.I.T. Kolk-Koenraat

...................... 31 Post-masters Programme Software Technology
Eindhoven University of Technology, HG 6.57

) P.O. Box 513
Advertorials 5600 MB Eindhoven
The Netherlands
Philips, 4 tel. +31 40 2474334
Thales 10 fax.+31 40 2475895
SIOUX. o v v e e e 22 ooti@win.tue.nl

http://mwwooti.win.tue.nl/

Printer
Offsetdrukkerij De Witte, Veldhoven

Reuse of articles contained in this magazine is al-
lowed only after informing the editors and with ref-
erence to “Xootic Magazine.”

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

XOOTIC MAGAZINE

Editorial Preface

Free the Software

Editorial Preface

It's been a while since the last issuexd0OTIC MAGAZINE appeared. A lot has happened since then.
Around the time of publication of the lagboOTIC MAGAZINE, we celebrated our tenth anniversary with

a symposium on Pervasive Computing. In February the board changed during the General Members
Meeting. The hammer is now in the hands of our new chairman who leads a fresh board. Also the
editorial board ofxooTIC MAGAZINE changed. Shortly after defending his Ph.D., Victor Bos left for
Finland where he now works as postdoc. Consequently, he decided to stop editing the magazine. From
this place | want to thank Victor once more for all his time and effort he has spent during the past years on
editing articles and preparing the magazine for reproduction. Luckily, his vacancy was soon to be filled
by Chris Delnooz who started theoTI programme last September. The editorial board now consists of
Yarema Mazuryk, Chris Delnooz and myself.

As a theme for this issue we have choseae the Software We discovered that lots of XOTICs are
involved in the development or usage of free software. We thought that presenting their opinions and
experience to thgooTiccommunity might lead to an interesting magazine, and it sure did! We have four
articles each focusing on another aspect of free software.

Andrew Mikheyev and Laurens Vrijnsen start off with an overview article in which they explain the con-
cept of free software and present some successful open-source projects. They also make a comparison
between open source and closed source on a number of criteria such as quality, usability, security, devel-
opment speed and portability. The second article is written by Anthony Liekens who works as a Ph.D.
student at the TUE. Although Anthony is not an (e@©)r1 he is a regular visitor at theoTti room. In

his article, he discusses the business models that are applied for open source projects and he also men-
tions a few successful exampleso®TIC member Koen Holtman writes about his own experience as the
maintainer of the open source archiveno. By focusing on just one project, he is able to describe the
micro-process that open source developers are involved with. The fourth and final article is also written
by an exooTI: Ruud Derwig. Ruud writes about the increasing size of software embedded in consumer
electronics equipment. He discusses how open source might be applied in the development of such soft-
ware. He not only addresses technical aspects, but also organizational and, very important in this case,
legal matters.

Enjoy reading this magazine!
Nico Kuijpers, editor

June 2002

Advertorial: Philips

Page 4 (should be even)

Free the Software

Free Software = Software for Free?

Andrew Mikheyev and Laurens Vrijnsen

“Free as in 'free speech’, not as in 'free beer”
(Free Software Foundation[2])

In this paper, we present the basic characteristics of free software and open
source software. We illustrate their impact on today’s world of computing with
a number of examples, before we compare the two against main-stream, pro-
prietary software. The discussion will not be about holy versus evil, Redmond
versus Red Hat, or Bill versus Linus; that has been covered by too many al-
ready. Rather, we will look at free software from a (system) developer’s point of
view: how about quality, security, usability, development speed, portability and
profitability?

1. The freedom to run the program, for any pur-

Introduction pose;

2. The freedom to redistribute copfe®f both
Free software, open source. .. just a few terms that Source code and binaries so you can help oth-
are emerging these days. Many associate it with €rS;
software hacked together by a group of enthusias- The freedom to study how the program works,
tic amateurs from that ancient UNIX-world. Soft- and adapt it to your needs;
ware placed on the Internet to make it available fat. The freedom to improve the program, and re-
everyone, for free, without guarantees. That can't lease your improvements to the public, so that
be serious software, can it? However. .. the growing the whole community benefits.
popularity of Linux, also in the embedded world, is

for a large part based on the fact that it is free Sof-program is free software if users have all of these
ware. But what does this concept mean? freedoms. Thus, you should be free to redistribute
In this article we will explore what “free” really copies, either with or without modifications, either
means. First we introduce the concepts of fréer free or charging a fee for distribution, to any-
software and open source software. After a briehe, anywhere. Being free to do these things means
demonstration of its viability, we present a comparfamong other things) that you do not have to ask or
son of free software versus proprietary software. Fiay for permission.

nally we give some concluding observations. QOpen source is another commonly used term to re-
fer to this type of software. A closer look at the
two different movements “free software” and “open

Free software? Open source? source” learns that they use almost the same criteria
for judging software, but with different rationale:

Contrary to what one may expect, the word “free”
refers to freedom, not to “for free”. Free softwaree the free software movement has an ideological
offers following freedoms to its users: focus towards freedom for the user;

1An exception is made if export regulations are violated by this, e.g. for encryption software.

June 2002

e the open source movement takes a more prag-build its future around open source, and is part-
tical approach: it promotes software reliabilityjering with the Apache Group, FreeBSD, NetBSD,
and quality by supporting independent peer rand other open source developers to work on evolv-
view and rapid evolution of source code. ing the Mac OS X platform. It has released the core

_ . _ _ layers of Mac OS X Server as an open source BSD
In this article, we will focus on the practical aSpeC@’perating system called “Darwin’.

of free software. Therefore, we permit ourselvqé
M chose the open source Apache web server to
to use free software and open source software as

: S%Jé)port and bundle with its WebSphere suite. It has
synonyms. Instead of having developers that crea o
Since released the Secure Mailer in open source and

software in their ivory tower and then give it to thei aunched a web site to distribute alpha-status 1BM
customers, open source software (and free software . . .
hnology in source, before they are licensed or in-

::;a;éssacommumty of developers and users thatt'erz](jrated into products. This allows developers all

. ~over the world to both evaluate and influence IBM
The above-mentioned freedoms have two intriguingsearch and development.

consequences for producers of software: Sleepycat Software builds, distributes, and supports

e they may not get a fee for every copy that i8erkeley DB, an open source embedded database
used: system. Their customers include many of the lead-

« their solutions to problems (as found in the soft?d OPen source projects, as well as Fortune 500
ware) are exposed to everyone outside of th@MPanies whose own products are proprietary.
company, including their competitors. These are only a few examples. We encour-

' age the reader to search for open source products
Many vendors of proprietary software use copyhat match his/her personal preferences. .. there is a

rights and patents to prevent users from claimiR@od chance you will be pleasantly surprised by the
the above-mentioned freedoms. On a more pragtsylts.

cal note, these tactics prevent knowledge and id%g shown in the above examples, “free software”
to spread and be improved by others, thl_JS “m't'_'},%n be commercial. One has to realize that software
the speed of development and progress in the figld, o than just a collection of bits: it is a product
of computing science. that requires support to tune it to specific require-
In spite of these consequences, more and more C@fgnts. It is beyond the scope of this introduction
panies are turning to producing open source sof-elaborate on possible business models here; we
ware, as will be demonstrated in the next SECtiOﬂ.refer interested readers to the arti€@en Source
Business Modelby Anthony Liekens, later in this
magazine.
A few examples of open source
projects
Open source versus closed source
One of the most well-know open source projects is
the Linux operating system. The open nature of i free software can be economically viable, but
development has boosted its development and thesbat are the benefits? In order to answer this ques-
fore has created the basis for its current popularitign, we will compare open source to its opposite,
both with “hobbyists” and professionals. Peopldosed source or proprietary software, on a number
who have problems with their Linux find that thef criteria:
community is not only open for development, but .
also for providing fast and good support. * Quality;

Apache, by far the world’s most popular web servef S€CUMY;

with a 58% market share ([1]), gives another ex® Usability;

ample of the high quality provided by open source® Development speed;
software. e Portability;

Apple was the first mainstream computer compang Profitability.

XOOTIC MAGAZINE

Quality ditionally, those people tend to concentrate more pn

the technical side of their work rather than paying
The good quality of the final product is a sum of twattention to such details like user interface design.
major components: good design and good implehe implementation of a convenient user interactipn
mentation. For a major part of open source projegtstheir products is not at the top of their priority
we can say that usually both are at a very high levgbts. This is where the commercial closed-sourge
Two factors contribute to this - the accessibility gdroducts (usually working under Windows), defi-
the source code and the professional level of the @ftely beat open source products with their amateur-
velopers. like user interfaces.

The source code being publicly available can hgeanwhile, the open source community seems|to
analyzed by thousands of amateur-programmersh@ge finally understood the problem. The situation
professionals whose interests lie in the field f@yith the usability of the open source software |s
which the product is being targeted. Everyone ignstantly ameliorating. For already several years,
free to update the source code or send a feedb@aelver versions of popular desktop managers for
to the author of the erroneous module in the casgiaux having a constantly improving user interface
bug is spotted. This tremendously accelerates @ a good example of this positive trend. However,
testing procedure of the product in comparison withe developers still seem not to have found the right
the closed-source projects, where the testing is ugdtance between the amount of functionality they

ally done by a limited number of beta-testers, angfer in their interfaces and their ease of use.
only the project’s development team does the cor-

rections in the code.

The availability of the source code partly explaing€curity
the high quality of open source products. However,

this is not the onl for that. The professiondl "<,
'S15 NOLNE only reason for fha © protessiong curity holes can appear. They can be caused by a

level of the developers participating in open sour that makes th tem beh . itiad
projects is on average very high. The Boston Co K9 thatmakes the system behave In a non-specifie

sulting Group in one of its surveys partially meny Y- They can also appear as a side effect of some

tioned in [4] found that the open source developefresature of the system - of which no one had ever

surveyed are mostly experienced professionals th/nght before. The communication protocols us sq

. . .__or implemented by the system can be poorly speci-
ing on average 11 years of programming experlenf%ad arr)1d use of thgm in a?: improper Wap canylezd to
and the average age of 28. prop Yy

security problems as well.

Peer reviews play an important role in the opg& t will devel do in order tallth
source development process and contribute to t ga Wit aevelopers do in order 1o Spot afl In€ pe
tential sources of security problems?

high quality of the resulting products as well. Since o _
all open source developers can see source code pighe closed-source world testing is performed ip-

duced by the others, they can spot defects in thige the company where the product is being de-
code and provide its author with feedback. If loweloped. Some companies even hire professiopal
quality of the source code becomes a persistentfigckers and let them explore the source code and
sue for some developer, then eventually he will ha{fée Product itself to find as many potential security
to leave the community. issues as possible.

All these factors contribute to the quality of the opgf? OPen source, all software developers of the world
source products, allowing them to score better &N have access to the source code of the open

this category than the closed-source products. Source products. If someone suddenly discovers a
security problem, it will be known very soon by

the open source community and the necessary mea-
Usability sures will be taken by the authors of the system |or
concerned users. The fact that the source code of
As mentioned before, almost all open souradl widely used products is being constantly ana-
projects are carried out by people who are fluentlyzed by thousands of software specialists all over
modern software and hardware technologies. Ttae world raises the security of those products to the

the software systems there are many ways hpw

June 2002

level yet unreachable by the closed-source softwamg new hardware. One can run into troubles trying
industry. to install Linux on a brand new machine equipped

Another advantage of open source is that using Wi the latest graphics card, wireless connection
open source product you can be sure that it does¢pfd and other just released hardware equipment
contain any sort of back-doors - a hidden functioflie to the lack of drivers for all this hardware.

ality that can be activated and used by the author of

the system, intelligence or military organizations -

without keeping you aware of this. As long as you 0PIty

have the source code of the system, it will be s, apiity is becoming a very important concern
possible to hide anything like this inside of it. for the developers who are working on the non-PC-
based platforms. Embedded systems developers, for
example, would greatly benefit from the possibility
to tailor an external piece of software for their own

The open source projects are usually developed rwdware configuration. This is where open source
teams consisting of many people distributed all oveplutions are much more attractive than the ones us-
the world. Most of them works on the project durnd closed-source ideology.

ing their spare time, taking no obligations of angjt present moment, many companies are work-
kind before the community. Some people do it b&ig on their own versions of Linux for use in
cause they believe source code should be open, dlteir proprietary embedded systems. This dispenses
ers participate to improve their programming skilthiem from developing new operating system from
or just for fun. There are also people who do it fa@cratch.

their professional needs, working on the parts theetBSD operating system is just another good ex-
they need themselves. In all cases, the level of minple of the portability of open source solutions.
tivation of the developers is high enough to compet§ till now this operating system has been ported
in development speed with the commercial close@y as many as 48 different platforms! Different de-
source projects. velopment teams got the possibility to port NetBSD
Since Linux appeared in 1991, its today’s releaststhe platforms they are interested in, since its ar-
contain tens of millions lines of code - all writ-chitecture and source code are publicly available for
ten by the participants taking no obligations of amjownloading.

kind before the community. Thus, Red Hat Linuguch an activity wouldn’t be possible if the source
6.2 contained over 17 million lines of code, angode of the system had been proprietary and closed.
Red Hat Linux 7.1 is composed of 30 million lineghe company-owner simply wouldn’t have coped
of code which is even more than those 29 miith the task of porting the system for so many
lion lines of Windows XP, which is considered tthardware platforms. Most likely, it would favor
be the largest commercial project ever carried ogthe hardware configuration (one specific CPU) and
These figures are not only a testimonial of the higlitoduce builds for this particular device. This kind
development rate that can be reached in the opgrstrategy has been undertaken by Microsoft with
source projects, but these figures also give us an @Meir latest PocketPC 2002 operating system for
dence of a very high potential scalability of the op&ghich it had been announced that only Intel's Stron-
source development process. gARM processors would be supported starting from
However, open source development strategy hastitat version.

drawbacks. The non- obligatory participation in the

projects makes it possible for every participant to

stop contributing whenever he wishes so. As a cd@onclusions: applicability?

sequence, it is almost impossible to predict the re-

lease date for a next version of any open sourgg strangely enough, free software seems to be most
product. appropriate for those who are willing to pay for it.
Another disadvantage of the open source develdp-the market of embedded software, it can lead to
ment process is its development latency for suppatteser ties through co-development. Instead of sell-

Development speed

XOOTIC MAGAZINE

ing software, companies can focus on selling supndrey Mikheyev holds an

port, e.g. tailoring software products to unique cubl.Sc. degree in mechanics
tomer requirements. Open source software allo@gd automated control re-
for fast progress in development of new softwaggived from French Gradu-
products by sharing new ideas. Exactly this is tt#ée School of Mechanics and Ny >
secret to why free software products outdistanbéicrotechniques (Besanon, |
their commercial counterparts on a number of astance). He also received an“& 7

pects. M.Sc. degree in computer science from State Power

For the large group of home users and office aghaineering University (Ivanovo, Russia). He is 3

tomation, open source software is becoming mgp@T! trainee since September 2001.

and more attractive as an alternative for expensigéthis moment, apart from other professional inte

software products. However, how a company c&ats, he is particularly interested in all products and

sell support to this group of customers remains uigchnologies offered by Microsoft since he think
clear. Therefore, the viability of delivering operhat this passion will help him answer the ultimat

source products to this group is questionable, Biiestion - “What does an IT-company and its em-

companies must react to the competition offered Bloyees need, to develop great products and thus

high-quality open source software products. survive and flourish on the today’s hi-tech market

After a nine-month research
projectin Philips Research or
a software architecture for the
domain of emergency medi-
cal care,Laurens Vrijnsen

received his Masters degre
in Computer Science from
the Eindhoven University of

References

[1] Netcraft, "Netcraft Web Server Survey”
http://www.netcraft.com/survey/

[2] Free Software Foundation, "Philosophy of th

GNU Project”, http://www.gnu.org/philosophy ‘ Technology in August 2001.
Shortly afterwards he joined th@oTiprogram. His
[3] The Open Source Initiative,current fields of interest are software architectu
http://www.opensource.org/ methodologies and autonomous systems.

Laurens’ experience with UNIX and free softwar|
[4] Why Open Source SOft'dates from 1997, when he was introduced with t
ware? Look At The l\Iumb(:“rS!’FreeBSD operating system. Ever since he has b
http:/www.dwheeler.com/osis why.html/ a devoted worshiper of daemons and the UNIX d

sign philosophy: creating small, reliable solutions|.

~

19}

June 2002

Advertorial: Thales

Page 10 (should be even)

Free the Software

Open Source Business Models

Anthony Liekens

At first hand, Open Source Software (OSS) and conventional business models
do not seem to match. OSS often gets the connotation of being free of charge,
which is not an encouraging prejudice when one is trying to make money out
of it. However, OSS can offer some new opportunities for commercial software
development.

How can a firm in the sector of information technology make money out of Open
Source Software, while supporting the community that thrives on free software?
To start with, an entrepreneur who is developing OSS, is not simply supporting
the open source community. OSS is a way of building software in collaboration
with the users of the software packages, which can possibly end up in creating
a product with a level of quality that could not be achieved with closed source.
The user is given the ability to propose useful bug fixes and interface changes.
This close interaction with the user can obviously lead to an improved product,
and in many examples on the Internet, open source development is starting to
beat the monopoly of commercial closed source software farms.

Open source development gives customers a much greater ability to customize
software to fit their needs. Customer bug fixes and enhancements are com-
monly contributed back to standard open source packages, while improving
upon the quality and limitations of the product. This option is not available
within traditional commercial software.

, the project free of bugs, and as bullet-proof as soft-
Do you trust your toaster's soft- ware can get when reaching a mature stage in the
ware? software’s life cycle.

One of the most discussed results of this interaction

is the increased security and reliability of OSS proﬁdvantages of OSS
ucts. Giving away the source code of a software

product will give the community of users the POSSpeeding up development

sibility to expose the product to increased testing,

such that security problems and fixes can be discq;\;[rowing a product’s users to be co-developers
ered and distributed earlier than in a closed Sourg®ng with the product's developers seems to be
model, improving the overall quality and reliabilityin stride with conventional ideas of software de-
of the software package. velopment. Indeed, OSS development is based on
Entrepreneurs using OSS business models deptral idea that more programmers can accomplish
largely on the high reliability of their software;more than the selected few in a company’s devel-
their software is peer-reviewed, and possibly testeder room. It just follows along the lines that more
more extensively than proprietary closed soureges simply see more. The more programmers are
software. Opening the source of a project can mabeking a project’'s source code, the faster bugs or

June 2002

security flaws can be detected, and the faster the Beéoader market

velopment process can lead to a mature product. _ _

This interaction with the users is, however, not aASIIow(;ngta CIfStoTﬁ.rs engltneertto dbfhable tg ac:?)pt

easy as stated here. Users are not always ha joauict, allows this userto extend the product be-
d the limits of what a company originally in-

to pay for an unfinished product. It is getting ev ded with th ect. If th daptati
worse when they start using it, discover flaws in tﬁgn eaw € project. ese adaptations are re-
rned and merged with the original product, it can

program, and then have to put energy in further dté'-
velopment of the product. attract more customers to the product. As an exam-

_ple of this, a customer might port the code to a new
The manufacturer of the product also has to prov'ﬂf‘atform giving him, and possibly other customers,

an initial full version of the product to receive anyhe ability to use the product in their working envi-

mter_actlon with other developers. From t_h's f'r%nment, beyond the initial limitations implemented
version, the entrepreneur can start attracting ussg,s[he manufacturer of the product
and their developers, after which the speed in de-

velopment and the evolution of the product could _
increase, given that the initial version satisfies tigublic relations

costumer such that he is willing to put money in thg_ _ limited _ ‘ q q
further development of the product. iving away (limited versions of) source code an

products for free allows new users to test and com-
pare your product to other products, which again
can attract more customers to start using the full

product.
Lower overhead

External co-developers, given the opportunity to rédaking money out of OSS

solve bugs, can be adopted to out source part of the

work of a company’s software shop. In return of fixonce a software manufacturer uses OSS to create
ing a bug, that costumer can be given an opportundyftware, it is not always clear how he can make
gain over other costumers. This allows to redu@goney out of the project. There are a few relatively
per-project software production costs significantliew business models which adapt open source de-
And as an extra, a small developer team can hand&opment and offer opportunities to make open
a much bigger project. source development worthwhile.

Supplying service and support

Closeness to costumers If a software project is distributed for free, the users
of this project might not always be able to use the
It is very favorable for a company to be close tproject to its full extent. In a commercial environ-
its customers. In the case of a company providimgent, the user can pay for service and support of
software, there is no better way than allowing yotine project. Even the implementation of a complex
customer’s engineers to be involved in the softwad@en source project could be out sourced to the cre-
project’s development. Their involvement in the detor of the original project. A good example of this
velopment of the source code allows them to easiiysiness model is used by MySQL AB, which is
fix the flaws that limits their productivity, again al-discussed later.
lowing for a better product in the end.

Open source gives customers a much greater abiliyss leader market entry

to tailor software to fit their business needs. Cus-

tomer bug fixes and enhancements are commoiilye loss leader OSS business model is often used
contributed back to standard open-source packades,two purposes. Firstly, it can be used for jump
an option which is not available with traditionastarting an infant market, and secondly, it can be
commercial software. used to break into a market with entrenched closed

XOOTIC MAGAZINE

source players. Many funding in open sourdexamples of successful busines:
projects can be viewed as strategic loss leader mpfpdels
els against popular, possibly monopolizing closed

source software companies. These investments ﬂrgouple of successful companies, who base th

pest done at the steepest part of the productjs 9" Wisiness on OSS are illustrated in the remaining p
ing curve. A good example of a company using tlbq this article

loss leader model, is Netscape, which opened up
the source code of its Netscape Communicator web
browser to attract developers and users to openfRigdhat network
the market of Internet browsers currently monop- i
olized by Microsoft’s Internet Explorer. Netscapgedhat' among many other companies such as S

is also a good example of how users can adapt

the project and create a much improved produgf the Open source Linux operating system. Spec
Mozilla in this case. from the free source cally, Redhat network offers services to easily mai

tain Linux installations. The company offers se
vice, support and training for administrators of Re
hat Linux installations. A registered user can o
tain updates of the operating system, and call a h

Mandrake Linux, is a provider of distributions

UJ

eir
art

d-

clp

Widget frosting desk if technical problems are encountered. On the

other hand, the company also provides consulti
Many hardware manufacturers have to provide so$ervices, such as high performance computing
ware — such as drivers or other interfacing softwaveeb services, all based on free open source s
— along with their products. Using the open sourgeare. To satisfy their users, they have develop
model in the development, along with opening upams working on user interfaces and enhanceme
the standards and technologies used in the hapfithe open source software they adopt, while sy

ware, allows the company and users to create sgferting the community of open source developers.

ware that works on platforms and with ideas beyond
the limits the manufacturer originally intended. Th SOL AB
production and extensibility of the software oi‘fereﬁIy Q

along with the hardware sold, mlght attract morghe German company MySQL AB originated fron

buyers of the product. An obvious example of thig group of developers who created the open sou

model is that manufacturers of graphics cards fggatabase SQL server MySQL. The company offe

personal computers can attract more buyers becassice solutions and training based on the free sg

their open sourced drivers are ported to new plgfare product. The biggest part of their revenue

forms the manufacturer originally did not envisiongptained from professional consultation for the in
plementations of their free product in commerci
environments.

Accessorizing Ximian express

Companies such as O'Reilly Associates, SSC affinian provides desktop solutions for the Linu
VA Research base their success on selling acc@gerating software. Everyone is free to downloz
sories based on open source projects availablefRgir product, but a subscription allows the buyer
anyone. They offer books, compatible hardwaR&ve priority access and higher bandwidth Intern

or complete pre-installed systems based on ogévnloads of the updates of their products.
source software. Since the software they build upon

is available for free, pre-installed systems can lagyrceForge enterprise edition
built with a very low cost on licensing, and the fi-

ng
or
nft-
er
nts

p_

=

rce

ft-
S
-

=

ad
o
et

nal product can stand out against systems built updgh Research is offering an open source version
commercial software. their SourceForge product as a free software pa
June 2002

of
ck-

age to manage software development. Next to dscussion

fering this version for free, they extend the package

with other services, and the whole is sold as an €pontrary to what is thought of open source as free-

terprise edition of the free product. This enterpri¢d-charge-software, there exist a couple of oppor-

edition contains extra enhancements and functioniitities to adopt open source software in commer-

ity which is not available in the core product that igial environments. The advantages, however, are
offered for free. This allows the company to create'®t always applicable to every software product, but

big user base, and rock solid product through opBHNY tricks can be used to create a software compo-

source development, to attract commercial buyéi@nt that can be adopted both in an open source and
for its full product. commercial product environment, while inheriting

advantages of both worlds.

Anthony Liekens studied computer science and bi-

ology at the Vrije Universiteit Brussel and at the
Others Universitair Instituut Antwerpen, both in Belgium.

He is now engaged in a PhD program in Biomed-
This list can be extended with many other conical Informatics at the faculty of Biomedical Engi-
panies supporting and adopting the open soumeering at the Technische Universiteit Eindhoven.
model. Among these are for example IBM whélis main research is situated in population genet-
currently starts shipping Linux based systems, ims and genetic algorithms. Besides his work, he is
SGI who is supporting the development of Sambiayolved in several open source projects. Anthony
a communication interface between Unix and Wiiis completely incompetent in using Microsoft prod-
dows system, while selling a commercial version ofcts, but fits in well when seated at open source
the package for its IRIX operating software userspowered machines.

XOOTIC MAGAZINE

Free the Software

AFIO: Inside an open source project

Koen Holtman

What do people actually do when they work in an open source project? What is
the software process? Below | try to answer such questions by describing one
particular case: my own work on afio, an open source archiver program that
was initially created in 1985, and for which | have been the maintainer since
1993.

Introduction

)) The main attraction of afio, over the better-known
While a lot has been written about open source sqfé—r’ is that afio makes compressed archives in a

ware, much less has been written about the procgggs; way: it compresses the individual files in
of creating open source soanare. I know of & fée archive, rather than the complete archive byte
good general accounts, which | refer to at the eQfleam Jike tar does. If a compressed tar archive
of this article. In this article | will not describe thesncounters even a single byte error on reading, the
‘typical’ or ‘average’ open source software proceSgsmainder of the archive cannot be unpacked any-
What is average is a difficult question anyway, angore and all the data in it is lost. Afio archives are

depends in part on how broadly you define opeRqre fault tolerant: a read error will generally only
source. Here, | give an account of my own actffect the unpacking of a single file.
ities in doing open source. | focus in particular on

the case of the afio program. By using a specific) i
case | can describe details of the micro-process th'1y history of afio
are often not covered in the more general accou

qjﬁe first version of afio was written by Mark
of open source development.

Brukhartz in 1985, or possibly even a few years ear-
lier. |1 never talked to Mark Brukhartz, so | do not
The afio archiver know exactly why he started afio. My guess, from
the documentation he included, is that he needed a

Afio is a Linux/Unix program for packing up filesPEtter version of the cpio program which he was us-
g, and that he did not have the cpio source. In

into archives, and writing these archives to devicé e ’)
It is very similar in function to the Unix ‘tar’ andterms of software years, afio is ancient, and that is

‘cpio’ commands, and the pkzip package in vgpart of the attraction in maintaining it. They really

DOS/Windows. Figure 1 shows the ‘official’ shorvrote C differently back then. This is a typical frag-
description of afio that | bundle with releases. ment of the 1985 afio code, which is still part of the

source today.

Archiver & backup program with builtin compres-

sion Afio makes cpio-format archives. Afio can I . .

make compressed archives that are much safer : inavail()

than compressed tar or cpio archives. Afio is best * Ind iable i d ithin th

used as an ‘archive engine’ in a backup script. ndex avallable input data within the

* puffer. Stores a pointer to the data

Figure 1: The short description of afio in its Linux * and its length in given locations.
Software Map entry * Returns zero with valid data, -1 if

June 2002

* unreadable portions were replaced with in new afio releases. Fixing the code and mailing
. nulls. the fixes were fairly natural things for me to do.
/ From my late 1980s home computer hobbyist days |

STATIC int " .

inavail (bufp, lenp) was used to writing my own improvements to other
reg char **bufp; people’s code. Also | had already been using BBS
uint *lenp; systems and Internet mail for some time, so | was

{ used to communicating over the net with complete

reg uint have;

reg int corrupt = O; strangers. It was obvious that the Linux commu-

nity was just another bunch of computer hobbyists

while ((have = bufend - bufidx) == 0) working in a gift economy, similar to my old home

*bucf‘;”:pu;d;'_‘ﬁ" 0: computer club. All things considered, it required no

Alenp = have:; ' big conceptual leap for me to become a Linux open

return (corrupt); source contributor. It was just a combination of be-
} havioral patterns and rules that | knew already.

At one point, in an e-mail exchange with Dave, we
In 1985, Mark Brukhartz added an open-source typgme to the joint conclusion that | was making more
license at the start of the afio source, and distributgelquent changes to the afio code than he was. So
it to others in the Unix community. | don’t knowyye agreed that | should make the future afio re-
exactly what distribution mechanism he used, bidases. In December 1993 | uploaded a new ver-
it was not FTP on the early Internet. In 199%kjon of afio, version ‘2.3.5 for Linux’, to the usual
someone called Jeff Buhrt added the fault tOlera[]hux FTP sites. | had updated the documentation
compression feature to afio, and distributed the ijo that future bug reports would be sent to me. | was
proved version, probably by posting it to a Usen@ibw the official maintainer of afio for Linux. Peo-
newsgroup. In any case, soon afterwards_ an Hle with other Unix versions also picked up the new
glishman called Dave Gymer downloaded afio frogfio for Linux version, ported it to their systems, and
Usenet and started using it. In 1993 he madesant me portability patches. So after a few versions

Linux port, and Uploaded itto SunSite.UnC.edU, th$ﬂropped the ‘for Linux’ from the version designa-
the major FTP site for Linux application software.tjon.

How does one get involved in an open _
source project? What does an open source main-

tainer do?
At one point in early 1993, | had a bad experi-

ence with the fault tolerance of tar, so | went l00Kqere is the process that | use to maintain afio. It
ing on the Linux FTP sites for a more fault tolhas remained more or less the same over the years,
erant program. Afio was the most fault tolerardyen though, since 1993, the size and composition
program | could find. Afio did not have all thepf the Linux community has changed drastically. |
typeS of fault tolerance | wanted, so | started era]d not get this process from a textbook, nor did
ing my own backup program called tbackup whichfirst study other open source efforts to see how
would use afio as a main component. The maiRey did it. | started doing it this way because it
added feature of tbackup was the fault tolerant agdemed to be the obvious way to do things. (It is
user friendly handling of cheap floppies as a backgptually an interesting question if the open-source
medium — I had many boxes of cheap floppies lyinggmmunity is self-selecting for personality types to
around, containing outdated versions of the SlaGkhom a certain way of working is the obvious way
ware Linux distribution. to work. Reading media accounts of how other peo-
Pretty soon | found that afio would crash in conple in open source do things, what strikes me most
pressing large files if the hard disk was nearly fulls that | find everything completely obvious, while
So | changed the code to fix that, and also mail¢te journalist writing it often expresses wonder at
the changes to Dave Gymer, for him to incorporat®w things are done.)

XOOTIC MAGAZINE

Getting e-mail about afio clarification of a vague question, | do not getany r
ply. Presumably the person asking solved the prg
A big part of the maintenance process is dealifgm already. About half of the questions | get a
with the e-mail | get about afio. | get on averaggnswered in some way by the manual page or
about 5 new mails related to afio each month. | c@ghse notes. 1 don’t know the complete manual pa
answer about half of these mails with a single repbyy hart, so | usually have to look myself to see
the rest lead to a series of message exchanges.ifanswer is in the documentation — if | find it
average, handling the mail takes me about 10 hod{fmmarize what to do and then often cut-and-pa
per month. | am very careful in archiving all thg.om the manual page in the reply. About half th
mail, to make sure that | will account for all Contriquestions | get uncover some weakness in the do

butions and bug reports when making the next rfgrentation, which | then often fix in the next releas
lease.

| try to reply to every new message within a Weelblail with bug and problem reports

— if I have no time in that week to address the mes-

sage | just send back a short reply that | am vepysecond class of e-mail, about one fourth of th
busy and that | will give a full response hopefullyotal volume, reports some afio behavior that w
within N weeks. | consciously work to give the imnot expected by the user. The message | get

pression that something will really happen with thge a detailed bug report, but most often | get a ¢
mail people send me. The last thing | want is tgnd-paste of the afio command line used, some
discourage people from sending me more contribigr messages, and a partial description of the syst
tions in future. Of course nothing bad will happesonfiguration on which afio was run. Sometime
to me when my correspondents get unhappy abemé observed behavior is actually correct accordi
the way | treat their mail. But | am working fromto the manual, and the user just expected someth
the principle that everything worth doing is wortlgjifferent. More often the behavior is something th
doing well. As long as | choose to fulfill this roleshould really not happen. | always end replies

as a maintainer, | want to keep up the same stajirch messages with some variant of ‘thank you for

dards of service that | would like to see in any othetis bug report'.

software project, be it commercial or open sourceg,metimes | have seen a similar problem reported

| use an informal tone in my replies to e-mails, buefore, and | can search back in my mail archiv
| consciously try to be polite and clear, even if 4nd software change log to find a reply. If the pro
think that the original question is stupid or wast&gm is new, | try to reproduce it on my own maching

my time. | actually get very few stupid questiong,manage to reproduce it about one third of the time.

and most of the mail | get comes, as far as | ca cannot reproduce it | will ask for more informa-
determine, from people who are already somewhggn, or for the results of some specific tests. In tf
experienced as a Linux or Unix system administrand, about one third of the reported problems r
tor. In the last year | have started to get some mgilins unresolved — sometimes with suspicions tf
from commercial Linux system support companiege real source of the problem was a bug in the g
who are asking me about problems reported by thejte driver of the backup device, but often with non
customers. Again | treat these the same as any otBeUs having a real clue about what went wron
mail. Leaving something unresolved is frustrating, but
one point | have to decide to stop trying. Often, m
correspondents are happy anyway when | tell the
that | have given up, because in additional tests th
About half of the e-mail | get is some kind of ques-an the problem never occurred again.

tion: how can | do X with afio? What does this

error message mean? Is it available on platform X#ai with contributions

| can usually address these questions with a single

Mail with questions

reply. Sometimes | can only give a preliminary diA third class of e-mail, about one fifth of the tor

agnosis and have to ask for clarifications or motal, contains a contribution to the afio code or doc

9]
]

b-
e

re-
ge
if
I
ste

S
ng
ing
at
to

£S

ne

nat
e-

at

y
2m

ey

u-

information. In about half of the cases, if | ask for mentation. Contributions to the documentation are

June 2002

fairly rare. | usually get code, in the form of patciMaking a release

files. About one third of the code contributions are

bug fixes, about one third compatibility fixes to pott do not release new afio versions often. In the
afio to a non-Linux platform, and about one thirtst few years, the release frequency has been about
are new features. When | get code for a new fe@Pce every 9 months. Afew releases were prompted
ture, it rarely includes any documentation that Ry the discovery of critical bugs that should be fixed
good enough to paste directly into the manual pagégently, but usually | release when | have a suffi-

| never ask contributers to write the missing docgiently large number of patches and bug reports, and
mentation, | just write it myself. Many of them aravhen | can find the time to fold them all in. Making
not native speakers of English anyway, and | woufinew release costs me about 40 working hours: |

not want to annoy them by drastically re-writingv0rk in evenings and weekends over a period of a
their attempts before inclusion. few weeks. During that time, | re-visit all archived

il since the previous release, changing the afio
de and documenting the changes as | go along. At

end | do regression testing, create a new source
t%({:hive, and upload it.

In a few cases | reject code for a new feature, sayi
that | will not fold it into the release. This is eithef
because | believe that the function can already
achieved in another way, or because | believe t
the feature is just a bad idea, that would take t#§i0 is & mature backup program that people rely
much of my own time to fold in and test. Howeve@n. My firSt Ordel’ Of bUSineSS iS not to intI’Oduce
overall | hardly ever reject anything, and as a ré.ny additional bugS, and this drives my release strat-
sult the number of command line options to afio h&§Y- For other open source programs, which are
grown from 36 in 1993 to 60 now, using all lowefarly in their development lifecycle, the strategy is

case letters, all upper case letters, and most of fRg€lease very often, relying on the early adopters
numbers as option flags. to find the bugs in the new code. With afio | also

| always make sure that | give feedback to code le?—Iy on users to find bugs, and this user testing adds

missions, either with a statement that | won't plﬂgnificant value, but the type of bugs people find

the code in, or more usually with a statement that¥ © éhe very obFscure bugls that are Isft In a Wi”-d
will probably add it to the next release, which wilf9€d program. -or exampie, a recent bug report ha

come out in [time estimate in months]’. | write tha&O do with the incorrect handling of Unix file sys-

| will ‘probably add’, because at the time of replyzem symbolic links that have several hard links to

ing | have not yet made a full evaluation of the corlih_em' O;T)er bugs that peoplce) find ti1n afio are thr(])sed
tributed code. | only take a very close look at thg'ggered by new use cases. Overthe years, as hard-

code when | start to prepare the next release. ware capacity grew, | first got bug reports related to
making multi-tape archives larger than 2 GB(

bytes), then about handling tapes that are individu-
ally larger than 2 GB, then about archiving single

Other mail files that are larger than 2 GB.

| also get a few e-mails which do not fit any of thehe release process

above categories. \ery rarely | get a ‘thanks for

afio’ message without any further questions or rg¥hen making a new release, | carefully hand-check
quests. Very rarely, | get a plain request for a neand test all code contributions. Often | make sub-
feature. Sometimes this feature is something ttstéintial changes to contributed code to make it more
can already be done with afio: if so then | writeafe or general. The new idea behind the code, or
back how to do it. If it cannot be done yet, | genethe finding of the bug that the code fixes, is often the
ally comment on whether and how it could be inmost valuable part of a code contribution. Review-
plemented, and encourage the requester to senthipand testing new code takes significant work, but
an implementation. Usually | do not get any. Somé-is needed to maintain the most important feature
times, if | believe that the idea for the feature is af afio: its stability. This careful review of all code
good one anyway, | implement it myself at the timis not unique to afio: | have also seen it in the main-
of the next release. tenance of the Apache HTTP server, another mature

XOOTIC MAGAZINE

piece of open source software. up with recent changes in publishing Linux sof

Coding is actually a very small part of making a revare. Back in 1993 it was sources on FTP sit
lease. | spend most of my time testing and updatifd @ message on an announce newsgroup. No
the documentation. When | add a new feature, | df mostly web sites and pre-packaged pre-compil
ten spend more time updating the manual page tHdaries. However, | still don’t build pre-package
updating the source code — writing a terse but coinaries, and I do not get deeply into the web si
plete description of a new feature and its limitatiorfuff: | have decided that I'd rather spend my tim
is surprisingly hard. | also spend significant tim@n other things. Because | don’t make pre-compil
updating the change log file that is bundled with tHdnaries, afio probably has less users than it col

afio sources — see figure 2 for a typ|ca| excerpt. have. But that is fine with me — | am not in this fo
world domination, and have no obligation to sper

my time serving all Linux users optimally. My mair
interest is to give to other programmers in the op
source community, who will be served about as wg¢
with a source release. Somebody else, in the L
bian Linux distribution effort, does in fact main

Version 2.4.7:

Fixed bug that sometimes caused ‘— compressed’
to be printed twice in verify operation. Has to
do with not flushing stdout, stderr before forking.
Bug reported by JP Vossen.

Added more material on how pattern matching
works in the -y option section of the manpage, and
added examples of selective restores to manpage.
Based on questions by Kjell Palmius and Stojan

tain a Debian binary release of afio, and we ha
very friendly relations. When | am about to make
new source release, | give him an advance warni
When he gets a bug report about the binary releg

Rancic. that has to do with the source, he copies it to me.

Added text to BUGS section about afio not being
able to write into directories for which it has no
write permissions, except when running as root.
Problem reported by Kagan Kayal.

What is the motivation for doing it?

Figure 2: A part of the afio change log Software maintenance is perhaps not a very obvig

thing to do in your spare time. My reasons for dg

ing it are partly historical. | started out mainly as an

The change log has two main functions. First, @pen source author — | like writing software and if

helps me and other contributers to keep track @b it in my spare time | like to share it with others.

changes and solved problems. Having a very dever the years, | found that | had less and less sp
tailed change log saves me significant time in atime which | wanted to devote to programming. Sg@
swering e-mails. The second function of the changpped writing new code and only did maintenan
log is to record the names of all contributers to afion the old code in the projects that | happened
which | define as everybody who sent me any maiin. By 1995 | was doing maintenance on 3 opg
that led to changes in the next release. The chamgeirce projects: afio, thackup, and futplex. Still

log gives visible evidence that even the smallesad less and less time: | found that my release fr

contributions are welcome, and will have an effeajuency was dropping to below what | found reg
| have a theory that this is very important in encousonable. So after 1995, | first stopped maintaini
aging future contributions. | never record the e-mdiltplex, which had never attracted a very active us
addresses of contributers in the change log, becaosemunity anyway. Later still, | also stopped mair
automatic publication of their e-mail address miglaining tbackup, which did have a user communit
actually discourage people from sending me mailbut one that generated much less feedback than

The last part of the release process is to makelgers of afio. | still get messages about tbackt
new source archive, upload it to the various repg@out one every two months. | always reply that tf

itories, and write an announce message for th@ftware is now ‘dead’ and unsupported, and that |

comp.os.linux.announce newsgroup. This alwa§@commend using another backup program ever
takes a surprising amount of time, because you dckup does still install.

not want to make any last-minute mistakes. | neddhintaining afio is not very creative work, thoug
to spend some time for every new release to catitiere is occasionally an interesting puzzle. D

June 2002

0S
W it
ed

d
te
e

ed
uld
r
d

N
|
De-

ve
a
ng.
ASe

us

D

ng
er
I
Y,
the
ip,

ne

1 if

—

ing the maintenance process is mainly rewardingecome a legitimate full-time hobby all by itself.
| guess, in the same way that gardening is rewaitdest of the written material can be safely ignored,
ing: there is usually no great pressure, you get tioless you happen to be a fan.

do something immediately visible with your ownrhe Cathedral and the Bazaar by Eric Raymond [1]
hands, and it is nice to make things more tidy. | al$g 5 classic and thought-provoking essay that con-
find it rewarding to help complete strangers who ggins some good descriptions of the open source
mail me. I am a heavy user of open source softwaigycess. The essay is thought-provoking because
myself, and it feels good to be in a position whergg argues, with some actual proof, that very com-
am not just taking, but also giving back to the opgflex software projects can be run successfully, even
source community. Occasionally, it is fun to corpptimally, without much central planning. | don’t
sider that | have achieved some degree of immortgkjieve all claims of the essay, but that is exactly
ity through my work, because the code | wrote hgghat makes it thought-provoking. Don’t miss the
been pressed on lots of CD-ROMs. However this[i|§GCS] end note which is present in the more re-
more of a fringe benefit, it is not a state of mind thaknt releases of this essay. There are several fol-
| can sustain indefinitely. lowup essays by the same author, but | find these
less thought-provoking.

Hackers by Steven Levy [2] is a well-written book,
written in 1984, about several open source cultures

that pre-date Linux, about their development pro-

Starting an open source projectis easy. _Cfeate S0&ses, and about their interactions with the market
software (but make sure that you do not incorporaf;

Starting an open source project

bundle the sources together with a file that identifi rzcenlf_ita“s“ca' survey 0{ open Sou_rceﬁa“th?rs is
you as the author/maintaner, and upload the res"ilﬁt[]. Like many statistical surveys, it offers few

to whatever the usual places are for your platfonl}?al surprises, but it does solidly contradict the view

That is really all there is to it. A web page is Opt_hat open source authors are an untrained mob of

tional, but very much expected these days. young computer nerds out to destroy Microsoft.

Of course there is no guarantee that a new project

will generate the level of interest that you expedqReferences

In my own new projects, | never tried to predict or

optimize the level of interest beforehand. When njy] htp:/amww.tuxedo.org/esriwritings/cathedral-
code was at a stage where | thought it to be po- pa7aar/cathedral-bazaar/

tentially useful to others, | just wrote the amount

of documentation that | judged to be necessary[® Hackers, by Steven Levy. 1984.
support other users and developers, bundled it, and http://mosaic.echonyc.com/ steven/hackers.html
made the first public release.

Though | did not try to guess levels of interest b

forehand, the levels that | observe during a project

do influence my actions, in particular when choo&oen Holtman is a re- |

ing which projects to stop. searcher at the California In-f
stitute of Technology, where
he does architecture and co;

Further reading ordination work in devel- LAt &

oping the world-wide dis- = - ol
In recent years, the new economy has becomnuted data processing in-+ g
somewhat of a spectator sport, generating a matétastructure of the CMS parti- / g
ing volume of mass media accounts and Interr&e physics experiment. The current version of this
discussions. Microsoft litigation and open sourdefrastructure relies heavily on Linux systems, and
are particularly popular subtopics. On the Interneteveral of the development partners publish their
participating in discussions about open source hagldleware with an open source license.

é@] http://www.osdn.com/bcg/

XOOTIC MAGAZINE

Koen was arooTi from 1995-2000, finishing with the Eindhoven University of Technology. He ha
a Ph.D. in software design for work performelleen active in the Linux open source communi
at CERN in Geneva, Switzerland. He also holdsnce 1993, and also contributed code to the Apag

an engineering degree in computing science fraarver project.

June 2002

ty

S

he

Advertorial: Sioux

Page 22 (should be even)

Free the Software

Linux inside your TV?

Ruud Derwig

The Internet has enabled 'open-source’ software development, a process that
uses independent peer review and rapid evolution of source code to improve re-
liability and quality. Open-source licenses allow software modification, (re)use,
and redistribution, giving users perpetual, full access to software, indepen-
dence, choice, and control. This ’collective’ ownership motivates people to
contribute to the code base. The GNU/Linux operating system is an example
of a successful product of the open source community. During the past years
Linux has gained a strong position in the (Internet) server domain. Whether
Linux and other open-source software is an option for consumer electronics
products like television sets, DVD players and set-top boxes is the topic of this
article.

on the feasibility of Linux inside your TV or other
Introduction consumer product. Next to the technical issues,
however, it might turn out that non-technical issues

)]) like support, licenses, and development process are
Consumer electronics equipment found in peopleSe more important. After discussing these non-

homgs to‘?ay contains more and more SOﬁware'_leé%hnical issues this article is concluded with the
functionality and complexity of home products inz <\ ar to the question: Linux inside your TV?
crease steadily and the size of the software needed

to realize these products is growing exponentially.

Whereas a few years ago the sizes of embeddgdmorrow’s products

TV and set-top box software were measured in tens

or hundreds of Kbytes, today’s high-end productgends

contain Mbytes or tens of Mbytes. And all these

Mbytes have to be filled by (expensive) prograni-he Internet is entering the living room. Although
mers. Wouldn't it be nice to obtain large parts afot spreading as fast as people thought - or hoped
that software from third parties, and wouldn't it be some years ago, new features that require Internet
even more nice to get it for free? This promiseconnectivity are being introduced right now. Many
and a dose of Microsoft antipathy - is what lead fwommercials being broadcast at Dutch television al-
many designers and companies in the consumer deady present a URL pointing to a web page with
main taking an interest in Linux and open-sourceore information about a certain product. Instead
software. In order to discuss the possibilities @f running to the study, booting your PC, trying to
developing consumer products with Linux insideemember the URL, typing it into your browser and
first we present a number of trends and associafethlly getting to the content, wouldn't it be nice to
features that will be introduced in new producfsush a button on your remote control and get the in-
the coming years. Furthermore, some of the ifermation on your TV screen? Several digital TV
portant requirements of the high-volume electronisgrvice providers already have a web browser inte-
domain are explained. Then we delve into a nurgrated into their high-end digital receivers. But web
ber of technical issues that are relevant for decidibgowsing on TV is not the only feature that needs an

June 2002

Internet connection. A network connection can algnother development that is important for the Linux

be used for getting data that is not web-related likliscussion is the (r)evolution of hard-disk technol-

e.g. the information needed for an electronic progy. Storage capacity of hard-disks is growing ex-

gram guide. Or it can be used for streaming audimnentially, even faster than Moore’s law. Using

or video content, like for instance in an audio sebmpression, it is possible to store about an hour of
supporting not only traditional AM and FM bandshigh quality video in a Gbyte. This means that a 60

but also IM - Internet Modulation - for receiving In-Gbyte hard-disk can store 60 hours of video. Be-
ternet Radio stations. cause hard-disk bandwidth is high enough to sup-
port several video streams simultaneously, a hard-
disk enables new features like a pause button for
live broadcasts. The first hard-disk based video
recorders are available today.

The last trend we mention is the fact that consumer
systems are becoming more open, like PC plat-
forms. This means that new, third party applica-
tions can be downloaded and executed on existing
products. An example from the digital video broad-
=" casting domain is the Multimedia Home Platform
(MHP) standard. MHP defines a Java based execu-
gﬁ / tion platform for interactive applications. Next to a
: subset of standard Java APlIs it defines a number of
(i — APIs to control the digital receiver features of a set-
top box, like tuner, service information database,
and video decoder. MHP applications range from
simple teletext like information services as a stock

Figure 1: Connected consumer devices form in-hometicker to e-commerce solutions for home shopping.
networks.

%
i

The Internet is not the only network entering thRequirements

home. Whereas today devices are operating stand

alone, with at most a cable connecting the VCR &rom the trends and features described above a
DVD player to a TV, in the future devices in theaumber of new functional product requirements can
home will be connected - either wired or wirelessbe derived. Future products must support various
to form in-home networks. Instead of always havinfigrms of networking and connectivity. Furthermore,
to watch satellite channel movies in the living roonvarious mass storage media - both optical and mag-
because there the set-top box is connected to the m#tic - and file systems must be supported. But be-
the set-top box could redirect the movie through tisides these new functions that seem to make con-
home network to the bedroom and the bedroom T¥mer products more PC like, the traditional re-
could forward remote control commands back tuirements from the high-volume consumer elec-
the set-top box. The same scenario applies to othrenics domain still hold. People expect a high level
devices like for instance a storage device. Whitd robustness and ease of use from TVs and DVDs.
watching the forwarded movie in the bedroom, fdtrequent user reboots of a TV, because of system
instance, you get too sleepy to continue watchingrashes, are no option. Given the huge product
Instead of getting out of bed, sleepwalk to the VCR®Ilumes and strong price erosion, the bill of mate-
and program it, a storage device connected to theti@l of mainstream consumer products is under con-
home network could be controlled from any placgant pressure. This translates into a limited CPU
in the house. Although a fully connected home netycle budget and a limited memory footprint that
work is probably not going to be there in the neanake efficient resource management very impor-
future, the first digital receivers supporting a secomaint. In combination with the required robustness
TV will enter the market soon. and the real-time nature of audio and video, this

XOOTIC MAGAZINE

leads to the need for efficient, deterministic, pre more reliable strategy is adding an extra proces-

dictable CPU scheduling and memory allocatiosor that takes care of the real-time control tasks.

In

Traditionally, small and efficient real-time kernelsuch a dual processor system the processor running

were the only solution for meeting these timelinessnux can be seen as an application co-processor

and predictability demands in a cost effective, reerforming the non real-time best effort applicatian

source constrained way. These small kernels litasks.
CMX, pSOS and VxWorks, however, do not offer
the rich set of features that "fat” operating systems A

[i i i DVD- CDR- (not real-time)
like Wmdovys and Linux do. Since future consumer m’—dg‘ o s
products will depend more and more on a rich set of o }

(we 10 ps)

RTFS | |SW-modem

networking, connectivity, and storage features, the

Linux kernel

"fat” operating systems are entering the consumer fevice Ditvars = 1
roducts market. by
p [RT Llnfu:(Scheduler 10| Yntermupts
110 N[\J Interrupts

[Hardware]

Technology

To what extend can Linux and other open-sourggyyre 2: Real-time Linux, a hybrid solution.
software meet the requirements of today’s and to-
morrow’s products? To answer this question we dis-

cuss three topics: real-time performance, memory ,
footprint and functionality. But Linux is open-source. So for each problem

lacking feature somewhere in the world someo
can be found working on it. Although this is no

Real-time performance true for all lacking features, it does hold for the real-

time performance of Linux. And - following an-
other open-source tradition, the Darwinian surviv
of the fittest - it is not a single person or project th
is providing a solution for improving the real-time
performance of Linux. A number of (sometime
uler is available, with schedul- ¢ competing) alternative solutions exist. These so
ing latencies varying on a stan- & .7 tions can be classified in two groups, either enhar
dard PC from a fevus to 100 ms ing the real-time performance of the Linux kerng

or even more. Although average latency is usualigelf or enhancing system performance by combi
very low, responses in the order of 10 ms occur frgg Linux with a small real-time kernel.

qguently. Compared to for instance 20 ms deadlines

for a 50 Hz. video frame rate, it is clear that - un-

less a lot of expensive buffering is applied - plaiEnhanced Linux

Linux cannot cope reliably with the requirements

from the video domain. This does not mean tha@he greater part of the large worst-case schedul
you cannot play DVD movies on a standard Linutatency of standard Linux is caused by its mon
PC. Such a standard PC uses several Mbytes Iftitic kernel design. Although user space activ,
buffering audio and video. And even then, whelies are scheduled preemptible, kernel space ac
starting a web browser or receiving an e-mail whildes are not. This means that operations like syst¢
playing the movie, on many occasions the videsalls, "bottom half’ interrupt handlers and proces
is not displayed smoothly at a constant frame raszheduling are completed once started, even if
Therefore, from a real-time requirements perspeasther higher priority activity is triggered (e.g. by
tive, the only way to build a robust consumer devian external interrupt) and ready to be executed.

based on a standard Linux distribution is by solveduce preemption delay in kernel space two so
ing all real-time requirements with extra hardwaréons are being worked on. The first one, called loy
This can either be more memory for buffering, blatency patch, shortens the non-preemptible ker

The standard Linux kernel pro-
vides soft real-time support ac-
cording to POSIX 1003.1b. A
priority based preemptive sched-

June 2002

for

DI
ne
t

al
at

paths by introducing explicit reschedule points innterrupt latencies of severak and scheduling la-
side the kernel. The second one, called preenencies in the order of 10s The major drawback of
tion patch, exploits kernel extensions for suppothese solutions is that the improved real-time perfor-
ing symmetric multi-processor architectures (spimance only holds for the real-time kernel part. Stan-
locks). Instead of allowing preemption at specifidard Linux device drivers do not become real-time
points inside the kernel, like the low-latency patatirivers by using a real-time Linux variant. Drivers
does, the preemption patch enables preemption maay disable interrupts for up to hundredsuafand
the complete kernel space, except for specific cniolate other standard real-time design rules. In or-
ical sections that should not be entered by mader to use those drivers in the real-time domain, they
than one thread concurrently. Most of these critiave to be rewritten.

cal sections are already protected by spinlocks for

the multi-processor version of the kernel. By im-

plementing the spinlocks with mutexes in the sifrootprint

gle processor build - instead of skipping the spin-

locks like the standard kernel does - the kernel belthough the memory available in consumer de-
comes re-entrant. Of course the complete soluti$i§€S iS growing, memory remains a scarce re-
is somewhat more complex than described here, B@tirce. The main reason is that the larger part of the
a detailed discussion of both patches is not the gdApytes that are available in high-end digital prod-
of this article. Although it is difficult to give accu-Ucts are used for buffering and rendering audio and
rate worst case scheduling latency numbers for bdfifeo data. Also graphics consume more and more
patches - numbers depend on different versions/Bgmory. Besides a framebuffer (sometimes dou-
the patches, different hardware and different bendHy buffered) a considerable amount of memory is
marks - it is generally assumed that both patch&gent on built-in fonts and bitmap graphics. Finally,

can reduce maximal latency to sub ms numbersNgW features like a web browser or Java virtual ma-
the order of hundreds ofs. chine have a large impact on the remainder of the

Another approach to enhancing the real-time pdP€MorY that is not used for audio and video data.

formance of Linux targets the scheduler. The Sta‘ﬁr_aditional real-time kernel sizes are in the order of
dard Linux scheduler is optimized for throughpu’]to0 Kbytes or .10 Kbytes for sm_all kernels. A min-
and fairness, not for real-time responsiveness Hba' desktop Itmux system r_equwes st_averal 'V'b¥tes
predictability. Although the scheduling policy forDf gfmory, W|thoultl ?bgraphlcal duserdlntlerfaﬁe like
application processes can be set to the traditioﬁ%l q ((IjOUI'SG SOIka ! rgrles an (;n?j ules that are
priority based preemptive scheduling offered gyFeded on a des _topP are heede onaTV or_set-
real-time kernels, the implementation of the Linu p box. By selectlr_lg speqﬁgfegtures and disabling
scheduler still can be improved for better and deté%l-hers’ kb d|st_r|but|ons are re:_;lsonat_)ly
ministic performance. Other improvements to ﬂ%slable. Some cq;nmermgl Iemt;gddfed Lmt:c'x dis-
scheduler include new scheduling policies like tﬁ@ utors even provide special tooling for configur-

budget based scheduling found in resource kerndl¥Y anpl scaling ‘?'OW” Linux. Howgver, assuming
Linux is chosen in favor of a real-time kernel be-

_ _ cause of its rich set of features, it is fair to state that
Hybrid solutions a minimal embedded Linux solution requires sev-

i . eral Mbytes of memory.
RTLinux and RTAI are two approaches to achieve

hard real-time behavior, generally referred to ﬁénd thatdis jusf[thelkkernela V\{(hen a(_jdcijng applica-
real-time Linux. Essentially, these projects ardonS and services like a deskiop window system,

constructing their own real-time kernel. This kez?’-veb broyvser and Jav_a virtual machine, total mem-
nel runs Linux as its lowest priority task. Al theOTY requirements are in the order of tens of Mbytes..
standard services of the Linux kernel and Linux aut Linux is open-source. Just like on the real-time

plications are available (although without the redrerformance, several projects are working on reduc-
time guarantees), yet real-time threads and hapd the memory footprint of Linux based systems.

dlers can run with minimal, hardware limited, la¥Ve hame two examples here.

tencies. Real-time Linux solutions can guarantdée standard GNU C library that most applica-

XOOTIC MAGAZINE

tions dynamically link to requires about 1.3 Mbytegffort required to realize a new driver for not ye
That's a lot of memory, especially if only a fewsupported hardware is less than it would be wh
functions are used - printf does not always malstarting from scratch.

sense inside a TV. When linking statically to the liyext to the features that are built into the Linux ke
brary, code that is not needed can be stripped, fgs, many utilities, middleware and applications e
sulting in a minimal size of about 300 Kbytes. Bukt. Although most of them are targeted at des
then, each application duplicates this code. Sevet@é or server systems, a large number of them ¢
small and scalable C library implementations, likge put to account for the consumer domain b
'uClibC’, 'DietLibC’, and 'newlib’ have been or are cayse of the convergence of PC and consumer fu
being developed for embedded applications, redygmality. Furthermore, because of the big mq
ing the memory requirements to several Kbytes. mentum for embedded Linux solutions, more ar
Graphical user interfaces and window systems thmbre middleware and applications become ava
are used in standard Linux versions do not meet thiele that are specifically targeted at embedded

requirements of the embedded consumer domaiites. One just has to take a quick look at a site li
Besides a large footprint, standard solutions amsvw.linuxdevices.com to realize this. We mentio
not optimized for interlaced TV displays or smalh few examples that are relevant for the consun
LCD screens. There are many open-source (ashmimain. Many projects deal with web browsin
commercial) projects that deal with those issuem embedded platforms. Both open-source so
Again, we name two examples. The 'MicroWintions, like 'viewML’, 'Konqueror/Embedded’, and

dows’ project works on a small modern graphcommercial solutions like the 'Opera’ web browse

cal windowing environment for embedded applicdhat runs on top of the 'MicrowWindows’ environ-
tions. It supports an API based on Win32 GDment are available. Other open-source projects &
with a footprint below 100 Kbytes. 'Qt/Embeddedtommercial companies are building (digital) T
is a solution that is scalable from 800 Kbytes to receivers including electronic program guides a
Mbytes. It aims, among others, at consumer devidesrd-disk video recording on top of Linux. Ac
like set-top boxes and PDAs. tivities range from open-source initiatives like th

'vdr/LinuxTV’ project - developing 'personal video

recorder® software -, via associations like the 'T\

Functionality Linux Alliance’ - standardizing platform interfaces

-, to companies like 'TiVo’, that offers a persona
The technical motive for choosing Linux is not ityideo recorder service and set-top box on subscr
real-time behavior or memory footprint. It is thdion basis.
rich set of features that ease development and en-
able a short time to market. Linux supports most
of the new functions that we see entering consumer
products in the coming years. It is a fully featured, ,
high-end operating system that supports multiple e
processors, processes and users, that supports net- -9
working and many file systems, and that provides
memory protection and security options. Apart
from generic services and implementations of stan-
dard protocols, specific support can be found for a
wide range of processors and peripherals, including
standard (wireless) network cards and IDE drives,
but also including a/v consumer domain specific pe-
ripherals like (digital) TV cards, IEEE 1394 high
speed digital interface, and BlueTooth devices. Agigure 3: The TiVo personal video recorder.
ditionally, since sources of all drivers are open, the

2personal video recorder is the phrase used for indicating hard-disk based video recorders that support functionali
pause-button and automatic recording of all broadcasts of your favorite soap series.

June 2002

D

ip-

ty like a

Non-technical issues code. One of the differences between these licenses

is in the terms for combinations with proprietary
How free is free software? Throughout this articlsoftware. For example, linking proprietary closed-
we deliberately use the term open-source insteadsotirce applications with GPLed libraries is not al-
the term free software that is commonly adoptdawed, but linking them with LGPLed libraries is.
too. The free part of free software refers to the frekinking binary modules into the Linux kernel is
dom towards users that is ensured by licenses. Ageherally allowed due to an explicit license exemp-
although the business models associated with op@ian granted by Linus Torvalds.

source software are usually not based on paying fidie availability of modified source code that GPL
the actual software and intellectual property that thgid GPL-like licenses require, has both advantages
software represents, free software is not free of cogd drawbacks. It enables open-source communi-
In order to use open-source software in softwafigs and projects and has helped Linux to become
intense high-volume electronics products, for ifhe feature rich operation system that it is today. For
stance, professional support and training are imp@jgh-volume consumer electronics manufacturers it
tant too. Today, the support you can get from cortheans lower bill of material costs, since no run-time
panies specialized in embedded or real-time Linygense fees are due. But it can also mean that the
is comparable to what you get from traditional reafnanufacturer’s specific intellectual software prop-
time kernel vendors. Quality is good and prices agety and added value is no longer protected when
fair, among others because of the competition bgyecific enhancements and additions to the copyleft
tween different suppliers that do not hold technolcensed source code have to be opened up. And
ogy locks on their customers with specific real-timghen this intellectual property is also protected by
solutions or tools. patents, the situation becomes very unclear from
Another cost factor that people tend to forget whenlegal point of view. By incorporating GPL li-
talking about free software is licensing. Since thepensed software into a product, the manufacturer
are several important licensing related issues, it dgants users the right to freely use and distribute
serves a section on its own. the manufacturer’s modifications and additions. On
the other hand, patent laws disallow the free use
of these modifications and additions when they are
protected by patents.

The idea of open-source software dates back to ecause of the fact that open-source licenses have
software-sharing community of the MIT Atrtificialnever been tested in court, companies that con-
Intelligence Labs. When this community dissolvedjder incorporating open-source licensed software
one of these people, Richard Stallman, continugdo their product should make a trade-off between
to write what he called free software. He latdhe time to market and cost advantages and the le-
formed the Free Software Foundation thatis respayal intellectual property risks. Next to this legal
sible for many of the GNU applications. Severalsk, also the public image of the company should
open-source licenses exist nowadays, like e.g. the considered. In the spirit of freedom of use and
GNU General Public License (GPL) and Library (osharing, the open-source community has little re-
Lesser) General Public License (LPGL), the BSD gpect for companies that only use software for their
Berkeley license, and more recent variations suchasn commercial benefit. Furthermore, the princi-
the Netscape and Mozilla Public Licenses and tptes and ideas behind open-source software are not
Sun Community Source license. The term ’'copyn line with traditional patent protection. On the one
left’ is also used, especially with the GNU license®and many members of open-source communities
because the central idea is to give everyone pgel that software patents, that restrict the free use
mission to run, copy, and modify the program, araf software, hinder innovation. On the other hand,
to distribute modified versions. It is, however, ngiatent-minded people feel that the protection and
permitted to add restrictions. With many of thpossible financial rewards stimulate companies to
licenses modified versions of the software mugtyvest in innovation. Without proper protection of
upon redistribution, provide the same freedom iotellectual property rights, the huge research and
users, including availability of the modified source

Licenses

XOOTIC MAGAZINE

development investments that are needed for breaibute, and modify the source code for a piece
through innovations would not be affordable. software, it evolves. People improve the code, ad:

To overcome some of the disadvantages of GFL,and fix bugs. And this can happen at a speed th

companies like Sun have introduced semi-opelf-comparison to the pace of conventional software

source licenses to exploit the open-source advél§velopment, may seem astonishing. Several cg
tages while simultaneously protecting their intelle2nies are experimenting with open-source like ¢
tual property and taking benefit from communityzelopment processes. Either through projects t
constructed add-ons. The dual licensing of Q@€ truly open to the public community, or throug
graphical windowing environment is another aff0-called ‘inner-source’ projects that aim at crez
proach. It can either be used free of charge, but pfgg and leveraging communities inside a compar
tected by GPL, or companies can choose to coMain challenge for these experimental developme
mercially license the same software that can BEocesses and organizations is to find the right b

combined with own applications without restricance between centrally managed and distributed
tions. velopment activities. Without some central guig

ance and direction, software will not evolve into th
right (commercial) directions.

Process

The final subject we discuss does not concern theONclusions
products of open-source, but the way these products

are developed. Given the fact that traditional deve -
opment processes do not scale up very well to cc
with the large team sizes that are needed for co
plex products, open-source development proces
can be an interesting alternative.

Re-use of software is often seen as the solution :

Linux is gaining a lot of mo-
mentum in the consumer elec
tronics domain. Although real-
time behavior and memory foot-
print do not yet allow Linux to
be used in all mainstream con

coping with the increasing complexity and strong sumer products, the rich featurr

time to market requirements. Software re-use, hoig makes Linux a serious candidate for today’s a
ever, turns out to be very challenging in practice. @ very serious candidate for tomorrow’s high-er
is very difficult to take an arbitrary software comproducts.

ponent from one product and put it to use in aysing Linux and other open-source software can
other product. Reasons vary from strong conteyry tempting from a technical and time-to-mark
dependencies of a component, quality problems asisint of view. The freedom that open-source a
lacking documentation, to architectural mismatcQocates, however, is mainly freedom to end-use
One way of eliminating these obstructions for re;md does not necessarily match with the intellectt
use, is to Centrally enforce a common arChiteCt%eoperty business interest of consumer electron
and common processes for documentation, quakfianufacturers. Given the legal uncertainty - ope
control, etc. However, when development projecigurce licenses have never been tested in court -
grow in size - a modern, high end TV requires ovgsntion must be paid to reducing the risks, for i

100 man years of software - or are executed o\@hnce by avoiding linking to GPL software or onl
different locations and time zones, the overhead|@fking binary modules into the Linux kernel.

centrally enforcing and checking the architectur
and process rules grows exponentially, if possible
all.

Bpen-source software influences the consun

ducts of tomorrow. If not by being incorporate
into products, then by adopting certain aspects
The other way of dealing with the re-use obstaclgse open-source development process that promg
is the open-source way. The distributed nature §fiaring and re-use of software. This leads us to ¢

open-source projects, with many contributors thgal conclusion. Linux inside your TV? Probably
communicate through the Internet, scales much b&goner than you think!

ter than a centralized approach. The basic idea is
very simple. When programmers can read, redis-

June 2002

of
apt
at,

m-
e-
nat
h
\t-
y.
Nt
al-
de-
-
e

d

be
ot
d-
Br'S
lal
cs
n-
at-
'|_
y

ner
d
of
tes
Dur

Ruud Derwig
(Ruud.Derwig@philips.com)

main. Key areas of expertise

are real-time kernels and op-

is working at Philips Re- erating systems, resource aware component archi-
search on software platfor : tectures, and heterogeneous software architectures.
architectures for resourcd = === Before joining Philips Research he followed the
constrained products in thg 8 & post-masters Software Technology programti)
consumer electronics do at the Eindhoven University of Technology.

XOOTIC MAGAZINE

Free the Software

RecentooTI! Publications

The post-masters programroeT! is concluded with a design project. The final reports of these projects
are in general publicly available, unless stated otherwise. The following reports have been published
lately.

M. HudaklInternet Tuner
Keywords: Internet tuner/Broadcasting/Video streaming
ISBN: 90-444-0168-8, 40p., December 2001

M. KychmaCommercial Block Detection on Digital Recording Products (DVD and HDD)
Keywords: Commercial Block Detection/Audio/Video Retrieval/MPEG-2 Encoding
ISBN: 90-444-0192-0, 59 p., April 2002

S. ShumskBcripting Interface Servige
Keywords: MATLAB, Python, Script, IDL, Interface
ISBN: 90-444-0201-3, 37 p., April 2002

G. MuitjensOn the Suitability of Java for TV Control Applicatigns
Keywords: Software components, Koala, TV Control software, Real Time Java, Java
ISBN: 90-444-0191-2, 65p., April 2002.

June 2002

