

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

X00TIC
June 2002-Volume 10-Number 1

magazine

Free the
Software Freedom

Making Money

An Insider’s View

Embedded Penguins

XOOTIC MAGAZINE

Contents

Free the Software

Editorial Preface 3

Free Software = Software for Free?

Andrew Mikheyev and Laurens Vrijnsen . 5

Open Source Business Models

Anthony Liekens 11

AFIO: Inside an open source project

Koen Holtman 15

Linux inside your TV?

Ruud Derwig 23

RecentOOTI Publications

. 31

Advertorials

Philips 4

Thales 10

Sioux . 22

TIC
magazine

POST-MASTERS PROGRAMME SOFTWARE TECHNOLOGY

Colofon

XOOTIC MAGAZINE

Volume 10, Number 1
June 2002

Editors
C. Delnooz
N.H.L. Kuijpers
Y. Mazuryk

Address
XOOTIC andXOOTIC MAGAZINE

P.O. Box 6122
5600 MB Eindhoven
The Netherlands
xootic@win.tue.nl
http://www.win.tue.nl/xootic/

SecretariatOOTI

Mrs. C.I.T. Kolk-Koenraat
Post-masters Programme Software Technology
Eindhoven University of Technology, HG 6.57
P.O. Box 513
5600 MB Eindhoven
The Netherlands
tel. +31 40 2474334
fax. +31 40 2475895
ooti@win.tue.nl
http://wwwooti.win.tue.nl/

Printer
Offsetdrukkerij De Witte, Veldhoven

Reuse of articles contained in this magazine is al-
lowed only after informing the editors and with ref-
erence to “Xootic Magazine.”

2 XOOTIC MAGAZINE

Editorial Preface

Free the Software
Editorial Preface

It’s been a while since the last issue ofXOOTIC MAGAZINE appeared. A lot has happened since then.
Around the time of publication of the lastXOOTIC MAGAZINE, we celebrated our tenth anniversary with
a symposium on Pervasive Computing. In February the board changed during the General Members
Meeting. The hammer is now in the hands of our new chairman who leads a fresh board. Also the
editorial board ofXOOTIC MAGAZINE changed. Shortly after defending his Ph.D., Victor Bos left for
Finland where he now works as postdoc. Consequently, he decided to stop editing the magazine. From
this place I want to thank Victor once more for all his time and effort he has spent during the past years on
editing articles and preparing the magazine for reproduction. Luckily, his vacancy was soon to be filled
by Chris Delnooz who started theOOTI programme last September. The editorial board now consists of
Yarema Mazuryk, Chris Delnooz and myself.

As a theme for this issue we have chosenFree the Software. We discovered that lots of XOOTICs are
involved in the development or usage of free software. We thought that presenting their opinions and
experience to theXOOTICcommunity might lead to an interesting magazine, and it sure did! We have four
articles each focusing on another aspect of free software.

Andrew Mikheyev and Laurens Vrijnsen start off with an overview article in which they explain the con-
cept of free software and present some successful open-source projects. They also make a comparison
between open source and closed source on a number of criteria such as quality, usability, security, devel-
opment speed and portability. The second article is written by Anthony Liekens who works as a Ph.D.
student at the TUE. Although Anthony is not an (ex-)OOTI he is a regular visitor at theOOTI room. In
his article, he discusses the business models that are applied for open source projects and he also men-
tions a few successful examples. XOOTIC member Koen Holtman writes about his own experience as the
maintainer of the open source archiverAFIO. By focusing on just one project, he is able to describe the
micro-process that open source developers are involved with. The fourth and final article is also written
by an ex-OOTI: Ruud Derwig. Ruud writes about the increasing size of software embedded in consumer
electronics equipment. He discusses how open source might be applied in the development of such soft-
ware. He not only addresses technical aspects, but also organizational and, very important in this case,
legal matters.

Enjoy reading this magazine!

Nico Kuijpers, editor

June 2002 3

Advertorial: Philips
Page 4 (should be even)

Free the Software

Free Software = Software for Free?
Andrew Mikheyev and Laurens Vrijnsen

“Free as in ’free speech’, not as in ’free beer”’
(Free Software Foundation[2])

In this paper, we present the basic characteristics of free software and open
source software. We illustrate their impact on today’s world of computing with
a number of examples, before we compare the two against main-stream, pro-
prietary software. The discussion will not be about holy versus evil, Redmond
versus Red Hat, or Bill versus Linus; that has been covered by too many al-
ready. Rather, we will look at free software from a (system) developer’s point of
view: how about quality, security, usability, development speed, portability and
profitability?

Introduction

Free software, open source. . . just a few terms that
are emerging these days. Many associate it with
software hacked together by a group of enthusias-
tic amateurs from that ancient UNIX-world. Soft-
ware placed on the Internet to make it available for
everyone, for free, without guarantees. That can’t
be serious software, can it? However. . . the growing
popularity of Linux, also in the embedded world, is
for a large part based on the fact that it is free soft-
ware. But what does this concept mean?

In this article we will explore what “free” really
means. First we introduce the concepts of free
software and open source software. After a brief
demonstration of its viability, we present a compari-
son of free software versus proprietary software. Fi-
nally we give some concluding observations.

Free software? Open source?

Contrary to what one may expect, the word “free”
refers to freedom, not to “for free”. Free software
offers following freedoms to its users:

1. The freedom to run the program, for any pur-
pose;

2. The freedom to redistribute copies1 of both
source code and binaries so you can help oth-
ers;

3. The freedom to study how the program works,
and adapt it to your needs;

4. The freedom to improve the program, and re-
lease your improvements to the public, so that
the whole community benefits.

A program is free software if users have all of these
freedoms. Thus, you should be free to redistribute
copies, either with or without modifications, either
for free or charging a fee for distribution, to any-
one, anywhere. Being free to do these things means
(among other things) that you do not have to ask or
pay for permission.

Open source is another commonly used term to re-
fer to this type of software. A closer look at the
two different movements “free software” and “open
source” learns that they use almost the same criteria
for judging software, but with different rationale:

• the free software movement has an ideological
focus towards freedom for the user;

1An exception is made if export regulations are violated by this, e.g. for encryption software.

June 2002 5

• the open source movement takes a more prac-
tical approach: it promotes software reliability
and quality by supporting independent peer re-
view and rapid evolution of source code.

In this article, we will focus on the practical aspects
of free software. Therefore, we permit ourselves
to use free software and open source software as
synonyms. Instead of having developers that create
software in their ivory tower and then give it to their
customers, open source software (and free software)
creates a community of developers and users that in-
teract.

The above-mentioned freedoms have two intriguing
consequences for producers of software:

• they may not get a fee for every copy that is
used;
• their solutions to problems (as found in the soft-

ware) are exposed to everyone outside of the
company, including their competitors.

Many vendors of proprietary software use copy-
rights and patents to prevent users from claiming
the above-mentioned freedoms. On a more practi-
cal note, these tactics prevent knowledge and ideas
to spread and be improved by others, thus limiting
the speed of development and progress in the field
of computing science.

In spite of these consequences, more and more com-
panies are turning to producing open source soft-
ware, as will be demonstrated in the next section.

A few examples of open source
projects

One of the most well-know open source projects is
the Linux operating system. The open nature of its
development has boosted its development and there-
fore has created the basis for its current popularity,
both with “hobbyists” and professionals. People
who have problems with their Linux find that the
community is not only open for development, but
also for providing fast and good support.

Apache, by far the world’s most popular web server
with a 58% market share ([1]), gives another ex-
ample of the high quality provided by open source
software.

Apple was the first mainstream computer company

to build its future around open source, and is part-
nering with the Apache Group, FreeBSD, NetBSD,
and other open source developers to work on evolv-
ing the Mac OS X platform. It has released the core
layers of Mac OS X Server as an open source BSD
operating system called “Darwin”.

IBM chose the open source Apache web server to
support and bundle with its WebSphere suite. It has
since released the Secure Mailer in open source and
launched a web site to distribute alpha-status IBM
technology in source, before they are licensed or in-
tegrated into products. This allows developers all
over the world to both evaluate and influence IBM
research and development.

Sleepycat Software builds, distributes, and supports
Berkeley DB, an open source embedded database
system. Their customers include many of the lead-
ing open source projects, as well as Fortune 500
companies whose own products are proprietary.

These are only a few examples. We encour-
age the reader to search for open source products
that match his/her personal preferences. . . there is a
good chance you will be pleasantly surprised by the
results.

As shown in the above examples, “free software”
can be commercial. One has to realize that software
is more than just a collection of bits: it is a product
that requires support to tune it to specific require-
ments. It is beyond the scope of this introduction
to elaborate on possible business models here; we
refer interested readers to the articleOpen Source
Business Modelsby Anthony Liekens, later in this
magazine.

Open source versus closed source

So free software can be economically viable, but
what are the benefits? In order to answer this ques-
tion, we will compare open source to its opposite,
closed source or proprietary software, on a number
of criteria:

• Quality;
• Security;
• Usability;
• Development speed;
• Portability;
• Profitability.

6 XOOTIC MAGAZINE

Quality

The good quality of the final product is a sum of two
major components: good design and good imple-
mentation. For a major part of open source projects
we can say that usually both are at a very high level.
Two factors contribute to this - the accessibility of
the source code and the professional level of the de-
velopers.

The source code being publicly available can be
analyzed by thousands of amateur-programmers or
professionals whose interests lie in the field for
which the product is being targeted. Everyone is
free to update the source code or send a feedback
to the author of the erroneous module in the case a
bug is spotted. This tremendously accelerates the
testing procedure of the product in comparison with
the closed-source projects, where the testing is usu-
ally done by a limited number of beta-testers, and
only the project’s development team does the cor-
rections in the code.

The availability of the source code partly explains
the high quality of open source products. However,
this is not the only reason for that. The professional
level of the developers participating in open source
projects is on average very high. The Boston Con-
sulting Group in one of its surveys partially men-
tioned in [4] found that the open source developers
surveyed are mostly experienced professionals hav-
ing on average 11 years of programming experience
and the average age of 28.

Peer reviews play an important role in the open
source development process and contribute to the
high quality of the resulting products as well. Since
all open source developers can see source code pro-
duced by the others, they can spot defects in the
code and provide its author with feedback. If low
quality of the source code becomes a persistent is-
sue for some developer, then eventually he will have
to leave the community.

All these factors contribute to the quality of the open
source products, allowing them to score better in
this category than the closed-source products.

Usability

As mentioned before, almost all open source
projects are carried out by people who are fluent in
modern software and hardware technologies. Tra-

ditionally, those people tend to concentrate more on
the technical side of their work rather than paying
attention to such details like user interface design.
The implementation of a convenient user interaction
in their products is not at the top of their priority
lists. This is where the commercial closed-source
products (usually working under Windows), defi-
nitely beat open source products with their amateur-
like user interfaces.

Meanwhile, the open source community seems to
have finally understood the problem. The situation
with the usability of the open source software is
constantly ameliorating. For already several years,
newer versions of popular desktop managers for
Linux having a constantly improving user interface
are a good example of this positive trend. However,
the developers still seem not to have found the right
balance between the amount of functionality they
offer in their interfaces and their ease of use.

Security

In the software systems there are many ways how
security holes can appear. They can be caused by a
bug that makes the system behave in a non-specified
way. They can also appear as a side effect of some
feature of the system - of which no one had ever
thought before. The communication protocols used
or implemented by the system can be poorly speci-
fied and use of them in an improper way can lead to
security problems as well.

What will developers do in order to spot all the po-
tential sources of security problems?

In the closed-source world testing is performed in-
side the company where the product is being de-
veloped. Some companies even hire professional
hackers and let them explore the source code and
the product itself to find as many potential security
issues as possible.

In open source, all software developers of the world
can have access to the source code of the open
source products. If someone suddenly discovers a
security problem, it will be known very soon by
the open source community and the necessary mea-
sures will be taken by the authors of the system or
concerned users. The fact that the source code of
all widely used products is being constantly ana-
lyzed by thousands of software specialists all over
the world raises the security of those products to the

June 2002 7

level yet unreachable by the closed-source software
industry.

Another advantage of open source is that using an
open source product you can be sure that it doesn’t
contain any sort of back-doors - a hidden function-
ality that can be activated and used by the author of
the system, intelligence or military organizations -
without keeping you aware of this. As long as you
have the source code of the system, it will be im-
possible to hide anything like this inside of it.

Development speed

The open source projects are usually developed by
teams consisting of many people distributed all over
the world. Most of them works on the project dur-
ing their spare time, taking no obligations of any
kind before the community. Some people do it be-
cause they believe source code should be open, oth-
ers participate to improve their programming skills
or just for fun. There are also people who do it for
their professional needs, working on the parts that
they need themselves. In all cases, the level of mo-
tivation of the developers is high enough to compete
in development speed with the commercial closed-
source projects.

Since Linux appeared in 1991, its today’s releases
contain tens of millions lines of code - all writ-
ten by the participants taking no obligations of any
kind before the community. Thus, Red Hat Linux
6.2 contained over 17 million lines of code, and
Red Hat Linux 7.1 is composed of 30 million lines
of code which is even more than those 29 mil-
lion lines of Windows XP, which is considered to
be the largest commercial project ever carried out!
These figures are not only a testimonial of the high
development rate that can be reached in the open
source projects, but these figures also give us an evi-
dence of a very high potential scalability of the open
source development process.

However, open source development strategy has its
drawbacks. The non- obligatory participation in the
projects makes it possible for every participant to
stop contributing whenever he wishes so. As a con-
sequence, it is almost impossible to predict the re-
lease date for a next version of any open source
product.

Another disadvantage of the open source develop-
ment process is its development latency for support-

ing new hardware. One can run into troubles trying
to install Linux on a brand new machine equipped
with the latest graphics card, wireless connection
card and other just released hardware equipment
due to the lack of drivers for all this hardware.

Portability

Portability is becoming a very important concern
for the developers who are working on the non-PC-
based platforms. Embedded systems developers, for
example, would greatly benefit from the possibility
to tailor an external piece of software for their own
hardware configuration. This is where open source
solutions are much more attractive than the ones us-
ing closed-source ideology.

At present moment, many companies are work-
ing on their own versions of Linux for use in
their proprietary embedded systems. This dispenses
them from developing new operating system from
scratch.

NetBSD operating system is just another good ex-
ample of the portability of open source solutions.
Up till now this operating system has been ported
to as many as 48 different platforms! Different de-
velopment teams got the possibility to port NetBSD
to the platforms they are interested in, since its ar-
chitecture and source code are publicly available for
downloading.

Such an activity wouldn’t be possible if the source
code of the system had been proprietary and closed.
The company-owner simply wouldn’t have coped
with the task of porting the system for so many
hardware platforms. Most likely, it would favor
one hardware configuration (one specific CPU) and
produce builds for this particular device. This kind
of strategy has been undertaken by Microsoft with
their latest PocketPC 2002 operating system for
which it had been announced that only Intel’s Stron-
gARM processors would be supported starting from
that version.

Conclusions: applicability?

So strangely enough, free software seems to be most
appropriate for those who are willing to pay for it.
In the market of embedded software, it can lead to
closer ties through co-development. Instead of sell-

8 XOOTIC MAGAZINE

ing software, companies can focus on selling sup-
port, e.g. tailoring software products to unique cus-
tomer requirements. Open source software allows
for fast progress in development of new software
products by sharing new ideas. Exactly this is the
secret to why free software products outdistance
their commercial counterparts on a number of as-
pects.

For the large group of home users and office au-
tomation, open source software is becoming more
and more attractive as an alternative for expensive
software products. However, how a company can
sell support to this group of customers remains un-
clear. Therefore, the viability of delivering open
source products to this group is questionable, but
companies must react to the competition offered by
high-quality open source software products.

References

[1] Netcraft, ”Netcraft Web Server Survey”,
http://www.netcraft.com/survey/

[2] Free Software Foundation, ”Philosophy of the
GNU Project”, http://www.gnu.org/philosophy/

[3] The Open Source Initiative,
http://www.opensource.org/

[4] Why Open Source Soft-
ware? Look At The Numbers!,
http://www.dwheeler.com/ossfs why.html/

Andrey Mikheyev holds an
M.Sc. degree in mechanics
and automated control re-
ceived from French Gradu-
ate School of Mechanics and
Microtechniques (Besanon,
France). He also received an
M.Sc. degree in computer science from State Power
Engineering University (Ivanovo, Russia). He is an
OOTI trainee since September 2001.

At this moment, apart from other professional inter-
ests, he is particularly interested in all products and
technologies offered by Microsoft since he thinks
that this passion will help him answer the ultimate
question - “What does an IT-company and its em-
ployees need, to develop great products and thus
survive and flourish on the today’s hi-tech market?”

After a nine-month research
project in Philips Research on
a software architecture for the
domain of emergency medi-
cal care,Laurens Vrijnsen
received his Masters degree
in Computer Science from
the Eindhoven University of
Technology in August 2001.

Shortly afterwards he joined theOOTIprogram. His
current fields of interest are software architecture
methodologies and autonomous systems.

Laurens’ experience with UNIX and free software
dates from 1997, when he was introduced with the
FreeBSD operating system. Ever since he has been
a devoted worshiper of daemons and the UNIX de-
sign philosophy: creating small, reliable solutions.

June 2002 9

Advertorial: Thales
Page 10 (should be even)

Free the Software

Open Source Business Models
Anthony Liekens

At first hand, Open Source Software (OSS) and conventional business models
do not seem to match. OSS often gets the connotation of being free of charge,
which is not an encouraging prejudice when one is trying to make money out
of it. However, OSS can offer some new opportunities for commercial software
development.
How can a firm in the sector of information technology make money out of Open
Source Software, while supporting the community that thrives on free software?
To start with, an entrepreneur who is developing OSS, is not simply supporting
the open source community. OSS is a way of building software in collaboration
with the users of the software packages, which can possibly end up in creating
a product with a level of quality that could not be achieved with closed source.
The user is given the ability to propose useful bug fixes and interface changes.
This close interaction with the user can obviously lead to an improved product,
and in many examples on the Internet, open source development is starting to
beat the monopoly of commercial closed source software farms.
Open source development gives customers a much greater ability to customize
software to fit their needs. Customer bug fixes and enhancements are com-
monly contributed back to standard open source packages, while improving
upon the quality and limitations of the product. This option is not available
within traditional commercial software.

Do you trust your toaster’s soft-
ware?

One of the most discussed results of this interaction
is the increased security and reliability of OSS prod-
ucts. Giving away the source code of a software
product will give the community of users the pos-
sibility to expose the product to increased testing,
such that security problems and fixes can be discov-
ered and distributed earlier than in a closed source
model, improving the overall quality and reliability
of the software package.

Entrepreneurs using OSS business models depend
largely on the high reliability of their software;
their software is peer-reviewed, and possibly tested
more extensively than proprietary closed source
software. Opening the source of a project can make

the project free of bugs, and as bullet-proof as soft-
ware can get when reaching a mature stage in the
software’s life cycle.

Advantages of OSS

Speeding up development

Allowing a product’s users to be co-developers
along with the product’s developers seems to be
in stride with conventional ideas of software de-
velopment. Indeed, OSS development is based on
the idea that more programmers can accomplish
more than the selected few in a company’s devel-
oper room. It just follows along the lines that more
eyes simply see more. The more programmers are
poking a project’s source code, the faster bugs or

June 2002 11

security flaws can be detected, and the faster the de-
velopment process can lead to a mature product.

This interaction with the users is, however, not as
easy as stated here. Users are not always happy
to pay for an unfinished product. It is getting even
worse when they start using it, discover flaws in the
program, and then have to put energy in further de-
velopment of the product.

The manufacturer of the product also has to provide
an initial full version of the product to receive any
interaction with other developers. From this first
version, the entrepreneur can start attracting users
and their developers, after which the speed in de-
velopment and the evolution of the product could
increase, given that the initial version satisfies the
costumer such that he is willing to put money in the
further development of the product.

Lower overhead

External co-developers, given the opportunity to re-
solve bugs, can be adopted to out source part of the
work of a company’s software shop. In return of fix-
ing a bug, that costumer can be given an opportunity
gain over other costumers. This allows to reduce
per-project software production costs significantly.
And as an extra, a small developer team can handle
a much bigger project.

Closeness to costumers

It is very favorable for a company to be close to
its customers. In the case of a company providing
software, there is no better way than allowing your
customer’s engineers to be involved in the software
project’s development. Their involvement in the de-
velopment of the source code allows them to easily
fix the flaws that limits their productivity, again al-
lowing for a better product in the end.

Open source gives customers a much greater ability
to tailor software to fit their business needs. Cus-
tomer bug fixes and enhancements are commonly
contributed back to standard open-source packages,
an option which is not available with traditional
commercial software.

Broader market

Allowing a customer’s engineer to be able to adapt
a product, allows this user to extend the product be-
yond the limits of what a company originally in-
tended with the project. If these adaptations are re-
turned and merged with the original product, it can
attract more customers to the product. As an exam-
ple of this, a customer might port the code to a new
platform giving him, and possibly other customers,
the ability to use the product in their working envi-
ronment, beyond the initial limitations implemented
by the manufacturer of the product.

Public relations

Giving away (limited versions of) source code and
products for free allows new users to test and com-
pare your product to other products, which again
can attract more customers to start using the full
product.

Making money out of OSS

Once a software manufacturer uses OSS to create
software, it is not always clear how he can make
money out of the project. There are a few relatively
new business models which adapt open source de-
velopment and offer opportunities to make open
source development worthwhile.

Supplying service and support

If a software project is distributed for free, the users
of this project might not always be able to use the
project to its full extent. In a commercial environ-
ment, the user can pay for service and support of
the project. Even the implementation of a complex
open source project could be out sourced to the cre-
ator of the original project. A good example of this
business model is used by MySQL AB, which is
discussed later.

Loss leader market entry

The loss leader OSS business model is often used
for two purposes. Firstly, it can be used for jump
starting an infant market, and secondly, it can be
used to break into a market with entrenched closed

12 XOOTIC MAGAZINE

source players. Many funding in open source
projects can be viewed as strategic loss leader mod-
els against popular, possibly monopolizing closed
source software companies. These investments are
best done at the steepest part of the product’s grow-
ing curve. A good example of a company using the
loss leader model, is Netscape, which opened up
the source code of its Netscape Communicator web
browser to attract developers and users to open up
the market of Internet browsers currently monop-
olized by Microsoft’s Internet Explorer. Netscape
is also a good example of how users can adapt
the project and create a much improved product,
Mozilla in this case, from the free source.

Widget frosting

Many hardware manufacturers have to provide soft-
ware – such as drivers or other interfacing software
– along with their products. Using the open source
model in the development, along with opening up
the standards and technologies used in the hard-
ware, allows the company and users to create soft-
ware that works on platforms and with ideas beyond
the limits the manufacturer originally intended. The
production and extensibility of the software offered
along with the hardware sold, might attract more
buyers of the product. An obvious example of this
model is that manufacturers of graphics cards for
personal computers can attract more buyers because
their open sourced drivers are ported to new plat-
forms the manufacturer originally did not envision.

Accessorizing

Companies such as O’Reilly Associates, SSC and
VA Research base their success on selling acces-
sories based on open source projects available to
anyone. They offer books, compatible hardware
or complete pre-installed systems based on open
source software. Since the software they build upon
is available for free, pre-installed systems can be
built with a very low cost on licensing, and the fi-
nal product can stand out against systems built upon
commercial software.

Examples of successful business
models

A couple of successful companies, who base their
business on OSS are illustrated in the remaining part
of this article.

Redhat network

Redhat, among many other companies such as Suse
or Mandrake Linux, is a provider of distributions
of the open source Linux operating system. Specifi-
cally, Redhat network offers services to easily main-
tain Linux installations. The company offers ser-
vice, support and training for administrators of Red-
hat Linux installations. A registered user can ob-
tain updates of the operating system, and call a help
desk if technical problems are encountered. On the
other hand, the company also provides consulting
services, such as high performance computing or
web services, all based on free open source soft-
ware. To satisfy their users, they have developer
teams working on user interfaces and enhancements
of the open source software they adopt, while sup-
porting the community of open source developers.

MySQL AB

The German company MySQL AB originated from
a group of developers who created the open source
database SQL server MySQL. The company offers
service solutions and training based on the free soft-
ware product. The biggest part of their revenue is
obtained from professional consultation for the im-
plementations of their free product in commercial
environments.

Ximian express

Ximian provides desktop solutions for the Linux
operating software. Everyone is free to download
their product, but a subscription allows the buyer to
have priority access and higher bandwidth Internet
downloads of the updates of their products.

SourceForge enterprise edition

VA Research is offering an open source version of
their SourceForge product as a free software pack-

June 2002 13

age to manage software development. Next to of-
fering this version for free, they extend the package
with other services, and the whole is sold as an en-
terprise edition of the free product. This enterprise
edition contains extra enhancements and functional-
ity which is not available in the core product that is
offered for free. This allows the company to create a
big user base, and rock solid product through open
source development, to attract commercial buyers
for its full product.

Others

This list can be extended with many other com-
panies supporting and adopting the open source
model. Among these are for example IBM who
currently starts shipping Linux based systems, or
SGI who is supporting the development of Samba,
a communication interface between Unix and Win-
dows system, while selling a commercial version of
the package for its IRIX operating software users.

Discussion

Contrary to what is thought of open source as free-
of-charge-software, there exist a couple of oppor-
tunities to adopt open source software in commer-
cial environments. The advantages, however, are
not always applicable to every software product, but
many tricks can be used to create a software compo-
nent that can be adopted both in an open source and
commercial product environment, while inheriting
advantages of both worlds.

Anthony Liekens studied computer science and bi-
ology at the Vrije Universiteit Brussel and at the
Universitair Instituut Antwerpen, both in Belgium.
He is now engaged in a PhD program in Biomed-
ical Informatics at the faculty of Biomedical Engi-
neering at the Technische Universiteit Eindhoven.
His main research is situated in population genet-
ics and genetic algorithms. Besides his work, he is
involved in several open source projects. Anthony
is completely incompetent in using Microsoft prod-
ucts, but fits in well when seated at open source
powered machines.

14 XOOTIC MAGAZINE

Free the Software

AFIO: Inside an open source project
Koen Holtman

What do people actually do when they work in an open source project? What is
the software process? Below I try to answer such questions by describing one
particular case: my own work on afio, an open source archiver program that
was initially created in 1985, and for which I have been the maintainer since
1993.

Introduction

While a lot has been written about open source soft-
ware, much less has been written about the process
of creating open source software. I know of a few
good general accounts, which I refer to at the end
of this article. In this article I will not describe the
‘typical’ or ‘average’ open source software process.
What is average is a difficult question anyway, and
depends in part on how broadly you define open
source. Here, I give an account of my own activ-
ities in doing open source. I focus in particular on
the case of the afio program. By using a specific
case I can describe details of the micro-process that
are often not covered in the more general accounts
of open source development.

The afio archiver

Afio is a Linux/Unix program for packing up files
into archives, and writing these archives to devices.
It is very similar in function to the Unix ‘tar’ and
‘cpio’ commands, and the pkzip package in MS-
DOS/Windows. Figure 1 shows the ‘official’ short
description of afio that I bundle with releases.

Archiver & backup program with builtin compres-
sion Afio makes cpio-format archives. Afio can
make compressed archives that are much safer
than compressed tar or cpio archives. Afio is best
used as an ‘archive engine’ in a backup script.

Figure 1: The short description of afio in its Linux
Software Map entry

The main attraction of afio, over the better-known
tar, is that afio makes compressed archives in a
safer way: it compresses the individual files in
the archive, rather than the complete archive byte
stream like tar does. If a compressed tar archive
encounters even a single byte error on reading, the
remainder of the archive cannot be unpacked any-
more, and all the data in it is lost. Afio archives are
more fault tolerant: a read error will generally only
affect the unpacking of a single file.

Early history of afio

The first version of afio was written by Mark
Brukhartz in 1985, or possibly even a few years ear-
lier. I never talked to Mark Brukhartz, so I do not
know exactly why he started afio. My guess, from
the documentation he included, is that he needed a
better version of the cpio program which he was us-
ing, and that he did not have the cpio source. In
terms of software years, afio is ancient, and that is
part of the attraction in maintaining it. They really
wrote C differently back then. This is a typical frag-
ment of the 1985 afio code, which is still part of the
source today.

/*
* inavail()
*
* Index available input data within the
* buffer. Stores a pointer to the data
* and its length in given locations.
* Returns zero with valid data, -1 if

June 2002 15

* unreadable portions were replaced with
* nulls.
*/

STATIC int
inavail (bufp, lenp)

reg char **bufp;
uint *lenp;

{
reg uint have;
reg int corrupt = 0;

while ((have = bufend - bufidx) == 0)
corrupt |= infill ();

*bufp = bufidx;
*lenp = have;
return (corrupt);

}

In 1985, Mark Brukhartz added an open-source type
license at the start of the afio source, and distributed
it to others in the Unix community. I don’t know
exactly what distribution mechanism he used, but
it was not FTP on the early Internet. In 1991,
someone called Jeff Buhrt added the fault tolerant
compression feature to afio, and distributed the im-
proved version, probably by posting it to a Usenet
newsgroup. In any case, soon afterwards an En-
glishman called Dave Gymer downloaded afio from
Usenet and started using it. In 1993 he made a
Linux port, and uploaded it to sunsite.unc.edu, then
the major FTP site for Linux application software.

How does one get involved in an open
source project?

At one point in early 1993, I had a bad experi-
ence with the fault tolerance of tar, so I went look-
ing on the Linux FTP sites for a more fault tol-
erant program. Afio was the most fault tolerant
program I could find. Afio did not have all the
types of fault tolerance I wanted, so I started writ-
ing my own backup program called tbackup which
would use afio as a main component. The main
added feature of tbackup was the fault tolerant and
user friendly handling of cheap floppies as a backup
medium – I had many boxes of cheap floppies lying
around, containing outdated versions of the Slack-
ware Linux distribution.

Pretty soon I found that afio would crash in com-
pressing large files if the hard disk was nearly full.
So I changed the code to fix that, and also mailed
the changes to Dave Gymer, for him to incorporate

in new afio releases. Fixing the code and mailing
the fixes were fairly natural things for me to do.
From my late 1980s home computer hobbyist days I
was used to writing my own improvements to other
people’s code. Also I had already been using BBS
systems and Internet mail for some time, so I was
used to communicating over the net with complete
strangers. It was obvious that the Linux commu-
nity was just another bunch of computer hobbyists
working in a gift economy, similar to my old home
computer club. All things considered, it required no
big conceptual leap for me to become a Linux open
source contributor. It was just a combination of be-
havioral patterns and rules that I knew already.

At one point, in an e-mail exchange with Dave, we
came to the joint conclusion that I was making more
frequent changes to the afio code than he was. So
we agreed that I should make the future afio re-
leases. In December 1993 I uploaded a new ver-
sion of afio, version ‘2.3.5 for Linux’, to the usual
Linux FTP sites. I had updated the documentation
so that future bug reports would be sent to me. I was
now the official maintainer of afio for Linux. Peo-
ple with other Unix versions also picked up the new
afio for Linux version, ported it to their systems, and
sent me portability patches. So after a few versions
I dropped the ‘for Linux’ from the version designa-
tion.

What does an open source main-
tainer do?

Here is the process that I use to maintain afio. It
has remained more or less the same over the years,
even though, since 1993, the size and composition
of the Linux community has changed drastically. I
did not get this process from a textbook, nor did
I first study other open source efforts to see how
they did it. I started doing it this way because it
seemed to be the obvious way to do things. (It is
actually an interesting question if the open-source
community is self-selecting for personality types to
whom a certain way of working is the obvious way
to work. Reading media accounts of how other peo-
ple in open source do things, what strikes me most
is that I find everything completely obvious, while
the journalist writing it often expresses wonder at
how things are done.)

16 XOOTIC MAGAZINE

Getting e-mail about afio

A big part of the maintenance process is dealing
with the e-mail I get about afio. I get on average
about 5 new mails related to afio each month. I can
answer about half of these mails with a single reply,
the rest lead to a series of message exchanges. On
average, handling the mail takes me about 10 hours
per month. I am very careful in archiving all the
mail, to make sure that I will account for all contri-
butions and bug reports when making the next re-
lease.

I try to reply to every new message within a week
– if I have no time in that week to address the mes-
sage I just send back a short reply that I am very
busy and that I will give a full response hopefully
within N weeks. I consciously work to give the im-
pression that something will really happen with the
mail people send me. The last thing I want is to
discourage people from sending me more contribu-
tions in future. Of course nothing bad will happen
to me when my correspondents get unhappy about
the way I treat their mail. But I am working from
the principle that everything worth doing is worth
doing well. As long as I choose to fulfill this role
as a maintainer, I want to keep up the same stan-
dards of service that I would like to see in any other
software project, be it commercial or open source.

I use an informal tone in my replies to e-mails, but
I consciously try to be polite and clear, even if I
think that the original question is stupid or wastes
my time. I actually get very few stupid questions,
and most of the mail I get comes, as far as I can
determine, from people who are already somewhat
experienced as a Linux or Unix system administra-
tor. In the last year I have started to get some mail
from commercial Linux system support companies,
who are asking me about problems reported by their
customers. Again I treat these the same as any other
mail.

Mail with questions

About half of the e-mail I get is some kind of ques-
tion: how can I do X with afio? What does this
error message mean? Is it available on platform Y?
I can usually address these questions with a single
reply. Sometimes I can only give a preliminary di-
agnosis and have to ask for clarifications or more
information. In about half of the cases, if I ask for a

clarification of a vague question, I do not get any re-
ply. Presumably the person asking solved the prob-
lem already. About half of the questions I get are
answered in some way by the manual page or re-
lease notes. I don’t know the complete manual page
by hart, so I usually have to look myself to see if
the answer is in the documentation – if I find it I
summarize what to do and then often cut-and-paste
from the manual page in the reply. About half the
questions I get uncover some weakness in the docu-
mentation, which I then often fix in the next release.

Mail with bug and problem reports

A second class of e-mail, about one fourth of the
total volume, reports some afio behavior that was
not expected by the user. The message I get can
be a detailed bug report, but most often I get a cut-
and-paste of the afio command line used, some er-
ror messages, and a partial description of the system
configuration on which afio was run. Sometimes
the observed behavior is actually correct according
to the manual, and the user just expected something
different. More often the behavior is something that
should really not happen. I always end replies to
such messages with some variant of ‘thank you for
this bug report’.

Sometimes I have seen a similar problem reported
before, and I can search back in my mail archives
and software change log to find a reply. If the prob-
lem is new, I try to reproduce it on my own machine.
I manage to reproduce it about one third of the time.
If I cannot reproduce it I will ask for more informa-
tion, or for the results of some specific tests. In the
end, about one third of the reported problems re-
mains unresolved – sometimes with suspicions that
the real source of the problem was a bug in the de-
vice driver of the backup device, but often with none
of us having a real clue about what went wrong.
Leaving something unresolved is frustrating, but at
one point I have to decide to stop trying. Often, my
correspondents are happy anyway when I tell them
that I have given up, because in additional tests they
ran the problem never occurred again.

Mail with contributions

A third class of e-mail, about one fifth of the to-
tal, contains a contribution to the afio code or docu-
mentation. Contributions to the documentation are

June 2002 17

fairly rare. I usually get code, in the form of patch
files. About one third of the code contributions are
bug fixes, about one third compatibility fixes to port
afio to a non-Linux platform, and about one third
are new features. When I get code for a new fea-
ture, it rarely includes any documentation that is
good enough to paste directly into the manual page.
I never ask contributers to write the missing docu-
mentation, I just write it myself. Many of them are
not native speakers of English anyway, and I would
not want to annoy them by drastically re-writing
their attempts before inclusion.

In a few cases I reject code for a new feature, saying
that I will not fold it into the release. This is either
because I believe that the function can already be
achieved in another way, or because I believe that
the feature is just a bad idea, that would take too
much of my own time to fold in and test. However,
overall I hardly ever reject anything, and as a re-
sult the number of command line options to afio has
grown from 36 in 1993 to 60 now, using all lower
case letters, all upper case letters, and most of the
numbers as option flags.

I always make sure that I give feedback to code sub-
missions, either with a statement that I won’t put
the code in, or more usually with a statement that ‘I
will probably add it to the next release, which will
come out in [time estimate in months]’. I write that
I will ‘probably add’, because at the time of reply-
ing I have not yet made a full evaluation of the con-
tributed code. I only take a very close look at the
code when I start to prepare the next release.

Other mail

I also get a few e-mails which do not fit any of the
above categories. Very rarely I get a ‘thanks for
afio’ message without any further questions or re-
quests. Very rarely, I get a plain request for a new
feature. Sometimes this feature is something that
can already be done with afio: if so then I write
back how to do it. If it cannot be done yet, I gener-
ally comment on whether and how it could be im-
plemented, and encourage the requester to send in
an implementation. Usually I do not get any. Some-
times, if I believe that the idea for the feature is a
good one anyway, I implement it myself at the time
of the next release.

Making a release

I do not release new afio versions often. In the
last few years, the release frequency has been about
once every 9 months. A few releases were prompted
by the discovery of critical bugs that should be fixed
urgently, but usually I release when I have a suffi-
ciently large number of patches and bug reports, and
when I can find the time to fold them all in. Making
a new release costs me about 40 working hours: I
work in evenings and weekends over a period of a
few weeks. During that time, I re-visit all archived
mail since the previous release, changing the afio
code and documenting the changes as I go along. At
the end I do regression testing, create a new source
archive, and upload it.

Afio is a mature backup program that people rely
on. My first order of business is not to introduce
any additional bugs, and this drives my release strat-
egy. For other open source programs, which are
early in their development lifecycle, the strategy is
to release very often, relying on the early adopters
to find the bugs in the new code. With afio I also
rely on users to find bugs, and this user testing adds
significant value, but the type of bugs people find
are the very obscure bugs that are left in a well-
aged program. For example, a recent bug report had
to do with the incorrect handling of Unix file sys-
tem symbolic links that have several hard links to
them. Other bugs that people find in afio are those
triggered by new use cases. Over the years, as hard-
ware capacity grew, I first got bug reports related to
making multi-tape archives larger than 2 GB (231

bytes), then about handling tapes that are individu-
ally larger than 2 GB, then about archiving single
files that are larger than 2 GB.

The release process

When making a new release, I carefully hand-check
and test all code contributions. Often I make sub-
stantial changes to contributed code to make it more
safe or general. The new idea behind the code, or
the finding of the bug that the code fixes, is often the
most valuable part of a code contribution. Review-
ing and testing new code takes significant work, but
it is needed to maintain the most important feature
of afio: its stability. This careful review of all code
is not unique to afio: I have also seen it in the main-
tenance of the Apache HTTP server, another mature

18 XOOTIC MAGAZINE

piece of open source software.

Coding is actually a very small part of making a re-
lease. I spend most of my time testing and updating
the documentation. When I add a new feature, I of-
ten spend more time updating the manual page than
updating the source code – writing a terse but com-
plete description of a new feature and its limitations
is surprisingly hard. I also spend significant time
updating the change log file that is bundled with the
afio sources – see figure 2 for a typical excerpt.

Version 2.4.7:

Fixed bug that sometimes caused ‘– compressed’
to be printed twice in verify operation. Has to
do with not flushing stdout, stderr before forking.
Bug reported by JP Vossen.

Added more material on how pattern matching
works in the -y option section of the manpage, and
added examples of selective restores to manpage.
Based on questions by Kjell Palmius and Stojan
Rancic.

Added text to BUGS section about afio not being
able to write into directories for which it has no
write permissions, except when running as root.
Problem reported by Kagan Kayal.

Figure 2: A part of the afio change log

The change log has two main functions. First, it
helps me and other contributers to keep track of
changes and solved problems. Having a very de-
tailed change log saves me significant time in an-
swering e-mails. The second function of the change
log is to record the names of all contributers to afio,
which I define as everybody who sent me any mail
that led to changes in the next release. The change
log gives visible evidence that even the smallest
contributions are welcome, and will have an effect.
I have a theory that this is very important in encour-
aging future contributions. I never record the e-mail
addresses of contributers in the change log, because
automatic publication of their e-mail address might
actually discourage people from sending me mail.

The last part of the release process is to make a
new source archive, upload it to the various repos-
itories, and write an announce message for the
comp.os.linux.announce newsgroup. This always
takes a surprising amount of time, because you do
not want to make any last-minute mistakes. I need
to spend some time for every new release to catch

up with recent changes in publishing Linux soft-
ware. Back in 1993 it was sources on FTP sites
and a message on an announce newsgroup. Now it
is mostly web sites and pre-packaged pre-compiled
binaries. However, I still don’t build pre-packaged
binaries, and I do not get deeply into the web site
stuff: I have decided that I’d rather spend my time
on other things. Because I don’t make pre-compiled
binaries, afio probably has less users than it could
have. But that is fine with me – I am not in this for
world domination, and have no obligation to spend
my time serving all Linux users optimally. My main
interest is to give to other programmers in the open
source community, who will be served about as well
with a source release. Somebody else, in the De-
bian Linux distribution effort, does in fact main-
tain a Debian binary release of afio, and we have
very friendly relations. When I am about to make a
new source release, I give him an advance warning.
When he gets a bug report about the binary release
that has to do with the source, he copies it to me.

What is the motivation for doing it?

Software maintenance is perhaps not a very obvious
thing to do in your spare time. My reasons for do-
ing it are partly historical. I started out mainly as an
open source author – I like writing software and if I
do it in my spare time I like to share it with others.
Over the years, I found that I had less and less spare
time which I wanted to devote to programming. So I
stopped writing new code and only did maintenance
on the old code in the projects that I happened to
run. By 1995 I was doing maintenance on 3 open
source projects: afio, tbackup, and futplex. Still I
had less and less time: I found that my release fre-
quency was dropping to below what I found rea-
sonable. So after 1995, I first stopped maintaining
futplex, which had never attracted a very active user
community anyway. Later still, I also stopped main-
taining tbackup, which did have a user community,
but one that generated much less feedback than the
users of afio. I still get messages about tbackup,
about one every two months. I always reply that the
software is now ‘dead’ and unsupported, and that I
recommend using another backup program even if
tbackup does still install.

Maintaining afio is not very creative work, though
there is occasionally an interesting puzzle. Do-

June 2002 19

ing the maintenance process is mainly rewarding,
I guess, in the same way that gardening is reward-
ing: there is usually no great pressure, you get to
do something immediately visible with your own
hands, and it is nice to make things more tidy. I also
find it rewarding to help complete strangers who e-
mail me. I am a heavy user of open source software
myself, and it feels good to be in a position where I
am not just taking, but also giving back to the open
source community. Occasionally, it is fun to con-
sider that I have achieved some degree of immortal-
ity through my work, because the code I wrote has
been pressed on lots of CD-ROMs. However this is
more of a fringe benefit, it is not a state of mind that
I can sustain indefinitely.

Starting an open source project

Starting an open source project is easy. Create some
software (but make sure that you do not incorporate
any third party code that is restricted or proprietary),
bundle the sources together with a file that identifies
you as the author/maintaner, and upload the result
to whatever the usual places are for your platform.
That is really all there is to it. A web page is op-
tional, but very much expected these days.

Of course there is no guarantee that a new project
will generate the level of interest that you expect.
In my own new projects, I never tried to predict or
optimize the level of interest beforehand. When my
code was at a stage where I thought it to be po-
tentially useful to others, I just wrote the amount
of documentation that I judged to be necessary to
support other users and developers, bundled it, and
made the first public release.

Though I did not try to guess levels of interest be-
forehand, the levels that I observe during a project
do influence my actions, in particular when choos-
ing which projects to stop.

Further reading

In recent years, the new economy has become
somewhat of a spectator sport, generating a match-
ing volume of mass media accounts and Internet
discussions. Microsoft litigation and open source
are particularly popular subtopics. On the Internet,
participating in discussions about open source has

become a legitimate full-time hobby all by itself.
Most of the written material can be safely ignored,
unless you happen to be a fan.

The Cathedral and the Bazaar by Eric Raymond [1]
is a classic and thought-provoking essay that con-
tains some good descriptions of the open source
process. The essay is thought-provoking because
it argues, with some actual proof, that very com-
plex software projects can be run successfully, even
optimally, without much central planning. I don’t
believe all claims of the essay, but that is exactly
what makes it thought-provoking. Don’t miss the
[EGCS] end note which is present in the more re-
cent releases of this essay. There are several fol-
lowup essays by the same author, but I find these
less thought-provoking.

Hackers by Steven Levy [2] is a well-written book,
written in 1984, about several open source cultures
that pre-date Linux, about their development pro-
cesses, and about their interactions with the market
economy.

A recent statistical survey of open source authors is
at [3]. Like many statistical surveys, it offers few
real surprises, but it does solidly contradict the view
that open source authors are an untrained mob of
young computer nerds out to destroy Microsoft.

References

[1] http://www.tuxedo.org/˜esr/writings/cathedral-
bazaar/cathedral-bazaar/

[2] Hackers, by Steven Levy. 1984.
http://mosaic.echonyc.com/˜steven/hackers.html

[3] http://www.osdn.com/bcg/

Koen Holtman is a re-
searcher at the California In-
stitute of Technology, where
he does architecture and co-
ordination work in devel-
oping the world-wide dis-
tributed data processing in-
frastructure of the CMS parti-
cle physics experiment. The current version of this
infrastructure relies heavily on Linux systems, and
several of the development partners publish their
middleware with an open source license.

20 XOOTIC MAGAZINE

Koen was anOOTI from 1995-2000, finishing with
a Ph.D. in software design for work performed
at CERN in Geneva, Switzerland. He also holds
an engineering degree in computing science from

the Eindhoven University of Technology. He has
been active in the Linux open source community
since 1993, and also contributed code to the Apache
server project.

June 2002 21

Advertorial: Sioux
Page 22 (should be even)

Free the Software

Linux inside your TV?
Ruud Derwig

The Internet has enabled ’open-source’ software development, a process that
uses independent peer review and rapid evolution of source code to improve re-
liability and quality. Open-source licenses allow software modification, (re)use,
and redistribution, giving users perpetual, full access to software, indepen-
dence, choice, and control. This ’collective’ ownership motivates people to
contribute to the code base. The GNU/Linux operating system is an example
of a successful product of the open source community. During the past years
Linux has gained a strong position in the (Internet) server domain. Whether
Linux and other open-source software is an option for consumer electronics
products like television sets, DVD players and set-top boxes is the topic of this
article.

Introduction

Consumer electronics equipment found in people’s
homes today contains more and more software. The
functionality and complexity of home products in-
crease steadily and the size of the software needed
to realize these products is growing exponentially.
Whereas a few years ago the sizes of embedded
TV and set-top box software were measured in tens
or hundreds of Kbytes, today’s high-end products
contain Mbytes or tens of Mbytes. And all these
Mbytes have to be filled by (expensive) program-
mers. Wouldn’t it be nice to obtain large parts of
that software from third parties, and wouldn’t it be
even more nice to get it for free? This promise -
and a dose of Microsoft antipathy - is what lead to
many designers and companies in the consumer do-
main taking an interest in Linux and open-source
software. In order to discuss the possibilities of
developing consumer products with Linux inside,
first we present a number of trends and associated
features that will be introduced in new products
the coming years. Furthermore, some of the im-
portant requirements of the high-volume electronics
domain are explained. Then we delve into a num-
ber of technical issues that are relevant for deciding

on the feasibility of Linux inside your TV or other
consumer product. Next to the technical issues,
however, it might turn out that non-technical issues
like support, licenses, and development process are
even more important. After discussing these non-
technical issues this article is concluded with the
answer to the question: Linux inside your TV?

Tomorrow’s products

Trends

The Internet is entering the living room. Although
not spreading as fast as people thought - or hoped
- some years ago, new features that require Internet
connectivity are being introduced right now. Many
commercials being broadcast at Dutch television al-
ready present a URL pointing to a web page with
more information about a certain product. Instead
of running to the study, booting your PC, trying to
remember the URL, typing it into your browser and
finally getting to the content, wouldn’t it be nice to
push a button on your remote control and get the in-
formation on your TV screen? Several digital TV
service providers already have a web browser inte-
grated into their high-end digital receivers. But web
browsing on TV is not the only feature that needs an

June 2002 23

Internet connection. A network connection can also
be used for getting data that is not web-related like
e.g. the information needed for an electronic pro-
gram guide. Or it can be used for streaming audio
or video content, like for instance in an audio set
supporting not only traditional AM and FM bands,
but also IM - Internet Modulation - for receiving In-
ternet Radio stations.

Figure 1: Connected consumer devices form in-home
networks.

The Internet is not the only network entering the
home. Whereas today devices are operating stand
alone, with at most a cable connecting the VCR or
DVD player to a TV, in the future devices in the
home will be connected - either wired or wireless -
to form in-home networks. Instead of always having
to watch satellite channel movies in the living room,
because there the set-top box is connected to the TV,
the set-top box could redirect the movie through the
home network to the bedroom and the bedroom TV
could forward remote control commands back to
the set-top box. The same scenario applies to other
devices like for instance a storage device. While
watching the forwarded movie in the bedroom, for
instance, you get too sleepy to continue watching.
Instead of getting out of bed, sleepwalk to the VCR
and program it, a storage device connected to the in-
home network could be controlled from any place
in the house. Although a fully connected home net-
work is probably not going to be there in the near
future, the first digital receivers supporting a second
TV will enter the market soon.

Another development that is important for the Linux
discussion is the (r)evolution of hard-disk technol-
ogy. Storage capacity of hard-disks is growing ex-
ponentially, even faster than Moore’s law. Using
compression, it is possible to store about an hour of
high quality video in a Gbyte. This means that a 60
Gbyte hard-disk can store 60 hours of video. Be-
cause hard-disk bandwidth is high enough to sup-
port several video streams simultaneously, a hard-
disk enables new features like a pause button for
live broadcasts. The first hard-disk based video
recorders are available today.

The last trend we mention is the fact that consumer
systems are becoming more open, like PC plat-
forms. This means that new, third party applica-
tions can be downloaded and executed on existing
products. An example from the digital video broad-
casting domain is the Multimedia Home Platform
(MHP) standard. MHP defines a Java based execu-
tion platform for interactive applications. Next to a
subset of standard Java APIs it defines a number of
APIs to control the digital receiver features of a set-
top box, like tuner, service information database,
and video decoder. MHP applications range from
simple teletext like information services as a stock
ticker to e-commerce solutions for home shopping.

Requirements

From the trends and features described above a
number of new functional product requirements can
be derived. Future products must support various
forms of networking and connectivity. Furthermore,
various mass storage media - both optical and mag-
netic - and file systems must be supported. But be-
sides these new functions that seem to make con-
sumer products more PC like, the traditional re-
quirements from the high-volume consumer elec-
tronics domain still hold. People expect a high level
of robustness and ease of use from TVs and DVDs.
Frequent user reboots of a TV, because of system
crashes, are no option. Given the huge product
volumes and strong price erosion, the bill of mate-
rial of mainstream consumer products is under con-
stant pressure. This translates into a limited CPU
cycle budget and a limited memory footprint that
make efficient resource management very impor-
tant. In combination with the required robustness
and the real-time nature of audio and video, this

24 XOOTIC MAGAZINE

leads to the need for efficient, deterministic, pre-
dictable CPU scheduling and memory allocation.
Traditionally, small and efficient real-time kernels
were the only solution for meeting these timeliness
and predictability demands in a cost effective, re-
source constrained way. These small kernels like
CMX, pSOS and VxWorks, however, do not offer
the rich set of features that ”fat” operating systems
like Windows and Linux do. Since future consumer
products will depend more and more on a rich set of
networking, connectivity, and storage features, the
”fat” operating systems are entering the consumer
products market.

Technology

To what extend can Linux and other open-source
software meet the requirements of today’s and to-
morrow’s products? To answer this question we dis-
cuss three topics: real-time performance, memory
footprint and functionality.

Real-time performance

The standard Linux kernel pro-
vides soft real-time support ac-
cording to POSIX 1003.1b. A
priority based preemptive sched-
uler is available, with schedul-
ing latencies varying on a stan-
dard PC from a fewµs to 100 ms
or even more. Although average latency is usually
very low, responses in the order of 10 ms occur fre-
quently. Compared to for instance 20 ms deadlines
for a 50 Hz. video frame rate, it is clear that - un-
less a lot of expensive buffering is applied - plain
Linux cannot cope reliably with the requirements
from the video domain. This does not mean that
you cannot play DVD movies on a standard Linux
PC. Such a standard PC uses several Mbytes for
buffering audio and video. And even then, when
starting a web browser or receiving an e-mail while
playing the movie, on many occasions the video
is not displayed smoothly at a constant frame rate.
Therefore, from a real-time requirements perspec-
tive, the only way to build a robust consumer device
based on a standard Linux distribution is by solv-
ing all real-time requirements with extra hardware.
This can either be more memory for buffering, but

a more reliable strategy is adding an extra proces-
sor that takes care of the real-time control tasks. In
such a dual processor system the processor running
Linux can be seen as an application co-processor for
performing the non real-time best effort application
tasks.

Figure 2: Real-time Linux, a hybrid solution.

But Linux is open-source. So for each problem or
lacking feature somewhere in the world someone
can be found working on it. Although this is not
true for all lacking features, it does hold for the real-
time performance of Linux. And - following an-
other open-source tradition, the Darwinian survival
of the fittest - it is not a single person or project that
is providing a solution for improving the real-time
performance of Linux. A number of (sometimes
competing) alternative solutions exist. These solu-
tions can be classified in two groups, either enhanc-
ing the real-time performance of the Linux kernel
itself or enhancing system performance by combin-
ing Linux with a small real-time kernel.

Enhanced Linux

The greater part of the large worst-case scheduling
latency of standard Linux is caused by its mono-
lithic kernel design. Although user space activi-
ties are scheduled preemptible, kernel space activ-
ities are not. This means that operations like system
calls, ”bottom half” interrupt handlers and process
scheduling are completed once started, even if an
other higher priority activity is triggered (e.g. by
an external interrupt) and ready to be executed. To
reduce preemption delay in kernel space two solu-
tions are being worked on. The first one, called low-
latency patch, shortens the non-preemptible kernel

June 2002 25

paths by introducing explicit reschedule points in-
side the kernel. The second one, called preemp-
tion patch, exploits kernel extensions for support-
ing symmetric multi-processor architectures (spin-
locks). Instead of allowing preemption at specific
points inside the kernel, like the low-latency patch
does, the preemption patch enables preemption for
the complete kernel space, except for specific crit-
ical sections that should not be entered by more
than one thread concurrently. Most of these criti-
cal sections are already protected by spinlocks for
the multi-processor version of the kernel. By im-
plementing the spinlocks with mutexes in the sin-
gle processor build - instead of skipping the spin-
locks like the standard kernel does - the kernel be-
comes re-entrant. Of course the complete solution
is somewhat more complex than described here, but
a detailed discussion of both patches is not the goal
of this article. Although it is difficult to give accu-
rate worst case scheduling latency numbers for both
patches - numbers depend on different versions of
the patches, different hardware and different bench-
marks - it is generally assumed that both patches
can reduce maximal latency to sub ms numbers in
the order of hundreds ofµs.

Another approach to enhancing the real-time per-
formance of Linux targets the scheduler. The stan-
dard Linux scheduler is optimized for throughput
and fairness, not for real-time responsiveness and
predictability. Although the scheduling policy for
application processes can be set to the traditional
priority based preemptive scheduling offered by
real-time kernels, the implementation of the Linux
scheduler still can be improved for better and deter-
ministic performance. Other improvements to the
scheduler include new scheduling policies like the
budget based scheduling found in resource kernels.

Hybrid solutions

RTLinux and RTAI are two approaches to achieve
hard real-time behavior, generally referred to as
’real-time Linux’. Essentially, these projects are
constructing their own real-time kernel. This ker-
nel runs Linux as its lowest priority task. All the
standard services of the Linux kernel and Linux ap-
plications are available (although without the real-
time guarantees), yet real-time threads and han-
dlers can run with minimal, hardware limited, la-
tencies. Real-time Linux solutions can guarantee

interrupt latencies of severalµs and scheduling la-
tencies in the order of 10µs The major drawback of
these solutions is that the improved real-time perfor-
mance only holds for the real-time kernel part. Stan-
dard Linux device drivers do not become real-time
drivers by using a real-time Linux variant. Drivers
may disable interrupts for up to hundreds ofµs and
violate other standard real-time design rules. In or-
der to use those drivers in the real-time domain, they
have to be rewritten.

Footprint

Although the memory available in consumer de-
vices is growing, memory remains a scarce re-
source. The main reason is that the larger part of the
Mbytes that are available in high-end digital prod-
ucts are used for buffering and rendering audio and
video data. Also graphics consume more and more
memory. Besides a framebuffer (sometimes dou-
bly buffered) a considerable amount of memory is
spent on built-in fonts and bitmap graphics. Finally,
new features like a web browser or Java virtual ma-
chine have a large impact on the remainder of the
memory that is not used for audio and video data.
Traditional real-time kernel sizes are in the order of
100 Kbytes or 10 Kbytes for small kernels. A min-
imal desktop Linux system requires several Mbytes
of memory, without a graphical user interface like
X. Of course not all libraries and modules that are
needed on a desktop PC are needed on a TV or set-
top box. By selecting specific features and disabling
others, standard Linux distributions are reasonably
scalable. Some commercial embedded Linux dis-
tributors even provide special tooling for configur-
ing and scaling down Linux. However, assuming
Linux is chosen in favor of a real-time kernel be-
cause of its rich set of features, it is fair to state that
a minimal embedded Linux solution requires sev-
eral Mbytes of memory.

And that is just the kernel. When adding applica-
tions and services like a desktop window system,
web browser and Java virtual machine, total mem-
ory requirements are in the order of tens of Mbytes..

But Linux is open-source. Just like on the real-time
performance, several projects are working on reduc-
ing the memory footprint of Linux based systems.
We name two examples here.

The standard GNU C library that most applica-

26 XOOTIC MAGAZINE

tions dynamically link to requires about 1.3 Mbytes.
That’s a lot of memory, especially if only a few
functions are used - printf does not always make
sense inside a TV. When linking statically to the li-
brary, code that is not needed can be stripped, re-
sulting in a minimal size of about 300 Kbytes. But
then, each application duplicates this code. Several
small and scalable C library implementations, like
’uClibC’, ’DietLibC’, and ’newlib’ have been or are
being developed for embedded applications, reduc-
ing the memory requirements to several Kbytes.

Graphical user interfaces and window systems that
are used in standard Linux versions do not meet the
requirements of the embedded consumer domain.
Besides a large footprint, standard solutions are
not optimized for interlaced TV displays or small
LCD screens. There are many open-source (and
commercial) projects that deal with those issues.
Again, we name two examples. The ’MicroWin-
dows’ project works on a small modern graphi-
cal windowing environment for embedded applica-
tions. It supports an API based on Win32 GDI,
with a footprint below 100 Kbytes. ’Qt/Embedded’
is a solution that is scalable from 800 Kbytes to 4
Mbytes. It aims, among others, at consumer devices
like set-top boxes and PDAs.

Functionality

The technical motive for choosing Linux is not its
real-time behavior or memory footprint. It is the
rich set of features that ease development and en-
able a short time to market. Linux supports most
of the new functions that we see entering consumer
products in the coming years. It is a fully featured,
high-end operating system that supports multiple
processors, processes and users, that supports net-
working and many file systems, and that provides
memory protection and security options. Apart
from generic services and implementations of stan-
dard protocols, specific support can be found for a
wide range of processors and peripherals, including
standard (wireless) network cards and IDE drives,
but also including a/v consumer domain specific pe-
ripherals like (digital) TV cards, IEEE 1394 high
speed digital interface, and BlueTooth devices. Ad-
ditionally, since sources of all drivers are open, the

effort required to realize a new driver for not yet
supported hardware is less than it would be when
starting from scratch.

Next to the features that are built into the Linux ker-
nel, many utilities, middleware and applications ex-
ist. Although most of them are targeted at desk-
top or server systems, a large number of them can
be put to account for the consumer domain be-
cause of the convergence of PC and consumer func-
tionality. Furthermore, because of the big mo-
mentum for embedded Linux solutions, more and
more middleware and applications become avail-
able that are specifically targeted at embedded de-
vices. One just has to take a quick look at a site like
www.linuxdevices.com to realize this. We mention
a few examples that are relevant for the consumer
domain. Many projects deal with web browsing
on embedded platforms. Both open-source solu-
tions, like ’viewML’, ’Konqueror/Embedded’, and
commercial solutions like the ’Opera’ web browser
that runs on top of the ’MicroWindows’ environ-
ment are available. Other open-source projects and
commercial companies are building (digital) TV
receivers including electronic program guides and
hard-disk video recording on top of Linux. Ac-
tivities range from open-source initiatives like the
’vdr/LinuxTV’ project - developing ’personal video
recorder’2 software -, via associations like the ’TV
Linux Alliance’ - standardizing platform interfaces
-, to companies like ’TiVo’, that offers a personal
video recorder service and set-top box on subscrip-
tion basis.

Figure 3: The TiVo personal video recorder.

2Personal video recorder is the phrase used for indicating hard-disk based video recorders that support functionality like a
pause-button and automatic recording of all broadcasts of your favorite soap series.

June 2002 27

Non-technical issues

How free is free software? Throughout this article,
we deliberately use the term open-source instead of
the term free software that is commonly adopted
too. The free part of free software refers to the free-
dom towards users that is ensured by licenses. And
although the business models associated with open-
source software are usually not based on paying for
the actual software and intellectual property that the
software represents, free software is not free of cost.
In order to use open-source software in software
intense high-volume electronics products, for in-
stance, professional support and training are impor-
tant too. Today, the support you can get from com-
panies specialized in embedded or real-time Linux
is comparable to what you get from traditional real-
time kernel vendors. Quality is good and prices are
fair, among others because of the competition be-
tween different suppliers that do not hold technol-
ogy locks on their customers with specific real-time
solutions or tools.

Another cost factor that people tend to forget when
talking about free software is licensing. Since there
are several important licensing related issues, it de-
serves a section on its own.

Licenses

The idea of open-source software dates back to the
software-sharing community of the MIT Artificial
Intelligence Labs. When this community dissolved,
one of these people, Richard Stallman, continued
to write what he called free software. He later
formed the Free Software Foundation that is respon-
sible for many of the GNU applications. Several
open-source licenses exist nowadays, like e.g. the
GNU General Public License (GPL) and Library (or
Lesser) General Public License (LPGL), the BSD or
Berkeley license, and more recent variations such as
the Netscape and Mozilla Public Licenses and the
Sun Community Source license. The term ’copy-
left’ is also used, especially with the GNU licenses,
because the central idea is to give everyone per-
mission to run, copy, and modify the program, and
to distribute modified versions. It is, however, not
permitted to add restrictions. With many of the
licenses modified versions of the software must,
upon redistribution, provide the same freedom to
users, including availability of the modified source

code. One of the differences between these licenses
is in the terms for combinations with proprietary
software. For example, linking proprietary closed-
source applications with GPLed libraries is not al-
lowed, but linking them with LGPLed libraries is.
Linking binary modules into the Linux kernel is
generally allowed due to an explicit license exemp-
tion granted by Linus Torvalds.

The availability of modified source code that GPL
and GPL-like licenses require, has both advantages
and drawbacks. It enables open-source communi-
ties and projects and has helped Linux to become
the feature rich operation system that it is today. For
high-volume consumer electronics manufacturers it
means lower bill of material costs, since no run-time
license fees are due. But it can also mean that the
manufacturer’s specific intellectual software prop-
erty and added value is no longer protected when
specific enhancements and additions to the copyleft
licensed source code have to be opened up. And
when this intellectual property is also protected by
patents, the situation becomes very unclear from
a legal point of view. By incorporating GPL li-
censed software into a product, the manufacturer
grants users the right to freely use and distribute
the manufacturer’s modifications and additions. On
the other hand, patent laws disallow the free use
of these modifications and additions when they are
protected by patents.

Because of the fact that open-source licenses have
never been tested in court, companies that con-
sider incorporating open-source licensed software
into their product should make a trade-off between
the time to market and cost advantages and the le-
gal intellectual property risks. Next to this legal
risk, also the public image of the company should
be considered. In the spirit of freedom of use and
sharing, the open-source community has little re-
spect for companies that only use software for their
own commercial benefit. Furthermore, the princi-
ples and ideas behind open-source software are not
in line with traditional patent protection. On the one
hand many members of open-source communities
feel that software patents, that restrict the free use
of software, hinder innovation. On the other hand,
patent-minded people feel that the protection and
possible financial rewards stimulate companies to
invest in innovation. Without proper protection of
intellectual property rights, the huge research and

28 XOOTIC MAGAZINE

development investments that are needed for break-
through innovations would not be affordable.

To overcome some of the disadvantages of GPL,
companies like Sun have introduced semi-open-
source licenses to exploit the open-source advan-
tages while simultaneously protecting their intellec-
tual property and taking benefit from community-
constructed add-ons. The dual licensing of Qt’s
graphical windowing environment is another ap-
proach. It can either be used free of charge, but pro-
tected by GPL, or companies can choose to com-
mercially license the same software that can be
combined with own applications without restric-
tions.

Process

The final subject we discuss does not concern the
products of open-source, but the way these products
are developed. Given the fact that traditional devel-
opment processes do not scale up very well to cope
with the large team sizes that are needed for com-
plex products, open-source development processes
can be an interesting alternative.

Re-use of software is often seen as the solution for
coping with the increasing complexity and strong
time to market requirements. Software re-use, how-
ever, turns out to be very challenging in practice. It
is very difficult to take an arbitrary software com-
ponent from one product and put it to use in an-
other product. Reasons vary from strong context
dependencies of a component, quality problems and
lacking documentation, to architectural mismatch.
One way of eliminating these obstructions for re-
use, is to centrally enforce a common architecture
and common processes for documentation, quality
control, etc. However, when development projects
grow in size - a modern, high end TV requires over
100 man years of software - or are executed over
different locations and time zones, the overhead of
centrally enforcing and checking the architectural
and process rules grows exponentially, if possible at
all.

The other way of dealing with the re-use obstacles
is the open-source way. The distributed nature of
open-source projects, with many contributors that
communicate through the Internet, scales much bet-
ter than a centralized approach. The basic idea is
very simple. When programmers can read, redis-

tribute, and modify the source code for a piece of
software, it evolves. People improve the code, adapt
it, and fix bugs. And this can happen at a speed that,
in comparison to the pace of conventional software
development, may seem astonishing. Several com-
panies are experimenting with open-source like de-
velopment processes. Either through projects that
are truly open to the public community, or through
so-called ’inner-source’ projects that aim at creat-
ing and leveraging communities inside a company.
Main challenge for these experimental development
processes and organizations is to find the right bal-
ance between centrally managed and distributed de-
velopment activities. Without some central guid-
ance and direction, software will not evolve into the
right (commercial) directions.

Conclusions

Linux is gaining a lot of mo-
mentum in the consumer elec-
tronics domain. Although real-
time behavior and memory foot-
print do not yet allow Linux to
be used in all mainstream con-
sumer products, the rich featur-

ing makes Linux a serious candidate for today’s and
a very serious candidate for tomorrow’s high-end
products.

Using Linux and other open-source software can be
very tempting from a technical and time-to-market
point of view. The freedom that open-source ad-
vocates, however, is mainly freedom to end-users
and does not necessarily match with the intellectual
property business interest of consumer electronics
manufacturers. Given the legal uncertainty - open-
source licenses have never been tested in court - at-
tention must be paid to reducing the risks, for in-
stance by avoiding linking to GPL software or only
linking binary modules into the Linux kernel.

Open-source software influences the consumer
products of tomorrow. If not by being incorporated
into products, then by adopting certain aspects of
the open-source development process that promotes
sharing and re-use of software. This leads us to our
final conclusion. Linux inside your TV? Probably
sooner than you think!

June 2002 29

Ruud Derwig
(Ruud.Derwig@philips.com)
is working at Philips Re-
search on software platform
architectures for resource
constrained products in the
consumer electronics do-

main. Key areas of expertise
are real-time kernels and op-
erating systems, resource aware component archi-
tectures, and heterogeneous software architectures.
Before joining Philips Research he followed the
post-masters Software Technology program (OOTI)
at the Eindhoven University of Technology.

30 XOOTIC MAGAZINE

Free the Software

RecentOOTI Publications

The post-masters programmeOOTI is concluded with a design project. The final reports of these projects
are in general publicly available, unless stated otherwise. The following reports have been published
lately.

M. HudakInternet Tuner,
Keywords: Internet tuner/Broadcasting/Video streaming
ISBN: 90-444-0168-8, 40p., December 2001

M. KychmaCommercial Block Detection on Digital Recording Products (DVD and HDD),
Keywords: Commercial Block Detection/Audio/Video Retrieval/MPEG-2 Encoding
ISBN: 90-444-0192-0, 59 p., April 2002

S. ShumskiScripting Interface Service,
Keywords: MATLAB, Python, Script, IDL, Interface
ISBN: 90-444-0201-3, 37 p., April 2002

G. MuitjensOn the Suitability of Java for TV Control Applications,
Keywords: Software components, Koala, TV Control software, Real Time Java, Java
ISBN: 90-444-0191-2, 65p., April 2002.

June 2002 31

