Component Technology

Component Technology

Wim Groenendaal

Application development is often treated as ‘original’ rather than ‘routine’. If it
would be possible to capture and organize solutions we already know, it would
increase both quality and productivity. The evolution of the client/server archi-
tecture has now reached a new stage: component technology as the ultimate
way to promote re-use. If we take a closer look at the “art of component based
development” there are a number of different aspects that need attention. This
article will address only some of these.

Components

Today theword ‘Component’hasanimpact,which
canbe comparedwith the term ‘Object Oriented’
a few yearsago. Every software vendor has his
own ‘componentbaseddevelopment’ or ‘compo-
nenttechnology’products.Componentss thebuzz-

word today you cannotlive without components.

But if we talk aboutcomponentswhatdo we actu-
ally meanby theverbcomponents?

There are mary different definitions on compo-
nents.For this article | will usea rathersimplebut
effective one: Componentsire executablepiecesof
softwae only accessiblethrough their interfaces
Soin otherwordstiny applicationsholdtogethetby
middleware.

Whitebox and Blackbox re-use

Re-useis only one aspectin componenttechnol-
ogy, althoughnot unimportant. Componentsare
not new; in fact the expectedbenefitsof modu-
lar programmingwere already recognizedin the
early70’s.

This conceptof modular programminghas eval-

uatedthroughthe yearsinto todays components.

Componentsarein factnothingmorethansmallap-
plications performingspecifictasksand,asthey are

XO0OTIC MAGAZINE

isolated,they canbe (re)-usedin variouserviron-
ments. Although it seemsthat nothing much has
changedvertheyearsthereareatleasttwo big dif-
ferences: Today componentsare to be distributed
(run on differentmachines)yndthe samephysical
componentanbeusedby differentlogical applica-
tions at the sametime. Basicallycomponentech-
nology is not the only way to achieve re-use. Ob-
jectorientationpromisesaboutthesameadwantages
whenit comesto re-use.The differenceof compo-
nenttechnologycomparedo object orientationis
thatcomponentsirenota partof the physicalappli-
cationbut areautonomousgntities.Bothcomponent
technologyand object orientationpromotere-use.
In thecaseof objectorientationthisis model/source
re-usewhich is in facta form of whiteboxre-use.
You can actually see/touchthe code. Component
technologyusesblackboxre-usemeaningyou can-
not seethe codebut only the functional specifica-
tion.

Componentedinolayy useshladkboxre-
use

Thiselemenin thecomponentechnologymayalso
introducenew phenomenonAs the actualcodeis
hidden, thereis no continuousview on the code
quality. Now almostary developeris cornvincedhis
way of codingis superior As long asdevelopers



know otherscan (re)viewn their code,they will au-
tomaticallytry to producehigh quality code.Com-
ponentsarebackboxesandoneshouldbe avareof
thefactthatcomponentechnologyshouldnever be
anexcusefor poorprogramming.

The need for an architecture

Oneway of dealingwith programmingquality is-
sueds to definea softwarearchitecturewhich sup-
portscomponentechnology Although component
technologycanbe achieved without the useof ob-
ject orientedtechniquesit canbenefitfrom the ad-
vantage®f the objectorientationworld. In factit is
my personalbpinion thata good, flexible architec-
ture for componentechnologyis bestsened with
anobjectedorientedapproach.

An architectureloesnotonly bring qualityandcon-

sisteng into anapplication,it canalsoprovide pro-

ductiity andsomethingeavenmoreimportant:ease
of maintenanceThe architectures ability of being
adaptve, extendableandscalables probablymore
importantthanproductvity itself.

Thevirtual system

In orderto designflexible architecturest is impor
tantto understandhe essencef anautomatedys-
tem. It really doesnot matterat whatlevel; appli-
cation,componenbr object,onelooks ata system,
thenbasicallyit comesdown to avariantof thesame
modell call the virtual system. As this article fo-
cuseson componentechnologythe remainingpart
of thearticlewill usethisterm,but again,thesame
rulesapplyto ary entity in a system.Any compo-
nent consistsof a numberof processesnd flows
of informationbetweertheseprocessesA process
itself hasinterfacesto the outside(real) world. If
onetakesa closerlook at the type of interfacingit
is possibleto distinguishfour typesof interfaces.
Theuserinterface, which dealswith all interactions
with the userincluding referencego the operating
system. The internal interface, where the system
communicatesvith other(sub)-systema theorga-
nizationsuchasanaccountingystem.Theexternal

interface handlingrequestfrom/to systemsutside
the own organization,such as various mail inter

facesandfinally the datastorageinterface, provid-

ing datamanipulationfunctionality to (relational)
databaseandflat files.

A componentwill have at leastone of theseinter
facesandatleastoneflow of datagoingin andone
goingout. Therecannotbeacomponenwhereonly
datais going in, thenin that casewe have a so-
called‘sink’. A similar rule is valid for the other
way around: a processwith only datacoming out
is alsoillegal. This typeis normally referredto as
a ‘magic bubble’. The presencef interfaces,and
we just concludedcomponentsannotlive without
them,is acrucialfactorin thesoftwarearchitecture.
Fromanidealpointof view, acomponenshouldbe
unaware of the physicalcharacteristic®f the oper
ationalenvironment,andthenchangeso associated
elementsputsidethe componentgcould have influ-
enceonthecomponenbehaior. Thisis alsoknown
asthe‘ripple effect’. By eliminatingthis ‘ripple ef-
fect’ componentdecomemore flexible and main-
tainable.

Whyare there still architectual monstes
beingdeveloped?

Dependingon the natureof the interface (user in-
ternal,externalor data)therearevariousobjectori-
entedtechniquesavailable to deal with this chal-
lenge. Techniquesderived from the ‘design pat-
tern’ literatureform the foundationfor thesekind
of flexible implementations.Whatever solutionis
chosenit all comesdown to onegoldenrule: inter
faceobjectsshouldalwayshandlecommunications
to the outsideworld. InterfaceObjectsdo not only
provide a single point of referenceto the outside
world; they are also capableof connectingother
wise incompatibleformats. Software architectures
in theformatof componenframewvorkswould pro-
vide guidanceto applicationdevelopersandwould
improve the flexibility, quality and re-usability of
components.

If we understandhis and agreeon this, why are
therestill architecturamonsterseingdeveloped?

January, 1999




theory

Wm Groenendaals seniortechnical consultantin CMG’sreseach center
for client/servettechnolayy. Throughtheyears he hasbeeninvolvedin the
designof softwake architectuesfor varioussoftwae development
ervironmentsln oneof the currentreseach projects,codename: CODA
(Corporate DesignArchitectue) all theseexperiencesn client/server
technolayy are gatheed and(re)-modeledn a CASEtool in orderto designa
environmentneutmal client/serverarchitectue baseduponthe designpattern

Obstacles

Althoughthe importanceof a softwarearchitecture
is generallyacceptedtherearea numberof candi-
date obstacles. Someof the mostimportantonce
are:

Skill
developersneedto understandhe concepiof de-
signingarchitectures.

Priority
The implementationof componentsbecomes
more pragmaticas a project deadlinestartsto
loom.

Cost
Architectureis oftenregardedaspointlesduxury
oncea systemis aboutreadyto getshipped.

Perception
Membersof a projectteamhave differentobjec-
tivesthansystemarchitects.

From experiencel found thatthe bestway to deal
with theseand other related obstaclesis to have
a specializedteamfor designingthe architecture.
This way you have at leastthe right skills, priority
andperceptionin the sameteam. Whatremainare
the costs. The designof a flexible software archi-
tectureis time consumingandthusexpensve. Fur
thermorethereis no obviousdirectreturnoninvest-
ment. But if onethinks a goodarchitecturds ex-
pensve, try building on abadarchitecture.

More challenges

edgeof the existenceof thesecomponentsDue to
this lack of componenimanagementhey will just
built it againandthatis exactly whatwe donotwant
to do.

Thedesignof a flexible softwae architec-
ture is time consumingand thus expen-
sive

If re-useis anaobjective thenit is alsoobviousthat
theremustbe an infrastructureto supportthe pro-
cess. Too often componenimanagementails asa
resultof variouscircumstanceslf we take a closer
look at the problemsthat occurwhenre-useis in-

volved, the major obstaclesare the following: ac-
cessibilityof availablecomponentslack of version
control, lack of a propersearchengine,andlack of

properusageguidelines.The bestway to dealwith

thesecircumstancess the use of supportingsoft-
ware,preferablerunningon the intranetin orderto
reachall developersin theorganization.

What is missing?

| realizethat there are much more interestingas-
pectsin usingcomponentechnology suchashow
doesone recognizesa componentduring applica-
tion analysis. And what aboutautomatedesting?
Testtools today are designedto test applications,
not components.And thenthe aspectof applica-
tion maintenancehow do we managethe imple-
mentationof new and changedequirements And

Evenwith a specialengineeringeam,management last but not least the componentoperationalen-

commitmentandbudgetthereis anothey often for-
gotten,elementwhich caneasily disturb the strive
for re-use. It is simply not enoughto develop re-
usablecomponentd co-developershave no knowl-

XO0OTIC MAGAZINE

vironmentitself with a still continuing battle be-
tweenthe variouscomponenimodelsand the sta-
bility/functionality of the connectingsoftware: the
middleware.



Conclusion pling. It is alsotrue, that promoting‘develop for

re-use’is a difficult taskto accomplishbecausea
Themainfocusof this articlewasaboutthecompo- developers intentionis to write codeandthe lack
nentitself andl concludethatalthoughcomponent of propercomponenmanagementAnd eventhen
technologydoesnotrely onobjectorientationit can therearealot of challengedeft to overcomebefore
certainly benefitfrom the availabletechnigquesgs- thistechnologyis really mature.
peciallythetheoryondesignpatternsandweakcou-

January, 1999




