Software Architecture

Standing on the Shoulders of Giants

BjornBon

As the demand for software increases dramatically, reusable software is be-
coming more and more important. People are looking for software systems
that contain maintainable and reusable pieces of software, but these systems
are still hard to find. Developing these kind of systems starts with a proper
decomposition of the main problem into sub-problems. This article describes
a method to evaluate such a decomposition in an objective way. The method
focuses on the evaluation of software architectures with respect to fundamental
design criteria like minimal coupling and maximal cohesion.

The Need for Reuse reuseds notknown, this mayleadto unpredictable

systemgAriane5). Anotherproblemwith reusable

“If | haveseerfurtherthanmostmen,it is because softwareis thatwe oftenneedto do someredesign-
| stoodonthe shouldes of giants” ing or reimplementationheforethe softwarecanbe
—IsaacNewton,1676 integratedin its new ervironment. The resultis a
new pieceof softwarethatis againnot reusablan

In 1676,IsaacNewton madethis famousstatement. its pureform.

Herealisechehaddefinedsomeimportaniawsthat Softwarepieceswith a clearly definedfunctionand
would be the basisof modernphysics. He alsore- with aminimalandwell known requiredcontet are
alisedthat he did not do it on his own. Newton’s still rare.Only thesetypesof softwarepiecescanbe
strengthwasapplyingthe availableknowledgeand reusedn larger systemswvithout modificationsand
extendingit. soreally bereused.If we wantto be ableto meet

Scienceis atypical areawherereuseis applied. In theincreasingdemandor softwarein the future, it
otherfields reuseis importantaswell. It is usedin IS importantto getto thelevel wherewe areableto
classicarchitecturebut alsoin thetelevisionindus- definesoftwarethat canbe reusedn its mostpure
try. This mayleadto boringprogrammesbutitisa form, withoutthe needof ary modification.

very efficientway of working. The next chapteranswerghe questionwhy we are

In the last years,the demandfor software hasdra- hot atthatlevel. It answerghis questiorby describ-
maticallyincreasedThesoftwareworld hasreplied ing thesoftwaredesignevolutionandtherole of ed-
in termsof betterdesigntools (compilersandhigh ucation. Thena chapterfollows thatdescribeshe
level languagesandbetterdevelopmentprocesses, fundamentadesigncriteriato cometo reusableand
like the Capabmty Maturity Model Anothertrend maintainablesoftware. This Chapteris the basisof
is the reuseof software. As in other disciplines, theproposalasdescribedn the chaptercalled*Ar-
reuseis probablythe bestanswerto the increasing chitecturaEvaluation. Thefourthchaptemapsthe
demandfor software. However, reusemaybedan- designcriteriaon anevaluationmodelfor software
gerous. It is very importantto know the context in @rchitecturesWith a simple examplethe modelis
which the softwarecanbereused If the dependen- appliedto two softwarearchitectures.
ciesandthe requiredcontet of the softwareto be

March, 2000

The Software Design Evolution

Thefirst computergright after World War 2) were
slow, unreliableand very smallin termsof mem-
ory andprocessingpower. Programminghesema-
chinesmeantprogrammingat the level of binary
machineinstructions.Thiswasnotatrivial job, but
asthesizeof the programmesvasrathersmall,one
wasableto doit.

With the increasingprocessingpower and mem-
ory sizesof the computers,the developmentof
high level programminganguagesvasstimulated.
This resultedin mary programminganguagesike
FORTRAN and COBOL. Today the use of high

Educationalinstitutesdo not pay much attention
on architecturaissuedike couplingandcohesion.
They focus more on the designof efficient algo-
rithms. In recentyearsthe situationhasimproved.
This is partly causedoy the introductionof design
patternsg[1]. A next stepmay be paying more at-
tentionto topicslike architecturabatterns.At this
level, completesoftware systemscan be described
in termsof large softwaremoduleghatinteractwith
eachother For moststudies this is a difficult sub-
ject, because software systemis very specificfor
its domain.Thegoal of mostsoftwarestudiess not
to learnabouta certaindomainlike copiers.It is not
possibleto eductatethe genericsoftware architect
who cansolve ary software problem. A software

level and object-orientedporogramminglanguages architectfor bankingapplicationshasdifferentca-
like EIFFEL andC++ arequite usual. In thenon- papjlitiesthana television softwarearchitect.How-
embeddedndustry the so-calledfourth generation gyer they do have somethingsin common. They
languagesireappliedmoreandmore. both mustbe ableto dealwith fundamentablesign
Clearly a lot of effort is put in new technologies criteriaasdescribedn the next chapter

with respectto software development. It is also

clearthat mosteffort is putin technologieghat fo-

cus on the last part of the software development Fundamental Desi gn Criteria
process,the coding phase. Of course,coding is
oneof themajor partsof softwaredevelopmentput
with the mary fang tools currently availableit is
temptingto startcoding right away without think-
ing aboutthe definition of cleanreusablesoftware
pieces. This leadsto a lot of codethat cannotbe
reused.

Anotherdisadwantageof the fasttechnologicalde-
velopmentds that moreand more attentionis paid
to new technologynew toolsandmakingthesenewn
toolswork. It seemghattherealimportantissueis alisedin lesstime.

forgotten,whichis: well designedsoftware. . ,
dsof desianis ind denof technol To meetthe requirementsnentionedabove, there-
Goodsoftwaredesignis independentf technology questedunctionalitymustbedecomposeahto sub-

andlanguagelt hasto dealwith thedecomposition ¢, +ions Thistypically takesplacein thearchitec-
of a prot_alemmto smallersup-problems.The Way tyral phase. In this phase the software systemis
thesolutionof asub-problemis implementeds not i iqedinto moduleswhereeachmodulerepresents

thatimportant (it may be implementedoy a C++ a sub-function. Sucha modulemustmeetthe fol-
class,aCOM componenbr aqueryon a database). lowing criteria:

If the solutionof a sub-problenis calleda module,

thenit is veryimportantthattheresponsibilityof the 1. Minimal coupling: the numberof modulesone
moduless clearandthatthedependenciesetween ~ Mmoduleinterfaceswith mustbeminimal.

the differentmodulesareminimal. In thisway we 2. Maximal cohesion:the functionality of a mod-
candesigna systemcontainingmoduleswith maxi- ule mustbesingle,clearandpure.

mal cohesiorandminimal coupling Thisincreases 3. Encapsulatiorof data: the implementationde-
thereusabilityandmaintainabilityof the software. tails of a module mustbe hidden. Interfacing

At anabstractevel, therearesomegenericsoftware
requirements:

1. Meetingthefunctionalrequirements
2. Maintainability
3. Reusability

By reuse we oftenmeanthatit mustbe easyto in-
tegratepartsof the softwareinto othersoftwaresys-
tems. This way, nhew software systemscan be re-

XOOTIC MAGAZINE

betweermodulesis doneby well definedinter

facesthatareassimpleandsmallaspossible.
4. Documentationtheinterfaceandbehaiour of

amodulemustbewell documented.

Minimal Coupling

The degreeof couplingbetweenmodulesin a sys-
tem is an indication of the maintainability of the
systemasawhole andthe reusabilityof eachsepa-
ratemodule.Thecouplingbetweemmodulesshould
be as small as possible. This meansthat a mod-
ule mustinterface with the leastpossiblenumber
of othermodules. It also meansthat the interface
betweenmodules(or the strengthof the coupling)
mustbe asweakaspossible. The numberof mod-
ulesamoduleis coupledto canbederivedfrom the
logical staticstructureof the system.The direction
of the couplingis important. If moduleA callsa
functionof moduleB, A depend®n B. Somodule
B is necessaryo make moduleA function.

M aximal Cohesion

Cohesioris anindicationof thecorrelatiornbetween
functionsin a module. A systemcontainingmod-
uleswith ahigh cohesiorleadsto maintainablesys-
tems. If the systemrequiresa functional change,
only one modulein the systemneedsto be modi-

fied, beingthe moduleresponsibldor that certain
functionthatneedsa change.Moduleswith a high

cohesiorarereusableén othersystemsbecausé¢hey

implementa well definedfunction independentf

therestof the system.

Data Encapsulation

New componenttechnologies(COM, Javabeans)
andobject-orientedanguage$C++) provide mech-
anismsto separatenterfacesfrom implementation.
Of course thesetechnologiesio not solve the real

problemof dataencapsulationwhich is determin-
ing whatpartsneedo bepublic (interface)andwhat

partsaredetails(implementation)If thesepartsare
separatedvell, the resultis a modulewith a min-

imal interface. This way, the moduleis more pre-

dictable,becausdahe way the moduleis controlled
is restrictedto the minimal interface.

Documentation

In thesoftwaredevelopmentprocessthegeneration
of properdocumentatioris very important. From

a reusepoint of view, documentationrabout how

to usea moduleis moreimportantthana descrip-
tion of someimplementatiordetails. Toolscansup-
port the documentatiorprocessby meansof auto-
documentatiomndconsisteng checks.

Architectural Evaluation

The previous chapterdescribedsomefundamental
software designcriteria. The questionis how to
evaluatea softwaresystemusingthesecriteriain an
objective way. Most of the times, architecturesre
evaluatedoy meanf feelings.It justlooksright or
it is aniceconcept.

The deggreeof coupling canbe easily measuredy
countingthe numberof modulesa moduleis con-
nectedto. Measuringthe degreeof cohesioris less
easy This chapterpresentsa proposalto evaluate
the degreeof couplingandcohesionof modulesin

asoftwaresystem.Basedon this evaluation the ar

chitecturecan be adaptedand evaluatedagain. In

this way, structuralimprovementis possible. It is

alsopossibleto comparetwo architecturesolving
the sameproblem. At the end of this chapter this
processs explainedby meansof anexample.

Evaluation M od€

Below, four stepsare describedto evaluatean ar

chitecturewith respectto coupling and cohesion.
Encapsulatiorof datais implied by high cohesion
in combinationwith a minimal interface (minimal

coupling). We assumethat the co-operationand
theinterfacesof the modulesof thearchitectureare
known anddocumented.

1. Describethe logical architectureof the system.
Indicatewhich modulesdependon which mod-
ulesby usingarrows. For eachmodule,describe
its interface. This canbe donein a formal way
but alsoin plain English.

March, 2000

2. Make alist of the degreeof coupling per mod-
ule. For eachmodule,its incomingand outgo-
ing arravs arecounted.Many incomingarrons
meanthat mary other modulesdependon the
first module. This decreaseshe maintainabil-
ity of the module.Many outgoingarravs mean
thatthe moduledependn mary others. This
decreasethereusabilityof themodule.

3. Make a list of the cohesionof the modules.
Making the list is basedon the SAAM method,
publishedby the Carngyie Mellon SoftwareEn-
gineeringlnstitute [2]. The SAAM methodis
basednthefollowing substeps:

(a) Make scenarios. By scenarios,we mean
possiblemodificationsor extensionsto the
system. This is the toughestand mostim-
portantstepof the evaluationprocess.The
morescenariosve have, the betterthe sys-
tem can be evaluatedwith respectto co-
hesion. Making scenariogmeansinvolving
mary peoplelike usersmaintainersandar
chitects.

Determine which scenariosaffect which
modules. Sincethe interfacesof the mod-
ulesareknown, it mustbe possibleto take
this step.
Evaluation:Whenonescenaricaffectsmul-
tiple modules,this usually meansthat the
functionality is distributed over multiple
modules.This decreasethe maintainability
of the system.Whendifferentscenariosaf-
fectthe samemodule,this modulecontains
differentfunctions,which hasa negative ef-
fectonthereusabilityof the module.

(b)

(©)

4. Overall evaluation of the architecture. Deter
mine what moduleshave to be reusableand/or
maintainable Comparethis with the resultsac-
quiredby step2 and3.

Example

The examplepresentswo architecture®f a cruise
controlsystentor cars.Thearchitecturesreevalu-
atedin parallelby applyingthe stepsof the previous
section.First, a brief descriptionof the cruisecon-
trol systemis given.

speedf thecarby abuttononthedashboardBased
onthisdesiredspeedthecurrentspeedandtherev-
olutionsper minute,the systemchooseghe correct
gearandthe correctamountandmixture of fuel and
air.

Step 1: Description Logical Architecture

Figurel describesolution1. The arrows indicate
the direction of the dependencies.For example,
the MotorMonitor calls the functions SetSpeed(v)
andSetReolution(r), whichareimplementedy the
ContolModule Solution1 containsfive modules,
which aredescribeelow.

SetSpeed(v)

SetRevolution(r) SetRequestedSpeed(v)

ControlModule |- Dashboard

SetGear(n) / wiuew(t a)

Gearbox FuelAirvalve

MotorMonitor

Figurel: Stepl: Cruisecontrol,solution1

e The MotorMonitor measureshe currentspeed
and the revolutions per minute of the motor
Whenoneof theseattributeschangesthe func-
tion SetSpeed(Wr SetReolution(r) is called.
Thesefunctionsare API functionsof the Con-
trolModule

e TheDashboad Moduleis responsibldor read-
ing the button of the dashboard(requested
speed). When the requestedspeedchanges,
the Dashboad Module calls the SetRequested-
Speed(vjunction,whichis implementedy the
ControlModule

e Basedbnthecurrentspeedtherequestedpeed,
andtherevolutionsperminute,the ControlMod-
ule computesthe correctgear andthe correct
amountandmixture of fuel andair.

e The Gearboxmoduleis responsiblefor phys-
ically selectingthe right gear This module
present@ninterfacefunction SetGear(n)

e The FuelAirvalve controls the physical valve
thatis responsibldor the amountand mixture
of fuel andair.

Figure2 describesolution2. Thissolutioncontains

RequirementsThe driver determinesherequested six moduleswhich aredescribedelaw.

XOOTIC MAGAZINE

patononior the better We seethat the Gearboxand FuelAir-
/ o pashooard | Valve are very well reusable. The MotorMonitor
GetRevolution(r)
/” andDashboad arelessreusablepecauseahey de-
ControlGear ControlFuelAir
pendon anothermodule. However, they are more
seeaty SeFusl o maintainable.
Y Y
Gearbox FuelArvale Module Maintainability | Reusability
Figure2: Step2: Cruisecontrol,solution2 incoming outgoing
arrovs arrovs
e The MotorMonitor measureshe currentspeed MOt‘;]rMO”itor 0 1
and the revolutions per minute of the motor | 2ashboard 0 1
, . ControlModule 2 2
Other modulescan accessthe information by Gearbox 1 5
calling theinterfacefunctionsGetRe&olution(r) FuelAirvalve 1 0

andGetSpeed(v)

e TheDashboad Moduleis responsibldor read-
ing the button of the dashboard(requested
speed). Other modulescan accessthe infor-
mationby calling theinterfacefunction GetRe-
guestedSpeed(wvhich is implementedby the
Dashboad module.

e The ControlGear modulecalls the GetR&olu-

Tablel: Thecouplingof solution1

Table 2 describeghe coupling of solution2. The
tablehasthe samestructureasTablel. The Motor-
Monitor, Dashboad, Gearbox and FuelAir\alve
arereusableThe ContiolGear, andContolFuelAir
aremoremaintainable.

tion(r) function, implementedby the Motor- Module Maintainability | Reusability
Monitor, to obtainthe currentnumberof revo- incoming outgoing
lutions perminute. Basedon thisinput, it com- arrons arrons

putesthe correctgearandcalls the SetGear(n) [MotorMonitor 3 0
function of the Gearboxto activate the correct Dashboard 1 0
gear ControlGear 0 2

e The ContolFuelAir module calls the Get- | ControlFuelAir 0 4
Speed(v) GetReolution(r) and GetRequest- Gearbox 1 0
FuelAirValve 1 0

edSpeed(vfunction. Basedon this input, it
computesthe amountand mixture of fuel and
air. After the computationthe SetFuelAir(f a)
functionof FuelAirValveis calledto actvatethe Step 3: Makea List of the Cohesion
new amountandmixture of fuel andair.
e Gearbox seesolutionl.
e FuelAirvalve seesolutionl.

Table2: Thecouplingof solution2

Make Scenarios In the example,we choosethe
following 4 scenarios:

1. Thecaris equippedwith anothertype of motor.
This meanghatthe computationof the amount
andmixture of fuel andair changes.

2. The car hasfasteraccelerationby postponing

Althoughmary aspectof the architecturesrenot
describedwe have sufficient informationto do the
next stepsof the evaluationprocess.

changingupthegear
Step 2: Makea List of the Coupling 3. Theuserinterfaceof the cruisecontrolchanges.
Tablel presentshecouplingof solutionl. Foreach 4 I:;}nvg\]l:)s/ the physical gearbox is controlled

module thetableindicatesthe numberof incoming
connectiongmaintainability)andoutgoingconnec-
tions(reusability). Thenumbersn thecellsindicate Determine the Impact of the Scenarios Table3
the numberof connections.The lower the number presentghe cohesionof solution1l. Eachcolumn

March, 2000

| | MotorMonitor | Dashboard

| ControlModule | Gearbox | FuelAirValve |

OtherMotor

Influences

Faster
Acceleration

Influences

New User Influences

Interface

Changean
physicalcontrol
of gearbox

Influences

Table3: Cohesiorof solution1

represent@ module. The rows representhe sce-
narios. The cells indicate whethera scenarioim-

pliesachangen amodule.A row containingmul-

tiple cellswith thekeyword' Influencesimpliesthat
onefunction affectsmultiple modules.This means
thata functionis distributedover multiple modules.
This decreasesnaintainability Note that this sit-

uationdoesnot occurin this example. A column
containingmultiple cells with the keyword * Influ-

ences impliesthatonemodulecontainsmorethan
onefunction. The responsibilityof the modulesis

not clear (low cohesion)which implies that reuse
may bedifficult.

Table 4 presentghe cohesionof solution2. This
solutioncontainsmodulesthat have a highercohe-
sion than the modulesof solution 1. Controlling
the Gearboxand the AirFuelValve are performed
by two separatenodules.In this way, the modules
have a clearerresponsibility Thisis usefulwith re-
spectto maintainabilityandreusability Notethatif
we meige scenaric2 and4, we do have a row with
multiple keywords ‘Influences This may leadto
other conclusions. Making the right scenariosre-
quiresalot of attentionandis the mostdifficult and
mostfundamentapartof the evaluation.

Step 4: Overall Evaluation

The cohesiontablesshawv that solution 2 is better
thansolution1. Solution2 offers modulesthatare
more independent. The solution 2 modulesalso
have ahighercohesion.

XOOTIC MAGAZINE

Evaluation

Thissmallexampleshavsthatit is possibleto quan-
tify thecouplingandcohesiorof architecturesising
somesimpletechniquesWhenlooking at large ar-
chitecturesthesetechniquesare useful to identify
the strengthsandweaknessesf the architecturan
a more objectve and structuralway. In this way,
we cangetto the level wherewe areableto make
betterarchitectureghatcontainsoftwarepieceshat
arereusablén its mostpureform.

Whenevaluatingthe cohesionof anarchitectureit
is importantto know thatthe evaluationis basedn
the scenariosvailable. Making thesescenariose-
quiresalot of attentionfrom differentkinds of peo-

ple.

Conclusion

In every areain our society peopleare (re)using
eachotherswork. In the software area,reusemay
be the solution to realisefuture software systems
more efficiently. This meansthat investmentsin
solid softwarearchitecturehave to be madeat this
very moment,n orderto generatenaintainableand
reusablemodules. Investmentsn new technology
are certainly not sufficient, becausehis new tech-
nologymainlyfocusesnthecodingphaseandless
on using essentialdesigncriteria that are usedin
softwaredesign.

Investingin solid architecturestartswith evaluat-
ing the architecture.This article describeda model
that can help doing this. Simple reporting tech-
niquesik e tablesenabletheidentificationof weak
spotsin thearchitectureWhendeterminingthe co-
hesionof an architecture we shouldnote that the

| | MotorMonitor | Dashboard | ControlGear | ControlFuelAir | Gearbox | FuelAirValve |

OtherMotor Influences
Faster Influences
Acceleration
New User Influences
Interface
Changdn Influences
physical

control of
gearbox

Table4: Cohesiorof solution2

evaluationis relatedto the scenarioswe devised. References
This meansthat devising the scenariosshouldget
alot of attentionfrom severalpeople. Thenext step [1] Erich Gamma, Richard Helm, Ralph Johnson,
would be adaptingthe architecturejn orderto im- and John Vlissides, Design Patterns, Elements
prove the weakspots. The resultwill be maintain- of ReusableObject-OrientedSoftwae, Addison-
able and reusablesoftware modules. Using Isaac Wesley.
Newtonswords,thiswill againresultin anew giant [2] Rick Kazman,Gregory Abowd, Len Bass,andPaul
onwhoseshouldersve canstand. Clements Scenario-Basednalysisof Softwae Ar-
chitectue. Available via http://www.sei.cmu.edu/-
architecture/scenaripaper/
index.html.

About the Author

BjornBonis with Alert AutomationServicesdv. At thismomentheis assigned
to Philips Semiconductorswherehe is working on the definition of reusable
software componentgor ConsumerElectronicsSystems.He holdsan M.Sc.

in Information Technologyanda Masterof TechnologicaDesignin Software

Technologybothfrom the Eindhoven University of Technology

March, 2000

