
Software Architecture

Standing on the Shoulders of Giants
BjörnBon

As the demand for software increases dramatically, reusable software is be-
coming more and more important. People are looking for software systems
that contain maintainable and reusable pieces of software, but these systems
are still hard to find. Developing these kind of systems starts with a proper
decomposition of the main problem into sub-problems. This article describes
a method to evaluate such a decomposition in an objective way. The method
focuses on the evaluation of software architectures with respect to fundamental
design criteria like minimal coupling and maximal cohesion.

The Need for Reuse

“If I haveseenfurther thanmostmen,it is because
I stoodon theshoulders of giants”

—IsaacNewton,1676

In 1676,IsaacNewtonmadethis famousstatement.
Herealisedhehaddefinedsomeimportantlawsthat
would be thebasisof modernphysics.He alsore-
alisedthat he did not do it on his own. Newton’s
strengthwasapplyingtheavailableknowledgeand
extendingit.

Scienceis a typical areawherereuseis applied. In
otherfieldsreuseis importantaswell. It is usedin
classicarchitecture,but alsoin thetelevision indus-
try. Thismayleadto boringprogrammes,but it is a
very efficientwayof working.

In the last years,the demandfor softwarehasdra-
maticallyincreased.Thesoftwareworld hasreplied
in termsof betterdesigntools (compilersandhigh
level languages)andbetterdevelopmentprocesses,
like theCapability Maturity Model. Anothertrend
is the reuseof software. As in other disciplines,
reuseis probablythebestanswerto the increasing
demandfor software. However, reusemaybedan-
gerous.It is very importantto know thecontext in
which thesoftwarecanbereused.If thedependen-
ciesandthe requiredcontext of the softwareto be

reusedis not known, thismayleadto unpredictable
systems(Ariane5). Anotherproblemwith reusable
softwareis thatwe oftenneedto do someredesign-
ing or reimplementation,beforethesoftwarecanbe
integratedin its new environment. The result is a
new pieceof softwarethat is againnot reusablein
its pureform.

Softwarepieceswith a clearlydefinedfunctionand
with aminimalandwell known requiredcontext are
still rare.Only thesetypesof softwarepiecescanbe
reusedin larger systemswithout modificationsand
so really be reused.If we want to be ableto meet
the increasingdemandfor softwarein thefuture, it
is importantto getto thelevel wherewe areableto
definesoftwarethat canbe reusedin its mostpure
form, without theneedof any modification.

Thenext chapteranswersthequestionwhy we are
notat thatlevel. It answersthisquestionby describ-
ing thesoftwaredesignevolutionandtheroleof ed-
ucation. Thena chapterfollows that describesthe
fundamentaldesigncriteriato cometo reusableand
maintainablesoftware. This chapteris thebasisof
theproposalasdescribedin thechaptercalled‘Ar-
chitecturalEvaluation.’ Thefourthchaptermapsthe
designcriteriaon anevaluationmodelfor software
architectures.With a simpleexamplethemodelis
appliedto two softwarearchitectures.

March, 2000 5



The Software Design Evolution

Thefirst computers(right afterWorld War 2) were
slow, unreliableand very small in termsof mem-
ory andprocessingpower. Programmingthesema-
chinesmeantprogrammingat the level of binary
machineinstructions.Thiswasnota trivial job, but
asthesizeof theprogrammeswasrathersmall,one
wasableto do it.

With the increasingprocessingpower and mem-
ory sizes of the computers,the developmentof
high level programminglanguageswasstimulated.
This resultedin many programminglanguageslike
FORTRAN and COBOL. Today, the use of high
level and object-orientedprogramminglanguages
like EIFFEL andC++ arequite usual. In the non-
embeddedindustry the so-calledfourth generation
languagesareappliedmoreandmore.

Clearly, a lot of effort is put in new technologies
with respectto software development. It is also
clearthatmosteffort is put in technologiesthat fo-
cus on the last part of the software development
process,the coding phase. Of course,coding is
oneof themajorpartsof softwaredevelopment,but
with the many fancy tools currentlyavailable it is
temptingto startcodingright away without think-
ing aboutthe definition of cleanreusablesoftware
pieces. This leadsto a lot of codethat cannotbe
reused.

Anotherdisadvantageof the fasttechnologicalde-
velopmentsis thatmoreandmoreattentionis paid
to new technology, new toolsandmakingthesenew
toolswork. It seemsthat thereal importantissueis
forgotten,which is: well designedsoftware.

Goodsoftwaredesignis independentof technology
andlanguage.It hasto dealwith thedecomposition
of a probleminto smallersub-problems.The way
thesolutionof asub-problemis implementedis not
that important (it may be implementedby a C++
class,aCOM componentor aqueryonadatabase).
If thesolutionof a sub-problemis calleda module,
thenit is veryimportantthattheresponsibilityof the
modulesis clearandthatthedependenciesbetween
thedifferentmodulesareminimal. In this way we
candesignasystemcontainingmoduleswith maxi-
malcohesionandminimalcoupling. This increases
thereusabilityandmaintainabilityof thesoftware.

Educationalinstitutesdo not pay much attention
on architecturalissueslike couplingandcohesion.
They focus more on the designof efficient algo-
rithms. In recentyearsthesituationhasimproved.
This is partly causedby the introductionof design
patterns[1]. A next stepmay be payingmoreat-
tentionto topicslike architecturalpatterns.At this
level, completesoftwaresystemscanbe described
in termsof largesoftwaremodulesthatinteractwith
eachother. For moststudies,this is a difficult sub-
ject, becausea softwaresystemis very specificfor
its domain.Thegoalof mostsoftwarestudiesis not
to learnaboutacertaindomainlikecopiers.It is not
possibleto eductatethe genericsoftware architect
who cansolve any software problem. A software
architectfor bankingapplicationshasdifferentca-
pabilitiesthana televisionsoftwarearchitect.How-
ever, they do have somethings in common. They
bothmustbe ableto dealwith fundamentaldesign
criteriaasdescribedin thenext chapter.

Fundamental Design Criteria

At anabstractlevel, therearesomegenericsoftware
requirements:

1. Meetingthefunctionalrequirements
2. Maintainability
3. Reusability

By reuse,we oftenmeanthat it mustbeeasyto in-
tegratepartsof thesoftwareinto othersoftwaresys-
tems. This way, new softwaresystemscanbe re-
alisedin lesstime.

To meettherequirementsmentionedabove, there-
questedfunctionalitymustbedecomposedinto sub-
functions.This typically takesplacein thearchitec-
tural phase. In this phase,the software systemis
dividedinto moduleswhereeachmodulerepresents
a sub-function.Sucha modulemustmeetthe fol-
lowing criteria:

1. Minimal coupling: thenumberof modulesone
moduleinterfaceswith mustbeminimal.

2. Maximal cohesion:the functionalityof a mod-
ule mustbesingle,clearandpure.

3. Encapsulationof data: the implementationde-
tails of a modulemust be hidden. Interfacing

6 XOOTIC MAGAZINE



betweenmodulesis doneby well definedinter-
facesthatareassimpleandsmallaspossible.

4. Documentation:the interfaceandbehaviour of
amodulemustbewell documented.

Minimal Coupling

Thedegreeof couplingbetweenmodulesin a sys-
tem is an indication of the maintainabilityof the
systemasa wholeandthereusabilityof eachsepa-
ratemodule.Thecouplingbetweenmodulesshould
be as small as possible. This meansthat a mod-
ule must interfacewith the leastpossiblenumber
of othermodules. It alsomeansthat the interface
betweenmodules(or the strengthof the coupling)
mustbeasweakaspossible.Thenumberof mod-
ulesamoduleis coupledto canbederivedfrom the
logical staticstructureof thesystem.Thedirection
of the coupling is important. If moduleA calls a
functionof moduleB, A dependson B. Somodule
B is necessaryto make moduleA function.

Maximal Cohesion

Cohesionis anindicationof thecorrelationbetween
functionsin a module. A systemcontainingmod-
uleswith ahighcohesionleadsto maintainablesys-
tems. If the systemrequiresa functional change,
only onemodulein the systemneedsto be modi-
fied, being the moduleresponsiblefor that certain
function thatneedsa change.Moduleswith a high
cohesionarereusablein othersystems,becausethey
implementa well definedfunction independentof
therestof thesystem.

Data Encapsulation

New componenttechnologies(COM, Javabeans)
andobject-orientedlanguages(C++)providemech-
anismsto separateinterfacesfrom implementation.
Of course,thesetechnologiesdo not solve the real
problemof dataencapsulation,which is determin-
ing whatpartsneedto bepublic(interface)andwhat
partsaredetails(implementation).If thesepartsare
separatedwell, the result is a modulewith a min-
imal interface. This way, the moduleis morepre-
dictable,becausethe way themoduleis controlled
is restrictedto theminimal interface.

Documentation

In thesoftwaredevelopmentprocess,thegeneration
of properdocumentationis very important. From
a reusepoint of view, documentationabout how
to usea moduleis more importantthana descrip-
tion of someimplementationdetails.Toolscansup-
port the documentationprocessby meansof auto-
documentationandconsistency checks.

Architectural Evaluation

The previous chapterdescribedsomefundamental
software designcriteria. The questionis how to
evaluateasoftwaresystemusingthesecriteriain an
objective way. Most of the times,architecturesare
evaluatedby meansof feelings.It just looksright or
it is aniceconcept.

The degreeof couplingcanbe easilymeasuredby
countingthe numberof modulesa moduleis con-
nectedto. Measuringthedegreeof cohesionis less
easy. This chapterpresentsa proposalto evaluate
thedegreeof couplingandcohesionof modulesin
asoftwaresystem.Basedon thisevaluation,thear-
chitecturecanbe adaptedandevaluatedagain. In
this way, structuralimprovementis possible. It is
alsopossibleto comparetwo architecturessolving
the sameproblem. At the endof this chapter, this
processis explainedby meansof anexample.

Evaluation Model

Below, four stepsaredescribedto evaluatean ar-
chitecturewith respectto coupling and cohesion.
Encapsulationof datais implied by high cohesion
in combinationwith a minimal interface(minimal
coupling). We assumethat the co-operationand
theinterfacesof themodulesof thearchitectureare
known anddocumented.

1. Describethe logical architectureof thesystem.
Indicatewhich modulesdependon which mod-
ulesby usingarrows. For eachmodule,describe
its interface. This canbedonein a formal way
but alsoin plainEnglish.

March, 2000 7



2. Make a list of thedegreeof couplingpermod-
ule. For eachmodule,its incomingandoutgo-
ing arrows arecounted.Many incomingarrows
meanthat many other modulesdependon the
first module. This decreasesthe maintainabil-
ity of themodule.Many outgoingarrows mean
that the moduledependson many others. This
decreasesthereusabilityof themodule.

3. Make a list of the cohesionof the modules.
Making the list is basedon theSAAM method,
publishedby theCarnegie Mellon SoftwareEn-
gineeringInstitute [2]. The SAAM methodis
basedon thefollowing substeps:

(a) Make scenarios. By scenarios,we mean
possiblemodificationsor extensionsto the
system. This is the toughestandmost im-
portantstepof the evaluationprocess.The
morescenarioswe have, the betterthe sys-
tem can be evaluatedwith respectto co-
hesion. Making scenariosmeansinvolving
many peoplelike users,maintainers,andar-
chitects.

(b) Determine which scenariosaffect which
modules. Sincethe interfacesof the mod-
ulesareknown, it mustbe possibleto take
thisstep.

(c) Evaluation:Whenonescenarioaffectsmul-
tiple modules,this usually meansthat the
functionality is distributed over multiple
modules.Thisdecreasesthemaintainability
of thesystem.Whendifferentscenariosaf-
fect thesamemodule,this modulecontains
differentfunctions,whichhasanegative ef-
fecton thereusabilityof themodule.

4. Overall evaluationof the architecture. Deter-
mine what moduleshave to be reusableand/or
maintainable.Comparethis with theresultsac-
quiredby step2 and3.

Example

Theexamplepresentstwo architecturesof a cruise
controlsystemfor cars.Thearchitecturesareevalu-
atedin parallelby applyingthestepsof theprevious
section.First, a brief descriptionof thecruisecon-
trol systemis given.

Requirements:Thedriver determinestherequested

speedof thecarbyabuttononthedashboard.Based
onthisdesiredspeed,thecurrentspeed,andtherev-
olutionsperminute,thesystemchoosesthecorrect
gearandthecorrectamountandmixtureof fuel and
air.

Step 1: Description Logical Architecture

Figure1 describessolution1. The arrows indicate
the direction of the dependencies.For example,
the MotorMonitor calls the functionsSetSpeed(v)
andSetRevolution(r), whichareimplementedby the
ControlModule. Solution1 containsfive modules,
whicharedescribedbelow.

MotorMonitor ControlModule

FuelAirValve

SetRevolution(r)
SetSpeed(v)

SetRequestedSpeed(v)
Dashboard

SetFuelAir(f, a)SetGear(n)

Gearbox

Figure1: Step1: Cruisecontrol,solution1

� The MotorMonitor measuresthe currentspeed
and the revolutions per minute of the motor.
Whenoneof theseattributeschanges,thefunc-
tion SetSpeed(v)or SetRevolution(r) is called.
ThesefunctionsareAPI functionsof the Con-
trolModule.

� TheDashboard Moduleis responsiblefor read-
ing the button of the dashboard(requested
speed). When the requestedspeedchanges,
theDashboard Modulecalls theSetRequested-
Speed(v)function,which is implementedby the
ControlModule.

� Basedonthecurrentspeed,therequestedspeed,
andtherevolutionsperminute,theControlMod-
ule computesthe correctgear, and the correct
amountandmixtureof fuel andair.

� The Gearboxmodule is responsiblefor phys-
ically selectingthe right gear. This module
presentsaninterfacefunctionSetGear(n).

� The FuelAirValve controls the physical valve
that is responsiblefor the amountandmixture
of fuel andair.

Figure2describessolution2. Thissolutioncontains
six moduleswhicharedescribedbelow.

8 XOOTIC MAGAZINE



ControlFuelAir

Dashboard

GetRequestedSpeed(v)

MotorMonitor

GetSpeed(v)

FuelAirValve

SetFuelAir(f, a)

ControlGear

GetRevolution(r)

Gearbox

SetGear(n)

GetRevolution(r)

Figure2: Step2: Cruisecontrol,solution2

� The MotorMonitor measuresthe currentspeed
and the revolutions per minute of the motor.
Other modulescan accessthe information by
calling theinterfacefunctionsGetRevolution(r)
andGetSpeed(v).

� TheDashboard Moduleis responsiblefor read-
ing the button of the dashboard(requested
speed). Other modulescan accessthe infor-
mationby calling the interfacefunctionGetRe-
questedSpeed(v), which is implementedby the
Dashboard module.

� The ControlGear modulecalls the GetRevolu-
tion(r) function, implementedby the Motor-
Monitor, to obtainthe currentnumberof revo-
lutionsperminute.Basedon this input, it com-
putesthe correctgearandcalls the SetGear(n)
function of the Gearboxto activate the correct
gear.

� The ControlFuelAir module calls the Get-
Speed(v), GetRevolution(r), and GetRequest-
edSpeed(v)function. Basedon this input, it
computesthe amountand mixture of fuel and
air. After thecomputation,theSetFuelAir(f, a)
functionof FuelAirValveis calledto activatethe
new amountandmixtureof fuel andair.

� Gearbox, seesolution1.
� FuelAirValve, seesolution1.

Althoughmany aspectsof thearchitecturesarenot
described,we have sufficient informationto do the
next stepsof theevaluationprocess.

Step 2: Make a List of the Coupling

Table1 presentsthecouplingof solution1. Foreach
module,thetableindicatesthenumberof incoming
connections(maintainability)andoutgoingconnec-
tions(reusability).Thenumbersin thecellsindicate
thenumberof connections.The lower thenumber

the better. We seethat the GearboxandFuelAir-
Valve are very well reusable. The MotorMonitor
andDashboard arelessreusable,becausethey de-
pendon anothermodule. However, they aremore
maintainable.

Module Maintainability Reusability
incoming outgoing
arrows arrows

MotorMonitor 0 1
Dashboard 0 1
ControlModule 2 2
Gearbox 1 0
FuelAirValve 1 0

Table1: Thecouplingof solution1

Table2 describesthe couplingof solution2. The
tablehasthesamestructureasTable1. TheMotor-
Monitor, Dashboard, Gearbox, and FuelAirValve
arereusable.TheControlGear, andControlFuelAir
aremoremaintainable.

Module Maintainability Reusability
incoming outgoing
arrows arrows

MotorMonitor 3 0
Dashboard 1 0
ControlGear 0 2
ControlFuelAir 0 4
Gearbox 1 0
FuelAirValve 1 0

Table2: Thecouplingof solution2

Step 3: Make a List of the Cohesion

Make Scenarios In the example,we choosethe
following 4 scenarios:

1. Thecaris equippedwith anothertypeof motor.
This meansthat thecomputationof theamount
andmixtureof fuel andair changes.

2. The car has fasteraccelerationby postponing
changingup thegear.

3. Theuserinterfaceof thecruisecontrolchanges.
4. The way the physical gear box is controlled

changes.

Determine the Impact of the Scenarios Table3
presentsthe cohesionof solution1. Eachcolumn

March, 2000 9



MotorMonitor Dashboard ControlModule Gearbox FuelAirValve

OtherMotor Influences
Faster Influences
Acceleration
New User- Influences
Interface
Changein Influences
physicalcontrol
of gearbox

Table3: Cohesionof solution1

representsa module. The rows representthe sce-
narios. The cells indicatewhethera scenarioim-
pliesa changein a module.A row containingmul-
tiplecellswith thekeyword‘ Influences’ impliesthat
onefunctionaffectsmultiple modules.This means
thata functionis distributedovermultiplemodules.
This decreasesmaintainability. Note that this sit-
uationdoesnot occur in this example. A column
containingmultiple cells with the keyword ‘ Influ-
ences’ implies thatonemodulecontainsmorethan
onefunction. The responsibilityof the modulesis
not clear (low cohesion),which implies that reuse
maybedifficult.

Table4 presentsthe cohesionof solution 2. This
solutioncontainsmodulesthathave a highercohe-
sion than the modulesof solution 1. Controlling
the Gearboxand the AirFuelValve are performed
by two separatemodules.In this way, themodules
have a clearerresponsibility. This is usefulwith re-
spectto maintainabilityandreusability. Notethatif
we mergescenario2 and4, we do have a row with
multiple keywords ‘ Influences’. This may lead to
other conclusions.Making the right scenariosre-
quiresa lot of attentionandis themostdifficult and
mostfundamentalpartof theevaluation.

Step 4: Overall Evaluation

The cohesiontablesshow that solution2 is better
thansolution1. Solution2 offers modulesthatare
more independent. The solution 2 modulesalso
have ahighercohesion.

Evaluation

Thissmallexampleshowsthatit ispossibletoquan-
tify thecouplingandcohesionof architecturesusing
somesimpletechniques.Whenlooking at largear-
chitectures,thesetechniquesareuseful to identify
thestrengthsandweaknessesof thearchitecturein
a more objective and structuralway. In this way,
we canget to the level wherewe areableto make
betterarchitecturesthatcontainsoftwarepiecesthat
arereusablein its mostpureform.

Whenevaluatingthecohesionof anarchitecture,it
is importantto know thattheevaluationis basedon
thescenariosavailable. Making thesescenariosre-
quiresa lot of attentionfrom differentkindsof peo-
ple.

Conclusion

In every areain our society, peopleare (re)using
eachotherswork. In the softwarearea,reusemay
be the solution to realisefuture software systems
more efficiently. This meansthat investmentsin
solid softwarearchitectureshave to bemadeat this
verymoment,in orderto generatemaintainableand
reusablemodules. Investmentsin new technology
arecertainlynot sufficient, becausethis new tech-
nologymainlyfocusesonthecodingphase,andless
on using essentialdesigncriteria that are usedin
softwaredesign.

Investingin solid architecturesstartswith evaluat-
ing thearchitecture.This articledescribeda model
that can help doing this. Simple reporting tech-
niques,like tables,enabletheidentificationof weak
spotsin thearchitecture.Whendeterminingtheco-
hesionof an architecture,we shouldnote that the

10 XOOTIC MAGAZINE



MotorMonitor Dashboard ControlGear ControlFuelAir Gearbox FuelAirValve

OtherMotor Influences
Faster Influences
Acceleration
New User- Influences
Interface
Changein Influences
physical
controlof
gearbox

Table4: Cohesionof solution2

evaluation is relatedto the scenarioswe devised.
This meansthat devising the scenariosshouldget
a lot of attentionfrom severalpeople.Thenext step
would beadaptingthearchitecture,in orderto im-
prove theweakspots.Theresultwill bemaintain-
able and reusablesoftware modules. Using Isaac
Newtonswords,thiswill againresultin anew giant
onwhoseshoulderswe canstand.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Design Patterns, Elements
of ReusableObject-OrientedSoftware, Addison-
Wesley.

[2] Rick Kazman,Gregory Abowd, Len Bass,andPaul
Clements,Scenario-BasedAnalysisof Software Ar-
chitecture. Available via http://www.sei.cmu.edu/-
architecture/scenariopaper/
index.html.

About the Author

BjörnBonis with Alert AutomationServicesbv. At thismoment,heis assigned
to Philips Semiconductors,wherehe is working on the definition of reusable
softwarecomponentsfor ConsumerElectronicsSystems.He holdsan M.Sc.
in InformationTechnologyanda Masterof TechnologicalDesignin Software
Technology, bothfrom theEindhovenUniversityof Technology.

March, 2000 11


