The Strike of OO

Component Composability
Issues in Object-Oriented
Programming

Mehmet Aksit Building software from reusable components is considered impor-
Bedir Tekinerdogan tant in reducing development costs. Object-oriented languages such

as C++, Smalltalk, and Java, however, are not capable of expressing
University of Twente certain aspects of applications in a composable way. Software engi-

neers may experience difficulties in composing applications from
components, for example if components implement code for multi-
ple views, dynamic inheritance, and synchronization [1]. If these as-
pects have to be programmed, then object-oriented languages may
require a considerable amount of redefinition although this may not
be intuitively necessary. To solve the composability problems, lan-
guages must be enhanced modularly without losing their basic char-
acteristics. In addition, since more than one problem can be
experienced for the same object, enhancements must be independent
from each other. We have extended the conventional object-oriented
model using the concept of composition-filters. Composition-filters
can be attached to objects expressed for example in Smalltalk and
Java. A number of different filter types have been defined, each ad-
dressing a certain concern. This paper first illustrates some practical
problems and then introduces composition-filters solutions to over-
come these problems.

The conventional object-

oriented model is considered : . : :
. . In the following sections, we illustrate some component composabil-

u nsatls_fgctory with respect to ity problems by using a number of classes. Although intuitively un-

reusability of software necessary, if an existing class say A, cannot be reused by a new class,

components. Current reuse say B, without modifying the implementation of class A, then this is

strategies by aggregation or termed as a composability problem.

inheritance require an _

overload of method re- Class Email

definitions. As a Consider a simple mail system, which consists of classes Originator,

consequence, OO lan guages Email, MailDelivery and Receiver. As an example, the interface

have to be extended without methods of class EMail is shown in Figure 1.

Examples

sacrificing their useful EMail represents the electronic messages sent in this system and pro-
features. The concept of vides methods for defining, delivering, and reading mails. For exam-
composition-filter is an ple, the methods putOriginator, getOriginator, putReceiver, getReceiver,
language independent putContents, and getContents are used to write and read the attributes

enhancement to the OO of a mail object. The methods putRoute, getRoute, deliver, and isDeliv-
model; it avoids unnecessary ered are.u'sed by class MaﬂDehvery while dehyermg the messages

o from originators to receivers. The method reply is used to send a re-
method re-definition when ply message. In this article, EMail will be used as the base class for
components are reused. developing various kinds of email objects.

December 1997

class Email interface
putOriginator(anOriginator);
getOriginator returns anOriginator;
putReceiver(aReceiver);
getReceiver returns aReceiver;
putContent(aContent);

getContent returns aContent;
send;

reply;

approve;

isApproved returns Boolean;
putRoute(aRoute);

getRoute returns aRoute;
deliver;

isDelivered returns Boolean;

Figure 1: The interface methods of class EMail.

Class USViewMail

Now assume that like in a postal mail system, we
want to restrict accesses to email objects. We there-
fore extend class EMail to USViewMail by restrict-
ing the accesses to its methods based on the type of
the client object. If the client is of the user type, it is
allowed to execute the methods putOriginator, put-
Receiver, putContents, getContents, send, and reply.
The methods approve, putRoute, and deliver are used
by the clients of the system type. No restrictions are
defined for the methods getOriginator, getReceiver,
isApproved, getRoute, and isDelivered.

Now assume that the identity of the client object is
available. There are mainly two possible ways of re-
use in the conventional object model: aggregation-
based and inheritance-based. In our example, in
case of aggregation-based reuse, the interface object
implements the view checking operation. The ag-
gregated object implements the method to be exe-
cuted. For example, the method putOriginator can be
implemented as shown in Figure 2.

USViewMail::putOriginator(anOriginator)

if self.userView then
imp.putOriginator(anOriginator)

else self.viewError;

Figure 2: Aggregation-based reuse of putOriginator.

In Figure 2, if the sender of the message is of the user
type, the message putOriginator is forwarded to the
aggregated object imp, otherwise the error method
viewError is invoked. Here, imp is an instance of
Email. Notice that in the aggregation-based reuse,
all the methods have to be declared at the interface
of USViewMail, even though some methods do not
require any view enforcement.

In the inheritance-based reuse, view checking is im-
plemented within a method, and reuse is realized
through super class calls. Here, only the methods
with views have to be redefined; other methods can
be inherited from the super classes.

XOOTIC MAGAZINE

USViewMail::putOriginator(anOriginator)
if self.userView then
super.putOriginator(anOriginator)
else self.viewError;

Figure 3: Inheritance-based reuse of putOriginator.

In case of the aggregation-based reuse, USViewMail
implements 16 methods'. Among these, nine meth-
ods implement view checking and forwarding (see
Figure 2), five methods are used for forwarding on-
ly, and two methods implement the views. The in-
heritance-based implementation requires 11
methods. Here, nine methods implement view
checking and super class calls (see Figure 3), and
two methods implement the views.

Class ORViewMail

Assume that class ORViewMail partitions the user
view into originator and receiver views. Only the
client of originator type is allowed to invoke the
methods putOriginator, putReceiver, putContent, and
send. The client of receiver type is allowed to invoke
the method reply. For other methods, the restrictions
defined by USViewMail apply.

Again, this class can be implemented using aggre-
gation or inheritance-based reuse. In the example,
in case of aggregation-based reuse, the aggregated
object is an instance of class USViewMalil. In the in-
heritance-based reuse, class ORViewMail inherits
from class USViewMail. USViewMail and ORView-
Mail both enforce views on some methods. There
are two ways how this ordering can be realized. (1)
First the originator and receiver views, and then the
user and system views. This ordering is termed as
last-defined-first-enforced (LDFE). (2) First the user
and system views, and then the originator and re-
ceiver views. This ordering is termed as first-de-
fined-first-enforced (FDFE).

Implementation of LDFE ordering is relatively sim-
ple because object-oriented models naturally sup-
port it. In the aggregation-based reuse, after
verifying the constraints, requests are forwarded to
the aggregated objects. In the inheritance-based re-
use, verified requests are forwarded to the super
classes through super calls. However, both reuse
mechanisms require a considerable number of re-
implementations. Similar to class USViewMail, in
the aggregation-based reuse, ORViewMail imple-
ments 16 methods. The inheritance-based reuse re-
quires seven methods. Here, five methods are for
originator and receiver view checking and two
methods implement the originator and receiver
views.

1. The exact number of methods depends on the
language used.

The aggregation-based implementation of FDFE or-
dering is somewhat more complicated, because it
requires reordering of the aggregate structures.
Consider the code as shown in Figure 4. If the send-
er of the message is of user and originator type, the
message putOriginator is forwarded to the aggregat-
ed object imp, otherwise the error method viewError
is invoked. Here, the method userView will be un-
necessarily invoked twice, first by the ORViewMail
object and then by the USViewMail object. If a mul-
tiple invocation is not desired, then the aggregate
structure must be reorganized. The aggregated ob-
jects must be reconfigured as interface objects and
vice versa.

This reconfiguration can be a rather complex opera-
tion and may require additional method defini-
tions, such as retrieve, store, and configure. The
methods retrieve and store can be used to read and
write the aggregated object, respectively. The me-
thod configure is responsible to establish the desired
aggregate structure. We assume that the FDFE or-
dering requires at least three additional methods for
reconfiguring the aggregation structure, resulting
in total 19 method implementations.

ORViewMail::putOriginator(anOriginator)
if imp.userView then
if self.orginatorView then
imp.putOriginator(anOriginator)
else imp.viewError;

Figure 4: Aggregation-based reuse of putOriginator in
FDFE implementation.

The inheritance-based implementation of FDFE or-
dering requires redefinition of the call patterns.
Nevertheless, the total number of required methods
remains seven. Consider the implementation of the
method putOriginator of class ORViewMail (see Fig-
ure 5). Notice that here first userView and then orig-
inatorView are verified.

ORViewMail::putOriginator(anOriginator)
if self.userView then
if self.orginatorView then
super.putOriginator(anOriginator)
else self.viewError;

Figure 5: Inheritance-based reuse of putOriginator in
FDFE implementation.

Class GViewMail

In the next example, we reuse ORViewMail in
GViewMail by extending the views to a group of
originators and receivers. This may be required, for
example, in offices where more than one person is
responsible for sending and receiving mails. In case
of the aggregation-based reuse, the implementation
of class GViewMail is similar to the one shown in
Figure 4. A total of 16 methods have to be imple-

mented: five methods are used for view checking,
nine methods are used for forwarding messages on-
ly, and two methods implement the views.

In case of the inheritance-based LDFE reuse, the
methods originatorView and receiverView of OR-
ViewMail can be re-implemented in GViewMail as
group originator and receiver views, respectively.
Here, the method putOriginator can be inherited
from class ORViewMail, and therefore it is not nec-
essary to declare it in class GViewMail. The self.orig-
inatorView call in the method putOriginator will then
refer to originatorView implemented in GViewMail.
Only two methods are required for re-implement-
ing the views. The agregation-based FDFE imple-
mentation requires in total 19 methods. Among
these, three methods are used to configure the ag-
gregation structure.

In the inheritance-based FDFE implementation, be-
cause of the required changes in call patterns, the
method putOriginator must be redefined in GView-
Mail. Namely, view checking must be realized in
the reverse order, first the views of USViewMail
and last group views must be verified. In total seven
methods are required: five methods are used for
view checking and two methods implement the
views.

Class HistoryMail

Assume that class HistoryMail extends class
GViewMail with a history view. If a method is in-
voked more than once for the same mail object, a
warning message is generated.

Figure 6 shows a aggregation-based LDFE ordering
of the method putOriginator. It is estimated that
both the aggregation and inheritance based imple-
mentations require 15 methods. 14 methods of
Email have to be re-implemented for call adminis-
tration, plus the method single. This method ac-
cepts a name as an argument, and returns true if the
name, which corresponds to a method, has not been
used before on the mail object.

HistoryMail::putOriginator(anOriginator)
if self.single(fputOriginatorF) then
imp.putOriginator(anOriginator)

else self.giveAWarning;

Figure 6: Aggregation-based LDFE ordering of
putQOriginator in class HistoryMail.

It is estimated that the aggregation and inheritance
based FDFE orderings will require 18 and 15 meth-
ods, respectively. The additional three methods for
the aggregation-based reuse are required for recon-
figuring the aggregate structures.

December 1997

Class SyncMail

Consider, for example, class SyncMail, which inher-
its from HistoryMail. This class provides two addi-
tional operations called locked and unlocked. 1f the
method locked is invoked, then all the messages are
delayed until the invocation of the method unlocked.

We can utilize a semaphore to delay and activate
messages. In the aggregation-based reuse, the sem-
aphore can be implemented at the interface object.
An inheritance-based implementation of LDFE or-
dering is shown in Figure 7.

SyncMail::putOriginator(anOriginator)
if self.locked then sema.wait;
super.putOriginator(anOriginator)

Figure 7: Inheritance-based LDFE ordering of
putOriginator in class SyncMail.

Both the aggregation and inheritance based LDFE
implementations require in total 17 method defini-
tions. Here, 14 methods are overridden for sema-
phore implementation, two methods are required
for lock and unlock operations, and one method is
used for implementing the semaphore. The aggre-
gation-based implementation of FDFE ordering re-
quires 20 methods. Here, three additional methods
are needed for reconfiguring the aggregate struc-
ture. The inheritance-based reuse requires 17 meth-
ods.

Evaluation and Requirements

In the previous section we introduced a set of class-
es which are derived from each other. Class Email is
used as a base class and defines 14 methods. US-
View mail illustrates that a considerable number of
methods of EMail have to be re-implemented if two
views are enforced on nine methods. Class OR-
ViewMail shows that view partitioning requires re-
implementation of the corresponding methods. In
addition, if the view enforcement is applied from
the most general to specific views (FDFE ordering),
the aggregation-based reuse becomes problematic
due to the encapsulated objects; this requires a com-
plete reconfiguration of the aggregated objects.
Class GViewMail illustrates that the inheritance-
based reuse may be advantageous with respect to
the aggregation-based reuse, if only the implemen-
tation of views is changed. However, if the views
are verified in FDFE ordering, then the methods
with views have to be redefined, because the call
patterns to the super classes have to be modified.
Class HistoryMail shows that demanding a history
information requires modification to all methods.
Similarly, SyncMail illustrates that adding a simple
synchronization constraint like locking causes re-
definition of all the methods.

Despite of all these composability problems, the ob-

XOOTIC MAGAZINE

ject-oriented model has many useful features. In or-
der to cope with the problems, however, the current
object-oriented languages must be enhanced. Since
more than one problem can be experienced for the
same object, multiple enhancements must be speci-
fied independent from each other.

The Composition-Filters
Approach

We will now investigate natural solutions to the
composability problems. Assume for example that
we want to take a picture of a flower, which is too
close to our camera, and the ambient light is not
suitable for the film. As a result, the camera cannot
provide a satisfactory picture. In other words, the
camera cannot express this image; this is an exam-
ple of a modeling problem. A cost-effective way to
solve this problem is enhancing the camera using
two extensions: a lens to sharpen the picture and a
color filter to filter out the unwanted light effects.
These are called modular extensions because the ex-
pression power of the camera is enhanced without
changing its basic structure. The lens and filter can
be used together because their functionality is or-
thogonal to each other.

The expression power of the object-oriented model
can be enhanced similar to the photo camera exam-
ple. Independent extensions can be used to effect
the incoming messages without modifying the basic
object-oriented model. This is illustrated by Figure

control
(conditions)

Figure 8: Enhancing objects with modular and
orthogonal extensions.

A photo camera with a standard lens is a metaphor
for the conventional object-oriented model. A photo
camera with a set of extensions is analogous to the
composition-filters model. The claim here is that the
expression power of the conventional object-orient-

ed model can be improved through modular and
orthogonal extensions rather than building increas-
ingly complex object structures.

Each message that arrives at an object is subject to
evaluation and manipulation by the filters of that
object. In this section, we will briefly introduce how
composition-filters can help in reusing components
without unnecessary re-definitions. Composition-
filters can be attached to objects defined in current
object-oriented programming languages such as
Smalltalk and Java without modifying these lan-
guages.

Filters are defined in an ordered set. A message that
is received by an object is first reified, i.e. a first-class
representation of the message is created. The reified
message has to pass the filters in the set, until it is
discarded or dispatched. Dispatching means that
the message is activated or delegated to another ob-
ject. Each filter can either accept or reject a message.
The semantics associated with acceptance or rejec-
tion depend on the type of the filter.

In Figure 9, the filter specification of class USView-
Mail is shown.

USViewMail
mail: Email;
inputfilters
USView: Error =
{userView => {putOriginator, putReceiver,
putContent, getContent, send, reply},
systemView => {approve, putRoute,
deliver},
true => {getOriginator, getReceiver,
isApproved, getRoute, isDelivered};
Execute: Dispatch = { true => {inner.*, mail.*}};

Figure 9: Composition-filters extension of USViewMail.

Class USViewMail has two attached (input) filters.
The filter USView is an instance of an Error filter. If
an error filter accepts the received message, then it
is forwarded to the following filter. Otherwise an
exception will be generated. The filter Execute is an
instance of Dispatch filter. If a dispatch filter accepts
the received message, then the message is executed.

The conditions userView and systemView are
Boolean methods defined by class USViewMail. If
userView is true, then the messages putOriginator,
putReceiver, putContent, getContent, send, and reply
are accepted by the error filter. Similarly, the mes-
sages approve, putRoute, and deliver are only accept-
ed if systemView returns true. The remaining five
methods are not restricted by the error filter, be-
cause the condition is specified as constant true.

The specification ‘inner.*” and ‘mail.* means that
the dispatch filter accepts all the methods declared
by class USViewMail and Email. The pseudo-varia-

ble inner refers to an instance of USViewMail.

Since filters are fully separated from the class, they
can be reused separately. For example, the pro-
grammers can implement the above mentioned
classes in any object-oriented language without at-
taching filters. Filters can be stacked and attached to
any of these classes, whenever necessary. This al-
lows the programmer to implement both LDFE and
FDFE ordering strategies. Note that the composi-
tion-filters implementation of USViewMail requires
only three new method definitions; these are two
view implementations and one composition-filters
specification.

In Figure 10, the filter extension for class ORView-
Mail is given.

ORView:Error =
{origView => {putOriginator, putReceiver,
putContent, getContent, send },
recView => reply,
true ~> {putOriginator, putReceiver,
putContent, getContent, send, reply},
Execute: Dispatch = { true => {inner.*, mail.*}};

Figure 10: Composition-filters extension of
ORViewMail.

If the view origView is true, the messages putOrigi-
nator, putReceiver, putContent, getContent, and send
are accepted. These messages will then be dis-
patched to object mail of class USViewMail. If US-
ViewMail is also extended with filters, the accepted
message will pass through the filters of USView-
Mail object as well. The condition recView is used to
enforce the receiver view. The operator ‘~>" means
all messages are accepted except the specified one.
The composition-filters implementation of OR-
ViewMail requires only three new method defini-
tions. These are the implementation of views and
the filter specification.

The composition-filters implementation of Class
GViewMail does not require any specific filter defi-
nition. Since conditions are methods, they can be in-
herited from class ORViewMail. However, in
GviewMail, these methods must be re-defined as
group originators and receivers.

Consider now class HistoryMail with its filter ex-
tension as shown in Figure 11.

count: Meta = { [*] inner.count };
execute: Dispatch = { true => {inner.*, mail.*}};

Figure 11: Composition-filters extension of HistoryMail.

The Meta filter is used to reify a message. If the re-
ceived message matches, in this specification it al-
ways matches ([*]), it is reified and converted to a

December 1997

new message with the original message as an argu-
ment of the new message. This new message is then
passed to the method count. This method reads the
attributes of the original message. In this case, it
reads the method name used in the original call. Af-
ter that, if the same request has been invoked before
the current message, it gives a warning signal and
converts the message back to its original form. The
dispatch filter then executes it. A more detailed in-
formation about Meta-filters can be found in [2].
The composition-filters implementation of History-
Mail requires only two new methods: a filter speci-
fication and the method count.

Finally, class SyncViewMail has the filter specifica-
tion as shown in Figure 12.

queue: Wait = {locked => unlock, unlocked => *};
execute: Dispatch = {true=> {inner.*, mail.*}};

Figure 12: Composition-filters extension of
SyncViewMail.

If the condition locked is true, then only an unlock
message matches the filter. If the condition is un-
locked, then any message matches the filter. If a
wait filter matches a message, then the message is
forwarded to the next filter. Otherwise it is queued
until the message can be accepted. Note that the
composition-filters implementation here requires
only three new methods. These are the methods
locked and unlock and the filter specification.

Evaluation

From the perspective of reusability, the convention-
al object-oriented model performs unsatisfactorily.
The examples show that reusing components using
aggregation and inheritance mechanisms may not
always be successful, if objects implement concerns
like multiple views, history information and syn-
chronization. The aggregation-based reuse requires
94 and 106 method implementations, for LDFE and
FDFE orderings, respectively. The inheritance-
based reuse performs better, but cannot implement
dynamically changing behavior easily. For both
LDFE and FDFE orderings, the inheritance-based
reuse requires 66 method implementations. In this
example, the composition-filters extension requires
only 27 implementations. The composition-filters
clearly perform better, since they avoid unnecessary
method re-definitions. Besides, filters are largely
language independent and therefore can be at-
tached to objects implemented in various different
languages.

XOOTIC MAGAZINE

References

[1] M. Aksit, Separation and Composition of Concerns, ACM Com-
puting Surveys 28A(4), December 1996, http://
www.acm.org/surveys/1996/.

[2] M. Aksit, K. Wakita, J. Bosch, L. Bergmans and A. Yone-
zawa, Abstracting Object-Interactions Using Composition-Fil-
ters, In object-based distributed processing, R. Guerraoui, O.
Nierstrasz and M. Riveill (eds), LNCS, Springer-Verlag,
1993, pp 152-184.

pasfoto pasfoto

Aksit Tekinerdogan

Dr.ir. Mehmet Aksit holds an M.Sc. degree from
Eindhoven University of Technology and a Ph.D.
degree from the University of Twente. Currently, he
is an associate professor at the University of
Twente. He is the leader of the Twente Research
and Education on Software Engineering (TRESE)
project.

Ir. Bedir Tekinerdogan is currently a Ph.D. student
within the TRESE project. His research is related
with the development of adaptable OO models and
methods for large scale complex software systems.

